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A. The solar wind-magnetosphere-

 ionosphere dynamical system



The solar wind-magnetosphere-ionosphere dynamical system
The Earth’s magnetic field

* A solid inner core and a fluid outer core

* a rotating planet

* an  dynamo mechanism generating the 

magnetic field

α2

[Merrill+ (1996)]Credits: https://www.smithsonianmag.com/science-nature/earths-magnetic-field-could-take-longer-flip-previously-thought-180972843/

Credits: https://web.archive.org/web/20150118213104/http://www.usgs.gov/faq/?q=categories%2F9782%2F2738



The solar wind-magnetosphere-ionosphere dynamical system
The solar wind

* a stream of charged particles released 

from the upper atmosphere of the Sun

* mostly electrons, protons and alpha particles 

* an embedded interplanetary magnetic field

* varying in density, temperature and speed over time

Credits: https://science.howstuffworks.com/dictionary/astronomy-terms/solar-wind-info.htm

[McComas+ (2003)][Parker (1958), Bruno & Carbone (2016)]

https://en.wikipedia.org/wiki/Atmosphere_of_the_Sun
https://en.wikipedia.org/wiki/Interplanetary_magnetic_field
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Speed


The solar wind-magnetosphere-ionosphere dynamical system
The solar wind vs. the Earth’s magnetosphere

A “deformed” comet-like shape magnetosphere

Credits: https://science.howstuffworks.com/dictionary/astronomy-terms/solar-wind-info.htm
Credits: https://www.smithsonianmag.com/science-nature/earths-magnetic-field-could-take-longer-flip-previously-thought-180972843/

Credits: https://www.livescience.com/65018-human-brain-senses-magnetic-field.html



The solar wind-magnetosphere-ionosphere dynamical system
The solar wind vs. the Earth’s magnetosphere

Many physical processes at different scales and locations

Credits: https://www.livescience.com/65018-human-brain-senses-magnetic-field.html

Credits: https://rbspgway.jhuapl.edu/sites/default/files//20161026/1_Wed/3_Q12/Foster_SWG_Q1_2_shock.pdf



The solar wind-magnetosphere-ionosphere dynamical system
The magnetosphere-ionosphere system

Credits: https://rbspgway.jhuapl.edu/sites/default/files//20161026/1_Wed/3_Q12/Foster_SWG_Q1_2_shock.pdf

Credits: https://www.esa.int/ESA_Multimedia/Images/2015/06/Current_complexity

Credits: http://www.marspapers.org/paper/Davidson_2017_3.pdf



The solar wind-magnetosphere-ionosphere dynamical system

*Interplanetary magnetic field

*Ion density

*Ion velocity

*Ion temperature

*Electric field

*Poynting vector

*… 

Geostationary measurements*

Low-Earth orbit measurements*


Geomagnetic observatories*

Geomagnetic indices*


…*

What is the dimension of this system?
Credits: https://stereo.gsfc.nasa.gov/img/3Dsun_web.pdf



The solar wind-magnetosphere-ionosphere dynamical system

N ≫ 1 → N ∼ 3 − 4

Credits: https://stereo.gsfc.nasa.gov/img/3Dsun_web.pdf



The solar wind-magnetosphere-ionosphere dynamical system

* Reduce the full phase-space of variables to a subset of them

* Monitoring SW energy input and M-I response

* Monitoring high- and low-latitude current systems

* Monitoring quiet vs. disturbed periods



B. Global features: 

phase-space trajectories



The SW vs. the MI reduced phase-space
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Solar wind parameters

* Close linear relationship between  and Bz Ey * No clear dependence between AE and SYM-H
* Safely move the subset of variables from 4 to 3

Most dense region of the phase-space

Low negative values of SYM-H

High positive values of AE

[Sharma (1995), Klimas+ (1996)] 

[Iyemori (1990)] 

[Davis & Sugiura (1966), Ahn+ (1983)] 



The SMI reduced phase-space (SYM-H, AE, Bz)
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Bz fluctuates around 0 nT

Bz is characterized by 

larger positive values

What happens here?

IS THERE A RELATION BETWEEN Bz and AE (SYM-H)?



What is the relation between Bz and AE (SYM-H)?
Searching for a spectral dependency

* A spectral break is observed 

at about 5 hours

* The magnetosphere responds as 

a low-pass filter

* Is the spectral break the evidence 

of a nonlinear response of AE to Bz?

* Could only some scales be affected 

by the solar wind variability?

[Silverman & Shapiro (1983), Tsurutani+ (1990)]

[Tsurutani+ (1990), Klimas+ (1996)]

[Lyons+ (1997), Alberti+ (2017)]
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Searching for a nonlinear delayed scale dependency via mutual information
MI(Δ) = ∑

x∈X
∑
y∈Y

p(x, y) log
p(x, y)

p(x) p(y)
(1)

Detect intrinsic scales via a 

decomposition method (here the EMD)

Evaluate mutual information (Eq. ) 

between the SW input and the geomagnetic output


at each scale 

(1)

τ

A significant information transfer 

is found for  min 


with a delay of  min
τ > 200

Δ ∼ 60

Bz → AE

Similar relations between different 

couples of inputs/outputs

What is the relation between Bz and AE (SYM-H)?
[Wing+ (2016), Alberti+ (2017)]

Loading-unloading

mechanism

SW convection

direct-driven mechanism

[Rostoker+ (1987), Kamide & Kokubun (1996), Consolini & De Michelis (2005)] [Alberti+ (2017)]

[Huang+ (1998)]
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Internal dynamics dominates this region

External feedback determines 

this “transient” region

Substorm-storm relation? 

How to interpret now the SMI reduced phase-space?

[Kamide & Kokubun (1996), Consolini & De Michelis (2005)]

[Daglis+ (1994), De Michelis+ (2011)] 

[Runge+ (2018), Stumpo+ (2020)]

[Tsurutani+ (1990), Alberti+ (2017)]

[Sitnov+ (2001), Alberti+ (2020b)]



C. Complexity measures: 

 a scale-to-scale approach




Measuring the SMI reduced phase-space
Looking for the correlation dimension

D
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m
⟨AE⟩ [nT ]

D2(m = 6) ∼ 3.6

 : not noise, low-dimensional systemD2(m) < m  almost independent on geomagnetic activityD2

system: not the global magnetosphere, only its response represented by AE

[Vassiliadis+ (1990)]



Measuring the SMI reduced phase-space
Looking for a scale-dependent phase-space

Detect intrinsic modes via a 

decomposition method (here the MEMD)

X(t) = [Bz(t), AE(t), SYM-H(t)]T = ∑
k

Ck(t) + R(t)
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Measuring the SMI reduced phase-space
Looking for a scale-dependent fractal dimensions

Short-term variability 

has larger Dq,τ

[Alberti+ (2020a)]

Dq,τ =
1

q − 1
lim
r→0

log∑i 𝒫i,τ
q

log r

Long-term variability 

has lower 


approaching a constant value

for  min 

Dq,τ

τ ≳ 200
Multifractal features 


emerge at all scales

[Consolini+ (1996), Wanliss (2005)]



Is there any dependence on solar cycle phase?
Scale-dependent complexity measures during maxima and minima

Maximum phase of SC23 Minimum phase of SC23

A lot of 

storms and substorms

No or low-intense

storms and substorms

[Consolini+ (2018)]



Is there any dependence on solar cycle phase?
Scale-dependent  for each time series and  as in Vassiliadis+ (1990)D2(τk) m = 6

[Consolini+ (2018)]Noise? 

D2 ∼ m

Larger  for

short-term

variability

D2 Lower  for

long-term

variability


D2

D2(τk > 200 min) ∼ 1

[Rostoker+ (1987), Kamide & Kokubun (1996), Consolini & De Michelis (2005)]



Is there any dependence on geomagnetic activity?
Short-/long-term variability vs. geomagnetic activity

[Consolini+ (2018)]

 for

long-term

variability


independent

on geomagnetic


activity

D2 ∼ 1 for

short-term

variability, 

increasing


with geomagnetic

activity

D2 ≳ 1

SYM-H/AE < 200 min =
k*

∑
k=1

Ck(t) s.t. τk* = 200 min SYM-H/AE > 200 min =
Nk

∑
k=k*+1

Ck(t) s.t. τk* = 200 min



Is there any dependence on geomagnetic activity?
Short-/long-term variability vs. geomagnetic activity

[Consolini+ (2018)]

SYM-H/AE < 200 min =
k*

∑
k=1

Ck(t) s.t. τk* = 200 min SYM-H/AE > 200 min =
Nk

∑
k=k*+1

Ck(t) s.t. τk* = 200 min

Larger values 

are found for


AE wrt SYM-H

for short-term


variability

Similar values 

are found for


AE and SYM-H

for long-term


variability



Could the scale  be considered a “control” parameter?τ
Are short- and long-term dynamics related to different fixed points?

Three case studies

of geomagnetic 


storms Different 

intensities

Different

morphology

Same length of 

time intervals

[Alberti+ (2018)]



Could the scale  be considered a “control” parameter?τ
Are short- and long-term dynamics related to different fixed points?
Use a simple Langevin model to describe the time evolution of SYM-H ·x(t) = −

dU(x)
dx

+ σ η(t)

Derive the corresponding Fokker-Planck equation d
dt

ρ(x, t) = −
∂
∂x [U(x)ρ(x, t)] +

σ2

2
∂2

∂x2 [ρ(x, t)]
Find its stationary solution U(x) = −

σ2

2
log [ρ(x)]

Meta-stable states

forming during 


the storm

Stable steady-state

corresponding to 


quiet-time conditions

[Alberti+ (2018)]



Could the scale  be considered a “control” parameter?τ
Are short- and long-term dynamics related to different fixed points?

Meta-stable states characterize state function 
at large scalesSingle-state function is found at short scales

[Alberti+ (2018)]



Could the scale  be considered a “control” parameter?τ
Are short- and long-term dynamics related to different fixed points?

Meta-stable states are not only scale-dependent

but also time-dependent and are related to 

the development of the geomagnetic storm

Single-stable states are not time-dependent  

characterize short-term variability also


during a geomagnetic storm

[Alberti+ (2018)]



D. Chaotic measures:

  can we forecast the whole  

  dynamics?



Forecasting geomagnetic indices variability
Why it is not so easy?

K 2
(m

)

m

K2(m) > 0.2 min−1 → τ2 < 5 min

K2 = lim
r→0

1
Δt

log
C(r, m)

C(r, m + 1)

* Forecast horizon: τ2 = K−1
2

* Chaotic system: K2 < ∞

* Non-deterministic system: K2 → ∞

We can accurately predict the behavior of the system with a forecast horizon of 5 min!
Remember: not the global magnetosphere, only its response represented by AE

[Vassiliadis+ (1990)]



Forecasting geomagnetic indices variability
The role of chaos on short-term variability

Larger  for

short-term

variability

K2

[Consolini+ (2018)]

Lower  for

long-term

variability


K2

K2(τk > 200 min) ∼ 0.02 min−1

We can accurately predict the long-term behavior of the system with a forecast horizon of 50 min!

The forecast

horizon is


!τ2 ∼ 2 min



Forecasting geomagnetic indices variability
The role of chaos on short-term variability

[Kamide & Kokubun (1996), Consolini & De Michelis (2005), Alberti+ (2017), Consolini+ (2018), Alberti+ (2018, 2020b)]

more work is needed to determine some proxies for the tail dynamical state with a time resolution of seconds, 
necessary to overcome complications associated with the forecasting of short-timescale dynamics

impulsive energy releases, 

intermittent bursts, 

CPS and tail activity


Convective electric field, 

Directly-driven mechanisms




E. Final remarks



Final remarks
1. Be careful: the overall Earth’s magnetosphere is not a low-dimensional system 


2. Its response to solar wind changes is scale-dependent and time-dependent


3. more than one independent variable to describe only one index


4. a scale-dependent forecast horizon


5. Suitable proxies are needed to understand and then forecast the internal dynamical state

1 < D2(m) < m →

2 min < K−1
2 < 50 min →

The SMI system is a high-dimensional complex system that 

looks random but it is not random, 

it looks deterministic but it is not, 


it looks driven by but not only



Thanks for the attention
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