

LOFAR LBA Sky Survey and LBA Practical Use

Francesco de Gasperin

LOFAR School - L'Aquila 04/2023

LOFAR evolution

0.3"

LOFAR (with IS): 2022 2"-3"

Credits: H. Edler

Processing

Many technical developments required to process large quantities of data with complex processing strategies.

Current processing pipelines includes:

- HBA Dutch-array processing: van Weeren+ 2016, Williams+ 2019, Mechev+ 2019, Drabent+ 2019, de Gasperin+ 2019, Shimwell+ 2019, Sabater+ 2021, Tasse+ 2021, van Weeren+ 2021
 - extraction
- HBA w/ international stations processing: Morabito+ 2021, Jackson+ 2021, Sweijen+ sub
 - local re-imaging
 - full wide field
- LBA Dutch-array processing: de Gasperin+ 2019, 2020, 2021, Williams+ 2021
 - extraction

And use many software packages including:

Offringa + 2012, 2014, 2016, van der Tol + 2018, Tasse + 2014, 2018, Smirnov + 2015, van Diepen + 2019, de Gasperin + 2019

There are also many other ongoing efforts to improve calibration, imaging and processing techniques.

To-date we have accumulated >50PB of data (20PB + 300TB of final products surveys)

Outline

LOFAR LBA 2. PiLL 3. LoLSS (54 MHz) 4. What's next?

Challenges of the low frequency: • Data size, up to 10s TB/night

- Complex beam
- Large FoV
- Low S/N
- lonosphere

Internet, Inter

4.001

1001

Table year

100% 50% W'' Ati U 0% 100 nm 10 µm 0.1 nm 10 nm 1 nm 1 µm

Differences HBA-LBA

- Frequency
- Sensitivity
- Resolution

- HBA: 120 250
- LBA: 1 mJy/b • HBA: 0.1 mJy/b

- **Primary** beam FWHM
- HBA: 4 deg

Bandwidth

Multi beam

- 488 SB = 96 MHz

• LBA: 10 — 90 MHz

~100 times deeper than competitors

```
• LBA: 15" (1" with international)
• HBA: 5" (0.3" with international)
```

• LBA: 4 deg (outer) - 6 deg (sparse/LOFAR2.0)

```
    190% fractional (LBA)

• 64% fractional (HBA)
```

Fully exploitable only in LBA (high survey speed, new calibration techniques)

LBA Modes

- FWHM INNER: 10 deg
 FWHM SPARSE: 6 deg
- FWHM OUTER: 4 deg
- LOFAR 2.0 will remove this limitation!

Typical observing mode

Survey mode:

- 3 beams on targets + 1 beam on calibrator
- 42-66 MHz band
- LBA SPARSE
- 2 sec. integration time
- 8 ch/SB freq. resolution

Single target:

- 1 beams on target + 1 beam on calibrator
- e.g. 20-68 MHz
- LBA SPARSE or OUTER
- 2/4 sec. integration time
- 4/8 ch/SB freq. resolution

Co-obs with survey:

- 1 beam on target + 1 beam on calibrator (+ 2 beam on survey)
- the rest as "survey mode"

Common:

- usually no international stations (but first experiments on-going)
- keep elev. >30 (better >40)
- multiple short observations (1h)
- don't be limited on number of beams

270

USS radio halos Dead AGNs Radio phoenixes GReETs

....

Unveiling the silent majority of *low-energy* phenomena

Flux density —

Why ULF are able to reveal the sea of submerged CR?

Radio Galaxies

5 Mpc

 \bigcirc

USS Radio Halos

0 *

Radio Bridges

 \diamond

 $\mathbf{\hat{v}}$

 \bigcirc

Re-energised tails

RadioPhoenixes

Radio Halos

Radio Relics

R500

GReETs

Spectra Index: -4

100 yrs of VLA time for detection in L-band

Ultra-low frequencies

Look back in time up to 1 Gyr

Constrain models

|--|

(30.000 ly)

LOFAR 0.05 GHz

10 arcsec I-----I (3.000 ly)

VLA 1.5 GHz

0,001 arcsec (0,3 ly)

VLBA 43 GHz

0,00001 arcsec Ι (0,003 ly) EHT 230 GHz

Technical challenges: Beam model

Station calibration sub-optimal - holography will help...

Beam model sub-optimal - needs developing

Technical challenges: Side lobes

15

Demix is suboptimal

Subtractions is suboptimal (smearing + DD effects)

Technical challenges: Low-sensitivity

16

- T_{sky} dominates below 65 MHz
- Don't look at the bandpass
- Look at the SEFD
- 54 MHz is the sweet spot

Technical challenges: lonosphere

Technical challenges: lonosphere

Phase rotation on interferometer:

С

- B and n_e dependency: ionosphere physical properties!
- Frequency dependency: effect is stronger at low frequencies!
- +/- sign of second term: Faraday rotation!

At frequencies <10 MHz: reflection

Refractive index:

Outline

I. LOFAR LBA 2. Pill 3. LoLSS (54 MHz) 4. What's next?

Pipeline for LOFAR LBA (PiLL)

22

Get the code:

github.com/revoltek/LiLF

Get the docker/singularity:

- \$ docker pull revoltek/pill:20220805
- \$ singularity build pill.simg <u>docker://revoltek/pill:20220805</u>

Run the code:

- I. stage the data online
- 2. run the preprocess pipeline
- 3. run the calibrator pipeline (in the cal dir)
- 4. run the timesplit+self+dd pipelines (in the target dir)
- 5. OPTIONAL: run the extract pipeline

Check out the README in Github

Strategy

1. Calibrator calibration

Corrections: - Instrumental (beam, bandpass, delays...)

2. Direction independent calibration (5 mJy/b - 45") 3. Direction dependent calibration (1 mJy/b - 15")

Corrections: - **Direction independent ionosphere**

Corrections:

- **Direction dependent** ionosphere

Pipeline for LOFAR LBA (PiLL)

24

- Preprocess pipeline
- Calibrator pipeline
- Target pipeline
 - Timesplit
 - Self-cal
 - DD-cal
- Extraction

- •(Parallel staging and) download data
- •Flag low-elevation (<15 deg)
- **Rescaling**
- •Averaging
- Renaming following a standardised name convention

Pipeline for LOFAR LBA (PiLL)

- Preprocess pipeline
- Calibrator pipeline
- Target pipeline
 - Timesplit
 - Self-cal
 - **DD-cal**
- Extraction

25

•Solve

- -cross-delay
- -Faraday rotation
- -bandpass
- -phases (clock + ionosphere)
- •Flag bad stations
- •Imaging (optional)

Calibrator pipeline (PreFactor 3)

Clock

TEC

TEC (3rd order)

Phases

26

Pipeline for LOFAR LBA (PiLL)

27

- Preprocess pipeline
- Calibrator pipeline
- Target pipeline
 - Timesplit
 - Self-cal
 - **DD-cal**
- Extraction

- Apply solutions Combine all SBs in a single MS
- Flagging
- •Split in time (1h) for parallelisation

Pipeline for LOFAR LBA (PiLL)

28

- Preprocess pipeline
- Calibrator pipeline
- Target pipeline
 - Timesplit
 - Self-cal
 - **DD-cal** \bullet
- Extraction

•Solve fast-time for TEC

- •Remove sources from 1st side-lobe
- Solve slow-time G for II order
- beam errors
- •Self-cal cycles

Outcome:

• <5 mJy/b, beam=45" (beam corrected)

Self-calibration

de Gasperin+ 2020

Self-calibration

Faraday rotation correction

30

de Gasperin+ 2020

Direction-dependenta calibration

31

- Download pipeline
- Calibrator pipeline
- Target pipeline
 - Timesplit
 - Self-cal
 - **DD-cal**
- Extraction

•Still in developing

- •Solve for fast DD-TEC
- Solve for slow beam-amp

Outcome:

- <2 mJy/b, beam=15" (beam corrected)
- V-stokes
- Source-subtracted low-resolution

Strategies: calibration

Serial calibration

- **1.** Find the brightest source in the field (dd-calibrator)
- 2. Remove the flux from everything else (e.g. subtraction, smearing)
- 3. Calibrate
- 4. Move to the next

Example: DP3

Advantages:

- Scalable
- Easy-to-implement

de Gasperin+ 2021, A&A, 642, A85

Parallel calibration 1. Find brightest sources in the field (dd-calibrators) 2. Calibrate **Example: KillMS, DP3** Surface brightness (mJy beam⁻¹) 25 80 **Advantages: Possibly faster** • More precise

5^h55^m

6^h10^m

05^m

Right Ascension (J2000)

00^m

Strategies: imaging

Facet imaging

- **1.** Find solutions in "enough" directions
- 2. Isolate the flux coming from each region of the map where the solution applies
- 3. Image each region
- 4. Stitch the regions together (or use a special imager)

Example: DDFacet

Advantages:

- Fast
- Scalable
- Easy-to-implement

de Gasperin+ 2021, A&A, 642, A85

Screens

1. Find solutions in "enough" directions

- 2. Interpolate the solutions on a screen (assumptions!)
- 3. Image the entire field while applying the screen

Example: WSclean + IDG

de Gasperin+ 2018, A&A, 615, A179

No ionospheric correction

DI ionospheric correction

DD ionospheric correction

Direction-dependenta calibration

37

- Download pipeline
- Calibrator pipeline \bullet
- Target pipeline
 - Timesplit
 - Self-cal
 - **DD-cal**
- Extraction

•Subtract all sources but a small region

- •Averaging
- Self-cal on that region

Outcome:

- •~1 mJy/b, beam=15"
- Higher fidelity for extended sources

Limitations

- Bad **ionosphere** can prevent even basic imaging
- Bright sources in the field or just outside can severely limit the dynamic range
- The **sun** should be rather far away (>30-40 deg) if you need short baselines
- Some facets might have low S/N and provide inaccurate flux densities
- Very extended emission (covering multiple facets) is rather untested

Outline

I. LOFAR LBA 2. PiLL **3. LoLSS (54 MHz)** 4. What's next?

LOFAR Surveys

LoLSS status

LoLSS DRI data

- Area: 650 deg²
- Stokes: I, V Image format: 2 large fits, 95 mosaic fits, hips
- Catalogue: sources (42,463)
- Solutions: direction-dependent for re-imaging/extraction

Surface brightness (mJy beam⁻¹)

LoLSS low resolution

right seconsion (

LoLSS sensitivity

LoLSS source count

45

LoLSS not deep enough to see SF galaxy turnover: need deep fields

High flux sources: steep (-0.8) Low flux sources: flat (-0.6)

LoLSS spectral properties

46

LoLSS: deliverables

Check out the data release 1 at: https://www.lofar-surveys.org/lolss.html

Images:

47

- Mosaiced images: Stokes-I & Stokes-V
 - <u>ToUse</u>: Download mosaic (no PB corr. needed) or cutouts (coming soon)
- HIPS images (Stokes-I only)
 - <u>ToUse</u>: Aladin → Load URL
- Low-resolution source-subtracted mosaiced image

Catalogues:

- Source catalogue (42,463 entries)
 - <u>ToUse</u>: download good for cross-match and initial tests. Flux density estimation better from images
- Gaussian component catalogue
- Source+Gaussian component in-band catalogues: 44, 48, 52, 56, 60, and 64 MHz
- Spectral index catalogue (planned)

Data:

- DIE corrected + DDE solutions
 - <u>ToUse</u>: extract pipeline currently has to be arranged

Interested in using the data? Fill the SKSP wiki - LoLSS projects page

Outline

I. LOFAR LBA 2. PiLL 3. LoLSS (54 MHz) 4. What's next?

48

LOFAR 2.0 requirements

- Leverage existing investments
 - hardware (stations, networks, data centres)
 - algoritms, software, pipelines
 - community's collected brainpower
- Remain unique and scientifically impactful (in SKA era):
 - lowest frequencies
 - highest resolution
 - versatility
- Evolution: continuous community support & productivity
- Financially, technically feasible on a 3-10 year timescale

LOFAR 2.0Vs SKA-low (ph. I)

LOFAR 2.0:

- Reaches 2x lower frequencies
- I 0x higher sensitivity

SKA-low (ph.l)

- Reaches 2x higher frequencies
- I 0x greater collecting area

LOFAR 2.0 upgrades

50

LOFAR 2.0 (stage 1) station upgrade includes:

- **Dual band**: enabling simultaneous observation capability for Low Band Antennas and High Band Antennas
- **Receivers**: 48 LBA or 48 HBA \rightarrow 96 LBA and 48 HBA
- **Clock**: distribution of a central clock to all NL stations (White Rabbit)
- Linearity: improving receiver linearity
- processing systems and receiver units; LOFAR Mega Mode (Cobalt 2.0, simultaneous observations for several science cases)

• Hardware: redesigning and replacing of station electronics, including digital

LBA LOFAR Community Sky Survey

51

 10^{10}

- Band: 16 64 MHz
- Resolution:
 - 1" (upper half of the band) 15" (lower half of the band)

<u>Wide Survey</u> (2004 hrs):

- Coverage: Dec > 0°
- Sensitivity: 500–800 µJy beam⁻¹

<u>Deep-Wide Survey</u> (5830 hrs):

- Coverage: Dec > 20° , $|b| > 23^{\circ}$
- Sensitivity: 350 µJy beam⁻¹

<u>Ultra-deep Fields</u> (100 hrs per field):

• Sensitivity: 130 μ Jy beam⁻¹

LOFAR LBA Sky Survey (LoLSS)

Reference person: Francesco de Gasperin For deep fields: Wendy Williams

Data at: <u>www.lofar-surveys.org/lolss.html</u>

• LBA LOFAR Community Sky Survey (LLoCuSS)

Reference persons: Francesco de Gasperin / Reinout van Weeren

• LBA data reduction

Reference persons: Francesco de Gasperin and Henrik Edler (present at the conf.)

Code, docker and docs at: <u>github.com/revoltek/LiLF</u>

 Ideal visibilities (now in 2x2 matrix form): $\boldsymbol{V}(u,v) = \iint \boldsymbol{I}_c(l,m)e^{-2\pi i(ul+vm)}dl\,dm$ $\boldsymbol{V} = \begin{pmatrix} V_{xx} & V_{xy} \\ V_{yx} & V_{yy} \end{pmatrix}$ Antenna Polarizer A full polarization correlator X Y R L (XY or RL) produces visibilities for all cross-products: Complex RR, RL, LR, LL or XX, XY, YX, YYcorrelators • Short-hand notation: $RR_{ij} = R_i R_j^* = V_{rr,ij}$, etc. $X_1 X_2^*$ $\begin{array}{c} Y_1 Y_2^* \\ L_1 L_2^* \end{array}$ $X_1Y_2^*$ $Y_1X_2^*$ Output $L_1 R_2^*$ $R_1 R_2^*$ $R_1L_2^*$

$$\cdot$$
 with $V = \begin{pmatrix} V_{rr} & V_{rl} \\ V_{lr} & V_{ll} \end{pmatrix}$ or

• Measured visibilities on baseline *j*, *k*:
$$V_{jk}^{obs} = \iint [J_j I_c(l,m) J_k^+] e^{-2\pi i (u_{jk} l + v_{jk} m)} dl dm$$

- The Jones matrix J is a complex 2x2 matrix that captures antenna-based signal corruptions
- \cdot The format of **J** often depends on the feed basis (RL or XY)
- Examples for RL $J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad J = \begin{pmatrix} g_R \\ 0 \end{pmatrix}$

$$\boldsymbol{J} = \begin{pmatrix} 1 & d_{LR} \\ d_{RL} & 1 \end{pmatrix}$$

$$\begin{array}{l} 0\\ g_L \end{array} \end{pmatrix} \quad J = \begin{pmatrix} e^{2\pi i \nu \tau_R} & 0\\ 0 & e^{2\pi i \nu \tau_L} \end{pmatrix} \\ J = \begin{pmatrix} e^{+i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix} \end{array}$$

- $J_i = F_i T_i P_i X_i E_i D_i G_i B_i K_i$
 - F_i = ionospheric effects
 - T_i = tropospheric effects
 - P_i = parallactic angle
 - X_i = linear polarisation position angle
 - E_i = antenna voltage pattern, gaincurve
 - D_i = polarisation leakage
 - G_i = electronic gain
 - B_i = bandpass response
 - K_i = geometry
- Apply solutions left to right: opposite to signal path direction
- Components are typically difficult to separate.
- Some components commute (can reorder), some don't

• In practice, a Jones matrix is a product of many(!) effects (components) along the signal path

Polarisation alignment is calculated from XX-YY phases in LoSoTo

(very few free parameters: 1 delay per station)

Faraday rotation is calculated from rotational phase Jones matrix (~ I /f²) in LoSoTo

	Systematic effect	Type of Jones matrix ^a	Ph/Amp/Both ^b	Frequency dependency	Direction dependent?	Time dependent?
	Clock drift Polarisation alignment	Scalar	Ph	αν	No	Yes (many seconds)
	 Ionosphere - 1st ord. (dispersive delay) 	Scalar	Ph	$\propto v^{-1}$	Yes	Yes (few seconds)
	Ionosphere - 2sn ord. (Faraday rotation) Rotation	Both	$\propto v^{-2}$	Yes	Yes (few seconds)
	Ionosphere - 3rd ord.	Scalar	Ph	$\propto \gamma^{-3}$	Yes	Yes (few seconds)
	Ionosphere - scintillations	Diagonal	Amp	-	Yes	Yes (few seconds)
	Dipole beam	Full-Jones	Both	-	Yes	Yes (minutes)
	Bandpass	Diagonal	Amp	-	No	No
60 [2HW] 50 [2HW] 30 30	01LBA ant CS002LDA ant:CS003LBA	ent:CS004LBA ent:CS	005LBA ant:CS006_BA			
60 ₩ ₩ 50 bg 40 30		ant:CS02110 60 곳 50 평 40 30	LBA ant CS002LDA	ant:CSOD3LBA	ant:CS004LBA	ant:CS005LBA
60 [7HW] 50 bay 30	ABLBA ant CS030LBA ant:CS031LBA	ant:CS032LB4 60 번 50 번 50 5 40 30	PLBA ant CS011LBA	ant:CS017LBA	ant:CS021LBA	ent:CS024LBA
50 [ZHW] 50 bay 30	CLBA ant CSBOILBA unt CSBOZLBA	ant:CS401	ALBA ant CS030LI3A	ant:CS031LBA	ant:CS032LBA	ant:CS1D1LBA
60 [ZHW] 50 Bay 30		TREADS 160 17HW 50 1940 30	LBA ant CS301LBA	ont: CS302LBA	ant.CS401LBA	ant:CS501LBA
[7HW] bay 30 0 1 2 3		2 3 4	ALBA ANT RS20ELBA		ant RS306 BA	ant 553071 BA
time	(nr) time (nr) time (hr)	time [nr] 60 전품 50 당 40 30	ant RS407LBA	ant: R5409LBA	ant:RS503_BA	ant:RS508LBA

Clock/TEC/TEC3rd separations is calculated from XX+YY phase solutions in LoSoTo

Solar Cycle

Cygnus A

LOFAR LBA A-Team survey:

AIM: 5" resolution model of the 4 brightest sources in the northerns sky

Cassiopeia A

Taurus A

1 arcmin

Cygnus A

Cassiopeia A

Taurus A

de Gasperin+ 2020

