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A. Complex systems: 

concepts to tackle interdisciplinary 
problems



What is a complex system?
a system composed of many components which may interact with each other

Which are the features of a complex system?
self-organization

pattern formation

nonlinear dynamics multiscale dynamics

networks emergence

[Ott (2002), Strogatz (2014)]



SELF-ORGANIZATION
a process where some form of overall order arises from local interactions between parts of an initially disordered system

a change in the size of the input does not produce a proportional change in the size of the output
NONLINEAR DYNAMICS

each component of the system evolves on a typical scale that can be different from the others
MULTISCALE DYNAMICS

(statistically) orderly outcomes of self-organization
PATTERN FORMATION

any phenomena which are difficult or even impossible to predict from the smaller entities that make up the system
EMERGENCE

a collection of discrete objects and relationships between (some of) them
NETWORKS

[Ott (2002), Strogatz (2014)]



Complex systems in Nature
COVID-19 pandemic evolution is

a multiscale complex system

dN(t)
dt

= R0 N(t) (1 −
N(t)
N∞ )

R0

N(t)

Network: 

move one infected person 

from a region to another

Nonlinear: 

take care of R0

Self-organization: 

Take order from disorder


via local interactions


unfortunately here 

order means


“infect all people”



Another one
Aurora borealis

Tropical cyclone

Earthquake

- Many interacting components

- Many forcings

- Wide range of scales

- Many (tele-)connections

- Several nonlinearities



B. Multiscale dynamics: 

decomposition methods



What is a decomposition method?
a statistical task that deconstructs a time series into several components, each representing one of the underlying categories of patterns

Spectral methods
X(t) = ∑

j,k

cjk ϕjk(t)

Adaptive methods
X(t) = ∑

k

ψk(t) + T(t)

define a suitable spectral basis

for projecting the time series and


extract scale-dependent components

extract a number of components 

forming the decomposition basis


with no a priori assumptions

cjk

ϕjk(t)
expansion coefficients

spectral basis
ψk(t)

T(t)
decomposition basis

long-term trend

[Chatfield (2016)]



Spectral methods
I. Wavelet Transform (WT)
mapping from L2(R) → L2(R2) but with superior time-frequency localization as compared with the FT

f(t) = C−1
ψ ∫

∞

−∞ ∫
∞

0

da db
a2

Wf(a, b) ψa,b(t)
f(t) = ∑

m∈ℤ
∑
n∈ℤ

⟨ f, ψm,n⟩ ⋅ ψm,n(t)

Properties of WT (both continuous and discrete)

* Define a suitable mother wavelet ψ(t) ∈ 𝕃2 : Cψ = ∫
∞

0

ψ̂(ω)
2

ω 2 dω < ∞

* Define dilated–translated wavelets ψa,b(t) =
1

a
ψ ( t − b

a ) a ∈ ℝ+, b ∈ ℝ

admissibility condition 

* Define wavelet coefficients Wf(a, b) =
1

a ∫
∞

−∞
ψ ( t − b

a ) f(t) dt

a: scale parameter
b: translation parameter

* Discrete wavelets a = 2−m, b = n 2−m, ψm,n(t) = 2m
2 ψ (2m t − n)

* Satisfied mathematical properties: completeness, orthogonality, Planchener theorem [Meyer (1992), Chui (1992)]

https://www.sciencedirect.com/topics/engineering/localisation


Spectral methods
I. Wavelet Transform (WT)

How to choose a suitable mother wavelet?

∫
∞

−∞
ψ(t) dt < ∞ ∫

∞

−∞
ψ(t)

2
dt < ∞ ∫

∞

−∞
tm ψ(t) dt = 0

* Haar Wavelet (1910) ψ(t) =
1 0 ≤ t < 1/2,
−1 1/2 ≤ t < 1,
0 otherwise

- Not continuous

- Not differentiable

- Sudden transitions

* Morlet Wavelet (1981) ψσ(t) = Cψ π− 1
4 e− 1

2 t2 (eiσt − e− 1
2 σ2)

Complex exponential

+


Gaussian window

* Mexican hat Wavelet (1984) ψ(t) =
2

3σ π 1
4 [1 − ( t

σ )
2

] e− t2
2 σ2 Second Hermite function

[Haar (1910), Ricker (1952), Morlet (1981)]



Spectral methods
III. Power Spectral Density (PSD)
how power of a signal is distributed over frequency -> statistically how variance is distributed over scales

Let  be a time series and let  some kind of spectral 

operator (as Fourier or Wavelets) we can define the power spectral density (PSD) 




where  and  are the autocorrelation function and its FT, while  is the length of a time window.

f(t) : 𝔸 → 𝔹 ϕ : f(t) → ϕ [f(t)](ξ), ξ = {ω, a, τ, k, …},

S(ξ) ≐ ∫
∞

−∞
R(ℓ) e−i 2πξ ℓdℓ = R̂(ξ) ≡ S(ξ) = lim

T→∞

1
T

ϕT[ f(t)](ξ)
2

R(ℓ) R̂(ξ) T

Properties of PSD

S(ξ) ∈ ℝ+ S(−ξ) = S(ξ) Var( f ) = ∫
∞

−∞
S(ξ) dξ Sf,g(ξ) = ∫

∞

−∞
Rf,g(ℓ)e−i 2πξ ℓdℓ = R̂f,g(ξ)

Methods to estimate the PSD
Parametric


- Autoregressive (AR)

- Moving-average (MA)

- Autoregressive moving-average (ARMA)

Non-parametric

- Spectrogram/scalogram

- Welch’s method

- Singular spectrum analysis (SSA)

[Chatfield (2016)]



Adaptive methods
I. Empirical Mode Decomposition (EMD)
decomposes signals into embedded patterns and a trend which are empirically determined from the data

f(t) = ∑
k

𝒞k(t) + ℛ(t)

f0(t) = f(t) − ⟨ f(t)⟩1. Define a zero-mean signal

te ∈ [0,T] s . t .
df0(t)

dt
|t=te

= 02. Find its local maxima and minima

𝒰(t), ℒ(t)3. Define upper and lower envelopes via cubic spline
ℳ(t) = ⟨𝒰(t), ℒ(t)⟩4. Evaluate the mean envelope
𝒟(t) = f0(t) − ℳ(t)5. Evaluate the “detail”

6. Is  an Intrinsic Mode Function (IMF)? 

Does it has (i) the same number of extrema and zero crossing and (ii) an average envelope with zero mean?

𝒟(t)

6.1 YES -> store  and repeat steps 1.-5. on 𝒞1(t) = 𝒟(t) f1(t) = f(t) − 𝒟(t)
6.2 NO -> repeat steps 1.-5. on  until  is an IMFf1(t) = f0(t) − 𝒟(t) 𝒟(t) [Huang+ (1998), Huang and Wu (2008)]



Adaptive methods
II. Hilbert Spectral Analysis (HSA)
allows to explore amplitude-time-frequency properties of Intrinsic Mode Functions derived via the EMD

f(t) = ∑
k

𝒞k(t) + ℛ(t) → 𝒞̃k(t) ≐
1
π

𝒫 ∫
∞

−∞

𝒞k(t)
t − t′￼

dt′￼ → 𝒞k(t) = 𝒜k(t) ei φk(t)

* The combination of both EMD and HT is usually called Hilbert-Huang Transform (HHT)
* Define an Hilbert-based spectrogram known as Hilbert-Huang Spectrum

ℰ(t, ω) = ∫
∞

−∞
ρ(𝒜, ω) 𝒜2 d𝒜

* Define an Hilbert-based power spectrum known as Hilbert-Huang marginal spectrum

𝒫(ω) = lim
T→∞

1
T ∫

t0+T/2

t0−T/2
ℰ(t′￼, ω) dt′￼

* Define an Hilbert-based PSD known as Hilbert-Huang PSD

𝒮(ω) =
d

dω
𝒫(ω)

[Huang+ (1998), Huang and Wu (2008)]



C. Complexity measures: 

from global to local fractal dimensions




What is a fractal?
self-similar subset of an Euclidean space whose fractal dimension does not exceeds its topological dimension

Clouds are not spheres, mountains are not cones, and lightning does not travel in a straight line (B. Mandelbrot)

zooming and zooming in 

to uncover finer details but no new detail appears

a measure of roughness

how the details change with the scale

the smallest number n such that 

each point of the space belongs to, 


at most, n sets in the cover

[Mandelbrot (1982), Falconer (2003)]



Building a fractal…
Cantor set


iteratively deleting the open middle third 

from a set of line segments

Koch snowflake


1. start with an equilateral triangle;

2. divide the line segment into three segments of equal length;

3. draw an equilateral triangle that has the middle segment from step 1;

4. remove the line segment that is the base of the triangle from step 2

How many copies (N) of the new object are needed to cover the full-scale one if it is scaled by a factor k?

dF =
log N
log k

=

log 2
log 3 ≈ 0.63… Cantor
log 4
log 3 ≈ 1.26… Koch

Amazingly, fractals are extremely simple to make!

[Cantor (1883), Koch (1904), Hausdorff (1918)]



…or finding it in nature!
How Long Is the Coast of Britain? 

L(G) = F G−D

* It was an older problem dating back in 1960s

* Solutions: L.F. Richardson (1961), B. Mandelbrot (1966)

1. Define a scale parameter G
2. Evaluate how many segments of length  


are needed to cover the full coastline
G

3. Make a plot of  vs. L(G) G

4. Find the scaling exponent D

3.5 4 4.5 5 5.5 6 6.5 7 7.5
Log(G)

0

1

2

3

4

5

6

Lo
g(

L)

L  G-1.33

[Hausdorff (1918), Mandelbrot (1967)]



The father of fractals: Benoit Mandelbrot

20 November 1924 – 14 October 2010

* He was an expert of “the art of roughness" of physical phenomena 

* He is recognized for his contribution to the field of fractal geometry

* He coined the word “fractal”

* He developed the theory of “roughness and self-similarity" in nature

zn+1 = z2
n + c

https://en.wikipedia.org/wiki/Benoit_Mandelbrot#Fractals_and_the_%22theory_of_roughness%22
https://en.wikipedia.org/wiki/Fractal_geometry
https://en.wikipedia.org/wiki/Self-similarity


…but the story starts before Mandelbrot

8 November 1868 – 26 January 1942

* one of the founders of modern topology 

* contributed significantly to measure theory

* Hausdorff dimension: measuring “highly rugged quantities"

ℋd(S) := lim
r→0

inf{∑
i

rd
i :  there is a cover of S by balls with radii 0 < ri < r}

dH(S) := inf{d ≥ 0 : ℋd(S) = 0}

* Hausdorff measure: covering the surface with “small-radius balls"



…and continued soon after Mandelbrot

Itamar Procaccia

Giorgio Parisi

Uriel Frisch

Peter Grassberger

Roberto Benzi



Is a single exponent enough to describe its dynamics?
 quantifies the inherent scaling but does not uniquely provide enough information to reconstruct itdH

Rule: produce 4 new parts for every 1/3 scaling

Fractal tree

Koch snowflake

dH =
log N
log k

=
log 4
log 3

≈ 1.26…

Same rule

Same scaling

Drastically different! 

dH → Dq



The generalized fractal dimensions Dq
introduced in 1980s both in the framework of dynamical systems and fully developed turbulence

Dynamical systems Fully developed turbulence
* let  be a continuous dynamical system·x = F(x, {β})

* let  the invariant set of its phase-spaceℳ

* let  a partition of  into  boxes or hypercubes𝒮 ℳ ℬi

* let  the normalized measure of this box𝒫i =
μ(ℬi)
μ(ℳ)

Dq =
1

q − 1
lim
r→0

log∑i 𝒫i
q

log r

* let  a physical system and let  a scale parameters( ⃗r) ⃗a

* let assume that s( ⃗x + ⃗a ) − s( ⃗x ) ∼ ah( ⃗x )

*  quantifies local degree of singularity around h( ⃗x ) ⃗x

* let  the set of points  sharing the same ℐ ⃗x h( ⃗x )

D(h) := inf{d ≥ 0 : ℐd( ⃗x ) = 0}

[Hentschel and Procaccia (1983), Grassberger and Procaccia (1983a), Halsey+ (1986)] [Parisi and Frisch (1985)]



The generalized fractal dimensions Dq
apparently the two framework are independent and not connected but…

q = dD(h)
dh

Dq = 1
q − 1 (qh − D(h))

Legendre Transform: ℒn{f(x)} = f̃(n) = ∫
1

−1
Pn(x) f(x) dx

(h, D(h)) → (q, Dq)

h = (q − 1)
dDq

dq

D(h) = hq − (q − 1)Dq

Dq
h(q)

D (h(q))
D(h)

q h

D0

Dq < Dq′￼ if q > q′￼

D0 = max
h

{D(h)}

D(h) = 0 for q = ± ∞

[Hentschel and Procaccia (1983)]



D0, D1, and D2
Box counting dimension 


suppose that  is the number of boxes of side length  required to cover the set, thenN(ε) ε

D0 = lim
ε→0

log N(ε)

log 1
ε

D1 = lim
ε→0

−⟨log pε⟩

log 1
ε

D2 = lim
M→∞

lim
ε→0

log(gε/M2)
log ε

Information dimension

how the average information needed to identify an occupied box scales with box size

Correlation dimension

let  be the number of phase-space points and let  be the number of pairs of points closer than  to each otherM gε ε

[Hentschel and Procaccia (1983)]

[Grassberger and Procaccia (1983a)]

[Hentschel and Procaccia (1983)]

https://en.wikipedia.org/wiki/Information_entropy


The multiscale generalized fractal dimensions Dq,τ
 only allows a “global” view of the system, how to consider the multiscale nature of complex systems?Dq

x(t) = ⟨x(t)⟩ + δxτ1
(t) + … + δxτk

(t) = x0 + ∑
τ

δxτ(t)

* a complex system is formed by many interacting components at different scales

* let be  the phase-space representative of the system for all scales  ℳτ τ′￼ < τ

* let  a partition of  into  boxes or hypercubes of size 𝒮τ ℳτ ℬi,τ r

* let  the normalized measure of this box𝒫i,τ =
μ(ℬi,τ)
μ(ℳτ)

Dq,τ =
1

q − 1
lim
r→0

log∑i 𝒫i,τ
q

log r

- scale-dependent complexity measures

- local properties of fluctuations

- convergence:  τ′￼→ τ then Dq,τ → Dq

[Alberti+ (2020)]



D. Chaotic measures: 

   Lyapunov spectrum and predictability



What is chaos?
When the present determines the future, but the approximate present does not approximately determine the future

Chaotic systems: apparently random states governed by underlying patterns and deterministic laws 

 that are highly sensitive to initial conditions

an arbitrarily small change of the current trajectory may lead to significantly different future behavior

1. Topological mixing: the system evolves over time so that any given region or open set of its phase space 
eventually overlaps with any other given region


2. Dense of periodic orbit: every point in the space is approached arbitrarily closely by periodic orbits 

3. Strange attractor: the subset of phase space at which a large set of initial conditions leads to orbits that 

converge to this chaotic region

3.1 Poincaré–Bendixson theorem: for continuous dynamical systems a strange attractor can only arise in 
three or more dimensions

3.2 Finite-dimensional linear systems are never chaotic; for a dynamical system to display chaotic behavior, 
it must be either nonlinear or infinite-dimensional

Properties of the chaotic systems

[Ott (2002), Strogatz (2014)]

https://en.wikipedia.org/wiki/Initial_conditions
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Poincar%C3%A9%E2%80%93Bendixson_theorem
https://en.wikipedia.org/wiki/Linear_system
https://en.wikipedia.org/wiki/Nonlinearity


The “control” of chaos…
Usually the trajectory of chaotic systems is dependent on control or bifurcation parameters 

xk+1 = F(xk, βk) ∨ ·x = F(x, {β})

A famous simple example: the logistic map
xk+1 = r xk (1 − xk)

0 20 40 60 80 100 120 140 160 180 200
k

0

0.2

0.4

0.6

0.8

1

1.2

x k

r = 3.54409
r = 3.56995
r=4

0 10 20 30 40 50 60 70 80 90 100
k

0

0.2

0.4

0.6

0.8

1

1.2

x k

r = 3.8

x0 = 0.1

x0 = 0.1+2.2204  1016

Dependence on initial conditions

The role of r

The bifurcation diagram

[Ott (2002), Strogatz (2014)]

-



Lyapunov exponents
a quantity that characterizes the rate of separation of infinitesimally close trajectories

* Two trajectories in the phase-space with initial separation vector  diverge at a rate given byδZ0

|δZ(t) | ≈ eλt |δZ0 |  is the Lyapunov exponentλ

* There is a “spectrum” of Lyapunov exponents  as the dimension  of the system{λ1, λ2, …, λN} N

* The Maximal Lyapunov exponent (MLE) determines a notion of predictability for a dynamical system

* A positive MLE is usually taken as an indication that the system is chaotic

* let  be the maximum integer such that the sum of the  largest exponents is still non-negativek k

DKY = k +
k

∑
i=1

λi

|λk+1 |

*  is known as Kaplan-Yorke dimension and is an upper bound of DKY D1
[Ott (2002), Strogatz (2014)]

https://en.wikipedia.org/wiki/Predictability
https://en.wikipedia.org/wiki/Chaos_theory


Chaos meets fractals

It nearby looks like a shrunk and slightly distorted version of the whole diagram

Coming back again to the logistic map and its bifurcation diagram
zoom here

and now here

[Ott (2002), Strogatz (2014)]



Kolmogorov entropy K2
a quantity that measures the predictability horizon of a given system

* Given a time series  we can reconstruct the embedded space via Takens theorem (1981)f(t)

* We can define the correlation integral

ℳ[ f(t)] = Y = ( f(t), f(t − τ), …, f(t − (m − 1)τ))T

C(r, m) = lim
N→∞

1
N2

N

∑
i=1

N

∑
j=1

Θ (r − Yi − Yj )
being  the number of phase-space states,  the Heaviside function, and  a threshold distance between two points in the phase-space N Θ r

* In the limit of small  then  follow a power-law behavior: r C(r, m) C(r, m) |lim r→0 ∼ rD2

* The Kolmogorov entropy is then defined as

K2 = lim
r→0

1
Δt

log
C(r, m)

C(r, m + 1)

* Forecast horizon: τ2 = K−1
2 * Chaotic system: K2 < ∞ * Non-deterministic system: K2 → ∞

[Grassberger and Procaccia (1983b)]



E. Final remarks




Final remarks
1. No method is always and completely better/useful than another


2. Chaos is still everywhere, it is not needed to add other form of “disorder” 


3. What you see “random” could not be always “noise”


4. Took from the past to make better the future…but always remember of the past!


5. Be curious for discovering and be sure for convincing 

A friend said me: “If there is a process or a feature in Nature it shows without 
complicated and sometimes convoluted approaches”

Peter Ditlevsen



See you tomorrow for part II.
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