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Outline

=@ Investigating  dynamical complexity in  the
magnetosphere using various entropy measures (and
its significance for Space Weather)

» Dynamical complexity in Dst time series using non-extensive
Tsallis entropy

= Signatures of discrete scale invariance in Dst time series

= Dynamical Complexity of the 2015 St. Patrick’s Day Magnetic
Storm at Swarm Altitudes Using Entropy Measures

» Dynamical Complexity in Swarm Electron Density Time Series
using Block Entropy

@ Multivariate information-theoretic causality analysis:
disentangling the storm-substorm relationship
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Motivation

An extreme coronal mass ejection and consequences for the
magnetosphere and Earth

(Tsurutani & Lakhina, GRL 2014)

@ A “perfect” interplanetary coronal mass ejection could create
a magnetic storm with intensity up to the saturation limit (Dst
~2500 nT), a value greater than the Carrington storm.

@ The interplanetary shock would arrive at Earth within ~12 h
with a magnetosonic Mach number ~45, comparable to
astrophysical shocks.

= The associated magnetospheric electric field will form a new
relativistic electron radiation belt.
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Welling et al., Space Weather in

Table 1.

oress

Comparison of simulation results to other extreme space weather events & simula-

tions. Values for the March 24, 1991 event are taken from the Moshiri magnetometer station
(MSR) at 37.9° magnetic latitude.

Event /Simulation

D st Impulse

Standoff

Max dB/dt

Max |E]|

T & L Estimates!

245 nT

5 Rg

30 nT'/s

N/A

Present Results: NBz

234.0 nT

4 Rg

260 nT' /s
12nT /s at 0°

0.34 — 343 V/km
11.2 — 15.8 V/km at 55°

Present Results: SB»

268.7T nI’

< 3R g

200 nT' /s
12 nT/s at 0°

0.48 —47.7 V/km
16.7 — 23.5 V/km at 55°

Synthetic Carrington?

< 200 nT

=2 Rp

N/A

> 30 V/km
> 17 V/km at 55°

July 2012 near-miss3+*

N/A

N/A

~ 10 nT' /s

~ 15 V/km
~ 15 V/km at 55°

September 1909 Storm®

~ 70.0 nT’

N/A

N/A

May 1921 Storm®

~ 107.0 nT

N/A

N/A

March 1989 Storm™-*?

~ T0 nT

~ 20 nT/s

= 3 V/km at 55°

March 1991 Storm!'®!!

202 nT

~ 20 nT /s at MSR

N/A

%Tsurutani and Lakhina (2014), 2Ngwira et al. (2014), *Baker et al. (2013), *Ngwira et al. (2013),
®Love, Hayakawa, and Cliver (2019h), “Love, Hayakawa, and Cliver (2019a), "Kappenman (2005),
®Boteler (2019), ? Allen, Sauer, Frank, and Reiff (1989), 1°Araki et al. (1997), ' Araki (2014)
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Motivation

The solar wind-magnetosphere and solar wind-
radiation belt systems have been shown to be
nonlinear [e.g., Johnson and Wing, JGR 2005;

Reeves et al., [GR 2011; Wing et al., JGR 2016 and
references therein].

The Earth’s magnetosphere corresponds to an
open spatially extended nonequilibrium (input-
output) dynamical complex system [Baker, 1990;
Tsurutani et al., 1990; Vasssiliadis et al., 1990;
Sharma et al., 1993; Sitnov et al., 2001; Consolini et
al., 2008].
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Motivation

= Dynamical complexity detection for output time series of complex systems is
one of the foremost problems in physics, biology, engineering, and economic
sciences.

= Especially in geomagnetism and magnetospheric physics, accurate
detection of the dissimilarity between normal and abnormal states (e.g. pre-
storm activity and magnetic storms) can vastly improve space weather
diagnosis and, consequently, the mitigation of space weather hazards.

m The data sets obtained from most space physics studies are usually
nonstationary, rather short, and stochastic.

@ One of our objectives is to find an effective complexity measure that requires
short data sets for statistically S|%n|f|cant results, provides the ability to make
fast and robust calculations, and can be used to analyze nonstationary and
noisy data, which is convenient for the analysis of geomagnetic and
magnetospheric time series.
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Information-Theoretical
Measures

= Linear Time Series Analysis Techniques

= Spectral Methods (Fourier Transform, Wavelets)

= Rescaled Range Analysis
[Balasis et al., ANGEO 2006]

@ Non-linear Time Series Analysis Techniques
» Entropies
= Shannon, Hartley, Rényi, etc.
= Symbolic Dynamics

= Non-extensive  Statistical =~ Mechanics  (Tsallis
entropy)

» Approximate Entropy, Fuzzy Entropy, Sample
Entropy etc.

@ [Balasis et al., GRL 2008, JGR 2009,
Entropy 2013, Frontiers 2016, EPL 2020]
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Power-law

= If a time series is a temporal fractal then a power law of the

form:
S (f) = f K4 In general,
is obeyed with ~1<4<3, but
it describes
The Hurst
2 classes :
. ) exponent - H is
= S(f) - power spectral density of signal: calculated
fractional using different
. f - frequency Gaussian formulas for
= f - spectral scaling exponent, noise (fGn) fGn (-1<p<1)
. or or
a measure of the strength of time fractional fBm (1<4<3)
correlations Brownian

= 7 -linear correlation coefficient, ™M°ton (tBm)

the fit of the time series to a power-law
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Spectral Methods - beta Exponent

If a time series is a temporal fractal then a
power law of the form S(f) ~ f -P is obeyed with
S(f) the power spectral density, f the frequency
and ‘P’ the spectral scaling exponent, a measure
of the strength of time correlations.
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In general, -1<p<3, but it describes 2 classes of
signal:

@ -1<B<1: fractional Gaussian noise (fGn)
@ 1<B<3: fractional Brownian motion (fBm) I

Envelope frequency (Hz)

Spectrum of amplitude variations for Bach's First Brandenburg Concerto [VC 78].

For the fBm case, p > 2 marks the transition

from anti-persistent to persistent behaviour. “Fractals, Chaos, Power Laws:
Minutes from an Infinite Paradise”

by Manfred Schroeder
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B exponent and its relation to Hurst

p =2H+1, where H is the Hurst exponent for the fBm case (1 < f < 3)

@ The exponent H characterizes the persistent/anti-persistent
properties of the signal. The range 0<H<0.5 (1<f<2) during the
normal period indicates anti-persistency, reflecting that if the
fluctuations increase in a period, it is likely to decreasing in the
interval immediately following and vice versa.

@ We pay attention to the fact that the time series appears persistent
Froperties, 0.5<H<1 (2<f<3). This means that if the amplitude of
luctuations increases in a time interval it is likely to continue
increasing in the interval immediately following.

=@ H=0.5 (f=2) suggests no, correlation between the repeate
iI}g{treme(ﬁcs. )Cc,)nsgéuently, this particular value takes on a gpecieﬂ

P

it marks  the transition between persistent and anti-persistent
ehavior in the time series.
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Dst Index

@ Represents the axially symmetric
disturbance (of the horizontal
component) of the magnetic field at
the dipole equator on the Earth's
surface.

@ Derived using data from 4 stations
@ Hermanus (South Africa)
m Kakioka (Japan)
@  Honolulu (US-HI)
@ San Juan (Puerto Rico)
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D., index time series

by, (Perid) (hours)
® O a2 N
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o
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log (Period) (hours)

120 150 180 210
Time (days) in 2001

(Balasis et al., Ann. Geophys. 2006)
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Summary

We show that distinctive alterations in scaling
parameters of D, index time series occur as an
intense magnetic storm approaches.

The transition from anti-persistent to persistent
behavior may indicate that the onset of an
intense magnetic storm 1s imminent.

See also Wanliss (JGR 2005) and Wanliss and
Dobias (JASTP 2007) for SYM-H as well as
Zaourar et al. (EPS 2013) for observatory data.
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The concept of Entropy

@ In information theory, entropy is the average amount of
information contained in each message received.

= Here, message stands for an event, sample or character drawn from
a distribution or data stream.

= Entropy thus characterizes our uncertainty about our source of
information.

@ Generally, “entropy” stands for “disorder” or uncertainty.
@ Entropy is a measure of unpredictability of information content.

= Entropy may characterize the regularity statistics of a signal.
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Shannon entropy

[15] Shannon recognized that a similar approach to
Boltemann-Ciibbs entropy could be applied to information
theory. In his famous 1948 paper [Shannon, 1948], he
mtmoduced a probabilistic entropy measure Hg

Hp(X)= =% pl)log, plx),
il

whene b is the base of the logarithm used and p denotes the
probability mass function of a discrete random vanable &
with possible values {x,. .., x5}
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Shannon Entropy

Given p, the probability of a telecom.
system being in a cell ‘i’ of its phase space,
Shannon defined the information produced
by it by means of the Boltzmann H
theorem, as the entropy

H=-— Z p, - log, p,

Continuous variables can be “digitized” in
order to define these “cells” of the phase
space,

This in essence becomes a “histogram
entropy” and loses all sense of temporal
information.

(Shannon, 1948)
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Symbolic dynamics

m Herein, we estimate S, based on the concept of symbolic dynamics: from
the initial measurements we generate a sequence of symbols, where the
dynamics of the original (under analysis) system has been projected
[Bailin, 1989].

m Symbolic dynamics is based on a coarse-graining of the
measurements, i.e., the original D, time series of length N, (X;, X,, . .
, Xy), 18 pro]ected to a symbolic time series (A;, A, ..., Ay) with

An from a finite alphabet of 4 letters (0, ..., 4 -1).

m The simplest possible coarse graining of the D, index Is given by choosing
a threshold C (usually the mean value ofs the data considered) and
assigning the symbols “1” and “0” to the signal, depending on whether it
IS above or below the threshold (binary partition).

/@ ISSS 2021
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Dvnamical

Block Entropy

[12] It 15 useful to transform the mital raw data of the
magnetospheric signal into symbolic sequences taking values
in the alphabet {0,1}, according to the rules 4, =1 1f 4(1) =
E[A(t) ) and As= if A= E[A{t:)], where A(t) are the values
of the messured ficdd at time 1 and E[4A(1)] = {.-!{.r,]'n 15 the
memn value in the particular time windows, as it is mcely
stated by Schwarz et all [1993].

[19] Consider a subsequence of length N selected out of a
very long (theometically infinite) symbolic sequence, We
stipulate that this subsequence is to be read in terms of
distinat “blocks™ of length n,

Tn .-'!JI"_'_'.-'!'-H_'J" [ll

Shannon-Like

[20] The following quantities charactarize the imformation
content of the sequence [Khinchin, 1957; Ebeling and
Nimlis, 1992]

[21] 1. The dynamical {Shannon-like) block entropy for
blocks of length n

Eﬂn]:-'E: A A Inpt A A | (D)

A e |
where the probability of occumence of a block 4,.. .4,
denoted p*Y4,,...,4,), is defined by the fraction (when it

exists) in the statistical lirmt as

Mo, of blocks, A,...4, ecountered when lumping
intal No. of blocks

(3)

stanmg from the begiming of the sequence, and the
associate entropy per letter

Hin)

n

K =

(4]

[2] 2 The conditional entropy or entropy excess associ-
ated with the addition of a symbol to the right of an » block

hyy = Hin + 1) — Hin). ()

[13] 3. The entropy of the source (a topological invariant),
defined as the Lt (if it exists)

b= lim hy, = lim &' (6)

A= =S

which is the discrate amalog of metne or Kolmogorov
entropy.
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Symbolic

Dynamics & Block Entropies

Digitization of continuous time series
(as an easy example consider the
binary case, performed by a simple

mean-value thresholding)

N

3 & 3 4 r E L L]

.

$

o, 0 1, 0 0 1,0 1, 0 0

Farsing the symbaolic series in
blocks of length 'm’, e.g. for m=3

Gliding/Sliding Method Lumping Method
(overlapping) (nan - averlapping)

1| DI DI -1| DI -1| 1 ' DI DI 1. UI
1! ﬂl []I -1| DI -1| 1 1 1 -1| {}l {}l II| DI

1! I}l ﬂl -1| DI -1| 1 1 DI -1| DI DI -1| {}l 1!

In both cases, count the probability of appearance of each
“block of length m” and compute the block entropy H{m).

The entropy of the source is given by Him+1) — H(m), for m = 1
[Karamanos & Nicolis, 1999]
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Symbolic Dynamics & Block Entropies

Block entropies are concerned with Fouer Spectrum Bxponent

‘patterns” of consecutive values v

(symbols), i.e. with trajectories in
the system’s phase space.

[
o

Hist Endr
[t

They are better suited to capture

the "dynamics” of the underlying
system and detect changes in its
state.

i
o

=
o

=

Mumber of possible blocks scales
exponentially with ‘'m’, which means
that more data points are needed |- ,
for meaningful statistics (even more % (e, urits]
for multi-symbol representations)!

-y

(=
L=

Block Endr, (Glid ) Block Endr, (Lumg, }
=
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Extensivity

= The uncertainty of an open system state can be quantified by
the Boltzmann-Gibbs (B-G) entropy, which is the widest
known uncertainty measure in statistical mechanics.

m B-G entropy (Sgzg) cannot, however, describe
nonequilibrium physical systems with large variability and
multi-fractal structure such as the solar wind [Burlaga et al.,
2007].

= Inspired by multi-fractal concepts, Tsallis [1988, 1998] has
proposed a generalization of the B-G statistics.



Extensivity

@ One of the crucial properties of the Sg ; In the context of
classical  thermodynamics Is  extensivity, namely
proportionality with the number of elements of the system.

m The Sg_s satisfies this prescription if the subsystems are
statistically (quasi-) independent, or typically if the
correlations within the system are essentially local. In such
cases the system is called extensive.



Tsallis entropy

= In general, however, the situation is not of this type and correlations may
be far from negligible at all scales. In such cases the Sg ; Is
nonextensive.

= Tsallis [1988, 1998] introduced an entropic expression characterized by
an index g which leads to a nonextensive statistics,

@ where p/ are the probabilities associated with the microscopic
configurations, IV is their total number, g is a real number, and k is
Boltzmann’s constant.



Tsallis entropy and complexity

@ The parameter q itself is not a measure of the complexity of the
system but measures the degree of nonextensivity of the system.

= It is the time variations of the Tsallis entropy for a given g (S) that
quantify the dynamic changes of the complexity of the system.

m Lower S, values characterize the portions of the signal with lower
complexﬂy



Tsallis entropy In terms of
symbolic dynamics

m The S, for the word length L is

Sq(L)zkﬁ(l— D [p(L)anse...an]

(A1, A2,...AL)

m Broad symbol-sequence frequency distributions produce high
entropy values, indicating a low degree of organization.

@ Conversely, when certain sequences exhibit high frequencies, lower
entropy values are produced, indicating a high degree of
organization.
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Other Entropy Formulations (Tsallis)

Faurin Eplﬂ_rum Expanant

Different mathematical formulas have been | \/

proposed as generalizations of Shannon's .
entropy definition. Some of them _ Entropies by Tsallis formalism
incorporating additional free parameters.

r.

. : :
g
o 2 A WP
-]
S S S S

. 1
Tsallis Entropy: S,= k E{l -Z:r!)
[Tsallis, 2009]

= o
[--] o -

C- T -

Block Entr. (Glid.)  Block Entr. {Lumg.)
= =

liresd (Al unils)

Example withq=2
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Dynamical complexity in Dst time series
using non-extensive Tsallis entropy

150 180 210
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31/3 120 150 180 210 240 270 6/11 330

S

Tsallis Entropy,

A ] LA 1
31/3 120 150 180 210 240 270 6/11 330
Time (days) in 2001

(Balasis et al.,, GRL 2008, JGR 2009)
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Entropies

@ Approximate entropy (ApEn) has been introduced by Pincus as a measure
for characterizing the regularity in relatively short and potentially nois
data. More specifically, ApEn examines time series for detecting the
presence of similar epochs; more similar and more frequent epochs lead to
lower values of ApEn. ‘ L

= Sample entropy (SampEn) was proposed by Richman and Moorman as an

alternative that would provide an improvement of the intrinsic bias of
ApEn.

@ Fuzzy entropy (FuzzKEn), like its ancestors, ApEn and SampleEn, is a
“regularity statistic” that quantifies the (un)predictability of fluctuations in
a time series. For the calculation of FuzzyEn, the similarity between
vectors is defined based on fuzzy membership functions and the vectors’
shages. FuzzyEn can be considered as an upgraded alternative of SampEn
(and ApEn) for the evaluation of complexity, especially for short time
series contaminated by noise.

@ ISSS 2021
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Approximate Entropy (ApEn)

[39] The approximate entropy examines time series for
similar epochs; more similar and mome frequent epochs lead
to lower values of 4pfn. In a more qualitative point of view,
given N points, the dpfn-like statistics s approcimately
equal to the negative logarithm of the conditional probabil-
ity that two sequences that are similar for m points remain
similar, that is, within a tolerance r, at the next point
Smaller Apfa values indicate a greater chance that a set
of data will be followed by similar data (regulanty), thus,
smaller values indicate greater regulanty. Conversely, a
greater value for 4pfn signifies a lesser chance of similar
data being mepeated (irregulanty), hence, greater values
comvey mone disorder, randomness and system complexity.
Thus a low/'high value of Apkn reflects a high'low degnee of
regulanty, The following is a d::-r.:.nptu.-n of the calculation
of ApEn. Given any sequence of data points w(i) fromi =1
to N, it is possible to define vector sequences ai), which
consist of length m and are made up of consecutive w(f),
specifically defined by the following:

sli) = {ul],ulf + 1], ... uli +m

—1]). (16]

[40] In order to estimate the frequency that vectors xf)
repeat themselves throughout the data set within a tolerance
r, the distance d{x[i], x[f]} s defined as the maximum
difference between the scalar components xff) and xff).
Exphlicitly, two vectors off) and o) are “similar™ within
the tolemnce or filter r, namely d{x[i], x[f]) < r, if the
difference betwesn any two values for w{i) and w{f) within
nums of length m are less than r (e, |u1':'+.i:'] —uj+k)| <r
for 0 < k& < m). Subsequently, CF(r) is defined as the
fn:qu::m.} of occurrence of similar mns m within the
tolemnee r:

[number of § suchthat o(xfi],x[/]) < ]
(N —m—1]

Crir)=

where j< (N — m = 1.



Approximate Entropy (ApEn)

[41] Taking the natural ltlj.',iJ‘l‘l‘J'.l]'.l'.l of Cr), ¥7(r) 15
defined as the average of In{CT(r))

™ |.I‘ :| = | 17 :I

N T () (N —m— 1)
-
i

where % ;s asum from i=1 o (N —m = 1) $%r) is a
measure of the prevalence of repetitive patterns of length m
within the filter r,

[42] Fimally, approximate entropy, or dpfmim, r, &), is
defined as the natural logarithm of the relative prevalence of
repetitive patterns of length m as compared with those of
length m + 1:

_|I|_|-I- | I

ApEn{m, r, N1 = $%(r) — [F1.

[43] Thus, ApEn(m, r, N) measures the logarithmic
frequency that similar muns (within the filter r) of length
m also mmain similar when the length of the mun is
mereased by 1. Thus, small values of dApEn indicate
regulanty, given that i incressing nn length m by 1 does
not decrease the value of 'lf' {r) sizmificantly (1e, rtj.,rula.r
ity commotes that $7[r] = "f'"r"][r]j ApEn(m, r, Al o1s
expressed as a difference, 'I'lut In essence it EprEsEls 4
ratio; mote that $7[r] 15 a luj.,anﬂm of the averaged CTir),
and the matio of loganthms is equivalent to their difference.
A more comprehensive description of ApEr is given by
Pincus [1991], Pincus and Galdberger [199%4 ], and Pincus
and Singer [1996].

[44] In summary, 4pfn 15 a “regulanty stahstics™ that
quantifies the unpredidability of fluctuations in a time
series, Intuitively, one may reason that the presence of
repetitive pattems of fluctuation in a time series renders it
muore predictable than a time senes in which such patterns
are absent. dpfr reflects the likebhood that “similar™
patt:.ﬂr-' of observations will not be followed by additional

“gimilar” observations. A time sanies contaimng many
repetitive patterns has a melatively small dApfn; a less
predictable (Le, more complex) pmocess has a higher
Apln,




Approximate & Fuzzy Entropy

@ ISSS 2021

IAASARS Web School, 1-5 February 2021




A
IAASARS

611

330

180 210 240

-
150 180 210 611
Time (days) in 2001

(Balasis et al., Entropy 2013)
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Discrete scale invariance

= Self-similar systems are characterized by continuous scale
Invariance and, in response, the existence of power laws.

= However, a significant number of systems exhibits discrete
scale invariance (DSI) which in turn leads to log-periodic
corrections to scaling that decorate the pure power law.

/@ ISSS 2021
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Discrete Scale Invariance

@  DSImanifests itself in data by log-periodic corrections to scaling [Sornette, 1998; 2004].
= Typically the log-periodicity in time is given by:

E(t) = A+B(t,—t)"{1+Ccoslwlog(t, —t)+¢l]

E(t) - the cumulative energy released

L - the time of the main shock (storm peak)
@ - the frequency

7, - an offset

(Huang, Y., H. Saleur, and D. Sornette (2000), Reexamination of log periodicity
observed in the seismic precursors of the 1989 Loma Prieta earthquake, J.
Geophys. Res., 105, 28,111-28,123, doi:10.1029/2000JB900308.)
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Dynamical complexity in Dst time series
using non-extensive Tsallis entropy
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(Balasis et al., GRL 2008)
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x10° A fit to a power-law with log-periodic oscillations
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Summary

@ Herein, the squares of the negative values of the Dst index increments have been
taken as proxies of the energy dissipation rate in the Earth’s magnetosphere.

=@ We have shown that a power law with log-periodic oscillations fits well the
cumulative square amplitudes of Dst time series, which include an intense
magnetic storm.

= Based on the theory of log-periodic corrections to scaling we have inferred a
theoretical value for the time of the occurrence of the extreme magnetospheric
event which is 1.92 hours ahead of the real time that the magnetic storm peak Dst
value took place.

@ ISSS 2021
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Summary

@ The theoretical curve we have used is able to fit Dst data starting 66.25 days prior
to the intense magnetospheric event.

@ The last data used to achieve this theoretical occurrence time came from day
62.63, almost four days before the actual event (real occurrence time is at 66.38
days).

= We believe that the convergence of the results presented in this study with other
well-established methods of Dst forecast (e.g., O’Brien and McPherron, 2000;
Temerin and Li, 2002; Lundstedt et al., 2002, Balikhin et al., 2010) can
potentially increase the reliability of forecasting techniques and can therefore
Improve space weather forecasting and modeling.
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Investigating Dynamical Complexity
of Geomagnetic Jerks Using Various
Entropy Measures

= A geomagnetic jerk can be defined as a sudden
change (a V-shape like change) in the slope of
the geomagnetic secular variation, i.e., the first
time derivative of the Earth’s magnetic field.

Geomagnetic jerks were first reported by
Courtillot et al. (1978).

/@ ISSS 2021
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Geomagnetic time series
(Balasis et al., Frontiers 201606)

2000

m GLF Observatory
= NGK observatory

1900 1920 1940 1960 1980
time (yr)
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Fisher Information

= Fisher information was first introduced as a
representation of the amount of information that
can be extracted from a set of measurements (or
the “quality” of the measurements) (Fisher, 1925;
Mayer etal., 2006).

= Fisher information is also a powerful tool to
investigate complex and non-stationary signals),
permitting the detection of significant changes in
the behavior of non-linear dynamical systems and
the characterization of complex signals generated
by these systems.



Fisher Information

p enrt) — (x|

p(xy)

where p (x;) are the probabilities associated with the value bins
x;i , as defined in Section 3.1, N is their total number, while p (x;,)
and p (x,+1) are the probabilities corresponding to two successive
bins.




Entropy analysis of geomagnetic field
(Balasis et al., Frontiers 20106)

CLF Observatory NGK Observatory

1900 1950 2000 1900 1950 2000
time (year) time (year)
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ESA Swarm mission

Each satellite is measuring:
v Strength and direction of the magnetic

field
v Plasma conditions and characteristics
v Location

The Constellation:
v 3 identical satellites:
2  side-by-side in  low orbit
(<460km)
1 in higher orbit
(< 530km)

v three orbital planes for optimal coverage
in space and time

v Launch 22 November 2013: initially 4
years of operations, currently extended
through 2021

The primary aim of the mission is to provide the best survey ever of the
@ geomagnetic field and the first global representation of its variations on time

-~

P ————

XSS5l scales from less than a second to several years. Sy
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Dynamical Complexity of the 2015 St. Patrick’s Day
Magnetic Storm at Swarm Altitudes Using

Entropy Measures
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Abstractk The continuously expanding toolbox of nonlinear time series analysis techniques has
recently highlighted the importance of dynamical complexity to understand the behavior of the
complex solar wind-magnetosphere—ionosphee—thermosphere coupling system and its components.
Here, we apply new such approaches, mainly a series of entropy methods to the time series of the
Earth's magnetic field measured by the Swarm constellation. We show successful applications of
methods, originated from information theory, to quantitatively study complexity in the dynamical
response of the topside ionosphens, at Swarm altitudes, focusing on the most inkense magnetic storm
of solar cycle 24, thatis, the 5t Patrick’s Day storm, which occurred in March 2005, These entropy
measures are utilized for the first time to analyze data from a low-Earth orbit (LEO) satellite mission
flying in the topside ionosphere. These approaches may hold great potential for improved space
weather nowcasts and forecasts,

Keywords: dynamical complexity; entropy; magnetic storm; space weather; Swarm mission
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Dist Index for 16-22 March 2015
T T T T

Swarm-B cleaned
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time in 2015

Total Mag.Field series
T T
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z
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time in 2015

Figure 1. Comparison between the Dst index (lop panel) and the pre-processed series of the total
{external) magnebe held (boltom panel), as measuned by Swarm B, durmg the Masch 2005 storom.
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Figume L Example of three segments befooe (left) and after flbermg (rght), for the pre-storm phase
{top row ), the peak of the storm (middle row ) and after the end of event (bottom fow ), fespectively.
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Case Study: March 2015 Storm

owarm-A, Total Magnetic Field (MFA),
after subtraction of CHAOS-6 model, 1 Hz
sampling rate (VFM instrument).

Keeping only midto-low lafitudinal
measurements, segmented into daily,
non-overlapping windows.

Histogram Entropy computed in 100 bins.

Block entropies computed on binary
symbolic series (median threshold), up to
m=5.
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Case Study: March 2015 Storm

Swarm-A, Total Magnetic Field (MFA),
after subtraction of CHAOS-6 model, 1 Hz
sampling rate (VFM instrument).

Keeping only midto-low latitudinal
measurements, segmented into daily,
non-overlapping windows.

Histogram Entropy computed in 100 bins.

Block entropies computed on binary
symbolic series (median threshold), up to
m=25.
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. Dst of the March 2015 Storm
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Case Study: March 2015 Storm

st of the March 2015 Stom

swarm-A, Total Magnetic Field (MFA), :.:
after subtraction of CHAOS-6 model, 1 200
Hz sampling rate (VFEM instrument). 200

g & MH1E MH17 Mi‘ﬁ MH1'.'I Iuh:l:xl U-.hl!1 l.l'n':."? l.IH‘E‘.'I

Approximate Entropy for r e ..‘n.ﬂ'lld
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measurements, segmented into daily, II ...
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Norm as a difference measure, with a 2 '
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FuzzyEn using Gaussian Membership
Function.
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D5t of the March 2015 Sworm

Mar15 Mar18 MartT MartB Mar19 Mar20 MarZ1 MarZZ MarZ3
Entropies by ‘Shannon formallsm

Mar15 Mar18 Mart7 MartB Mar19 Mar20 MarZ1 MarZ2 MarZ3
time In 2016

Figure 3. Entropy analysis according to Shannon formalism of the Swarm B total (external) Beld for the
March 2015 magnetic storm.
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IAASARS Figuse 4. Entropy analysis according to Tsallis formalism of the Swarm B total (external) field for the
March 2015 magne e stonm.




D5t 0f the March 2015 Sorm

300

Mar1S Mar1S Mar17 MartB Mar12 Mar20 Mas?t MarZ2 Mar23
Approximase Ensrogy for 1= 0.10°swd
0.5

5 05

[=%

Rl T3
nad
Mar1S MartS Mar17 MartB Mar12 Mar20 Mae?t MarZ2 Mar23

Sample Entropy for r = 0.10°std

Mar1s Mar1S Mar17 Martd Mar13 Mar?0 Mar?1 MarZ? MarZ3
Fuzzy Entropy for 1= 1.00°skd

noogl
Mar1S Mar1S Mar17 Mart8 Mar19 Mar20 Mar21 Mar22 MarZ3
Figuee 5. Approamate, Sample and Fuzey entropy analy sis of the Swarm B total (extemnal) magnetic
feld for the Marsch 2015 magnetic storo
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Dynamical complexity in Swarm electron density time series using
Block entropy
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Abstract — Cur goal in this study is to nvestigste the dynamical complexity of the electron
density profiles in the topside ionosphere as measured by the Swarm mission, employing the wse
of symbolic information-theoretic techniques. We perdform a Bledk entropy analysis for a time
interval asociated with the most intense magnetic storm of solar cycle 24, which cocurred on
17 March 2015. We produce entropy maps for varying degres of magnetospheric disturbance,
resclving the different effects that the various geomagnetic activity levels haove in the dynamics
of the complex magnetosphersioncsphers coupling system.  Understanding the impact of thess
effects on the fonospheric plasma constitutes a crocial Boier for the unctionality of the modeen
technological infrastructure operating around the Earth and | thus, human welfare.
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Motivation

@ The Langmuir probes of the Electric Field Instrument on board the three satellites of
the Swarm constellation (Knudsen et al., 2017) provide electron density data in the
form of time series, as the satellites fly through the ionosphere.

m The data have a cadence of 2 per second, but these measurements have been
downsampled to a 1 Hz resolution, in order for them to be consistent with the rest of
the magnetic field data and the other data products from the mission.

@ Our goal in this study is to employ the use of information-theoretic measures in
order to capture the turbulent nature of the electron density profiles and then
produce maps for varying degrees of magnetospheric disturbances, in order to
capture the effect that these conditions have in the dynamics of the ionospheric
plasma.
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@ Attempting to capture the turbulent
nature of the electron density series Entrapies by. SRannon fanfiallst
by means of entropic measures is a
very complex task. Special care
should be taken, since the temporal
and spatial scale of these features
can be  significantly = smaller
compared to the ones encountered
in similar studies using e.g. the Dst
Index.
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@ Due to this, the analysis must be
performed in significantly smaller
time windows than the ones that
have been employed so far, e.g. in
the scale of a few minutes.

o
o

Block Entr. (G)
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time in 15/03/2015
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1 Hz cadence, 5 min time window, 300
measurements.

@ Repeating the methods used in the
case of the magnetic field data ad-hoc,
is not enough to give meaningful
results.

Entropies by Shannon formalism

@ A couple of hours of electron density
data from Swarm-A on the 15th of
March 2015 have been processed with
various entropy methods, yielding
disappointing results.

@ Both the histogram entropy and the
Block Entropy approach, with a
binary =~ symbolic  representation
(segmented at the window median)
for both Lumping and Gliding
parsing, all failed to capture any
meaningful behavior. Similarly
incomprehensible results were
obtained for multi-symbol
representations (up to 4-letter) and for
various other types of entropies.
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New strategy

x10

Based on the differential series of the of
electron density (on its absolute value) z
and then performing the binary
symbolic representation using as a

1 1
00:00 01:00 02:00

threshold a constant value (not _ _
WiI‘l dOW- depen dent). 5 Entropies by Sfiannon formalism
Histogram entropy fails to produce Sl
any meaningful result. 2
Both Block Entropies successfully =
capture the turbulent nature of the 0
lasma, 00:00 01:00 02:00
Near-zero values at windows where
the satellite only measures smooth [
electron density profiles. 50
High entropy values at the times when P
the satellite flies through disturbances ol ——<im ol i

(polar passes / equator - red line
shows the satellite’s latitude).

Entropy is normalized (0>1) & given A
by the gradient of the H(n) values (n: 1 20T
- 4) 3 0.2

m 0.1

00:00 01:00 02:00
bi time in 15/03/2015
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@ The particular way with which this
conversion takes place plays a
critical role in capturing a specific
portion of the information that is
carried by the signal.

Entropies by Shannon formalism

=
c
L
k7
i K

m In this case, the binarization was
performed by a constant threshold
value.

@ The entropies of the windows
encountered at high latitudes
exhibited higher values.

01:00
i time in 15/03/2015
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@ Raising this threshold can inverse
this behavior and thus produce a
different image, with the low-
latitude entropies taking the lead.

@ In this manner, by changing the
threshold of the binarization one can
switch the emphasis from low to
high latitudes!

Entropies by Shannon formalism
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Non-linear analysis of the
St. Patrick’s storm

= Analysis performed
(for simplicity only
for Block
Entropy(G)) for the i
entire time span of o w0 0 &
the March 2015 | —
Geomagnetic Storm, i

using a moving time

window of 5
minutes that slides
forward by 1 min at -T-mn -120 -s 0 60 120 180 ’

‘ Mag. Long. (degrees) Oltiggy
a time. 3
@ Fig. 50 Maps of the average entropy for Swarm A from 15 ;
IERRWAIYA to 23 March 2015 [emphasizing (top) high and [bottom) low y
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Non-linear analysis of the
St. Patrick’s storm

Since the satellite continuously
moves in space, we also save the
position of the satellite for each
entropy calculation (2%
considering the median value of
the lon. & lat. for each window)
and thus are able to produce el I SR
maps of the average entropy Mag. Long. (degrees)

values of the electron density for
the entire duration of the event

(15-23 March).

= =
5 m’f:ﬂu .antﬁ:pﬂ

[=]
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SWAI}?M-A Avg. Plasma Entropy for the Mar 2015 Sturrn{
al .2

4

Again, changing the threshold
can produce two different
versions of those maps, one
emphasizin% the low and another :
for the hlgh atitudes. = 420 60 0 80 120 180

Mag. Long. (degrees)

sqri(ev g.entropy )

@ IERRWAIYA to 23 March 2015 [emphasizing (top) high and [bottom) low '»f’
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Non-linear analysis of the

St. Patrick’s storm

%“.;.'AFIM-A Avg. Plasma Entropy before March-15

Pre-storm (March 1 to 15 of
2015) and  Storm-time
(March 16 to 31 of 2015)

differences in the maps for
high-threshold (low

=]
sqrt [mr-g.ant L)

latitudes).
60 120 180
Mag. Long. (degrees)
Again, as is always the case, SWARN-A Avg. lasma Entropy ter March-15

one can see the drop in
entropy values as we move
from pre-storm period to
the main phase and
recovery phase of the storm
(axes and colormaps are N~
identical in the two plots). e e 0 80 e

Mag. Long. (degrees)
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Fig. 6: Maps of average entropy between (top) pre-storm time @@

1-15 March 2015) ‘bottom) sto —-tlme as we st
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storm time (16-31 March 2015) for high-threshold (low lati- { 5‘5

IAASARS Web School, 1-5 Fe iR




Non-linear analysis of the
St. Patrick’s storm

%‘:;FAHM-A Avg. Plasma Entropy before March-15

Pre-storm (March 1 to 15 of
2015) and  Storm-time

(March 16 to 31 of 2015) %
differences in the maps for %
low-threshold (high
latitudes). :

e Mag. Long. (degrees)
Again, as is always the case, SARM-~ Avg. Plasma Entropy aftr March-15
or%e can see thg drop in Aé,ﬂ
entropy values as we move g5
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from pre-storm period to
the main phase and
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identical in the two plots). Mag. Long. (degress)
o,
Fig. 7. Maps of average entropy between (top) pre-storm time § @%
(1-15 March 2015) and (bottom) storm-time as well as post- E
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Dst Index

@ Represents the axially symmetric
disturbance (of the horizontal
component) of the magnetic field at
the dipole equator on the Earth's
surface.

) Q

74 S \ P

== e
ii‘f-‘;y"-ﬁg @ Derived using data from 4 stations
“A-..” m Hermanus (South Africa)

"-' Sy, m Kakioka (Japan)
‘:‘é“_“=.."""(’ @ Honolulu (SS—HI)

San Juan (Puerto Rico)

Dst NETWORK

IAGA Bulletin N°40: http:/ /wdc.kugi.kyoto-u.ac.jp/dstdir/dst2 /onDstindex.html



Dst-like Index From Swarm Data

1. Extract Total Magnetic Field Series from MAG_LR (1 Hz) product
(Swarm-A)

o Both VFM and ASM measurements can be used

2. Subtract CHAOS-6 (Finlay et al., EPS 2016) Internal Field Model

o The External component models the Ring Current which is
what drives the Dst Index so it must remain in the data

3. Remove values that lie above +40° in Magnetic Latitude

4. Remove spikes and interpolate small data gaps



Dst-like Index From Swarm Data

5. Apply a low-pass Chebysev Type I filter with a cutoff period of 13
hours

o A 12-hour averaging provides complete global coverage!
(better than the 4 stations used for Dst Index derivation!)

6. Remove seasonal effects and the Local Time drift of the satellites’
orbit

o Use a Chebysev Type I filter with a cutoff period of approx. 4
months to model this slowly varying component

o Subtract it from the filtered series of step 5.

= Apply a linear transform to get the Swarm Index

index



Dst-like Index From Swarm Data

Before Linear Transform

Plot markers
| at 1-hour

Jul

time (2015) intervals!




Dst-like Index From Swarm Data

After Linear Transform

Plot markers
at 1-hour
Jul u e C ov ec .
time (2015) mtervals!




Swarm Index vs Dst Index for 2015

Cross Plot of Dst Index vs Swarm Index for 2015 Correlation Stu dy

= Up-sample Dst Index
series to 1-sec
sampling rate by
linear interpolation

= Estimate Pearson’s
Correlation Coefficient
for the entire 2015 time

Corr.Coef. = 0.93 series

= Values >0.90 for a
wide range of values
for the free parameters
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Swarm Index vs Dst Index for the
March storm of 2015

Apr
time (2015)




Swarm Index vs Dst Index for the
une storm of 2015

Jul
time (2015)




Swarm Index vs Dst Index for the
December storm of 2015

Dec
time (2015)




Application: The June 2015 Storm

Model Training:
The March 2015 Storm

Correlation Coefficient = 0.97

11103 16/03 21/03 26/03 31/03 05/04 10/04 15/04 20/04 25/04 30/04
date in 2015
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The ionospheric response to solar and interplanetary
disturbances has been the subject of intense study for
several decades. For 5 years now, the European Space
Agency’s Swarm fleet of satellites surveys the Earth's
topside ionosphere, measuring magnetic and electric
fields at low-Earth orbit with unprecedented detail.
Herein, we study in situ the ionospheric response in
terms of the occurrence of plasma instabilities based
on 2 years of Swarm observations. Plasma instabilities
are an important element of space weather because
they include irregularities like the equatorial spread
F events, which are responsible for the disruption of
radio communications. Moreover, we focus on three
out of the four most intense geospace magnetic storms
of solar cycle 24 that occurred in 2015, including the St
Patrick’s Day event, which is the strongest magnetic
storm of the present solar cycle. We examine the
associated ionospheric response at Swarm altitudes
through the estimaton of a Swarm Dstlike index. The
newly proposed Swarm derived Dst index may be
suitable for space weather applications.

This article is part of the theme issue ‘Solar
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Wavelet spectral analysis

like (nT)

Swarm Dst:
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[Balasis et al., under preparation]



Temporal Variation of the H index
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Entropies
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Auroral Electrojet (AE) Index

The AE index is derived from geomagnetic variations in the horizontal
component observed at selected observatories along the auroral zone in
the northern hemisphere.

The AE index represents the overall
activity of the electrojets

TABLE 1 - List of AE(12) Stations.

IAGA | . GeographicCoord | Geomagnetic Coord

Observatory
Ahbisko

Dixon Island

Cape Chelyuskin
Tixic Bay
Cape Wellen
Barrow 203.25
Yellowknife
Fort Churchill
Poste-de-la-Baleine "‘bﬂ 22

Narearsuag
S arsarsuaq 61.20 314.16 7121 36.79
(MNarssarssuaa)

Leirvogur

m—

> 55" |at.
Davis and Sugiura, 1966




AE-like Index from Swarm Data

m  Get Magnetic Field data in FAC (Bpar, Bperl, Bper2) after pre-processing and removal of
the CHAOS-6 Model.

m Build the “horizontal” component, assuming that at high latitudes, this 1s mostly given by
the perpendicular FAC components

— 2 2
Bharz = \/Bperl T Bperz

m Keep only values above 50° or below 50° in MLat

= Low-pass filter with a a cutoff period of 2.4 hours to get B;

@ Apply a linear transform to get the Swarm Index

S =t B
B, formula, Latitude & freq. cutoffs designed to maximize correlation coef. Model Training
Multiplicative factor designed to achieve similar variance with AE Index with March 2015

Offset designed to minimize RMSE data



AE Index from Swarm Data
March 2015 Storm




AE Index from Swarm Data
June 2015 Storm




AE Index from Swarm Data
December 2015 Storm




The June 2015 Storm

The March
2015 Storm

Correlation Coefficient = (.83




Entropies

Swarm AE-like

30 17/3 120 23/06 210 240 270 300 20/12
— ' 5 os
o
£
o)
9 0
0 30 17/3 120 23/06 210 240 270 300 20/12
ng 06 ug 05
N 04 N
L 02 %0
. 0 30 1713 120 23/06 210 240 270 300 20/12 e
0 2 G 2 ;
c c
215 7 S 15 —17
8 1t — s 1 i i
w0 30 17/3 120 23006 210 240 270 300 20/12 ®w 0 30 17/3 120 23/06 210 240 270 300 20/12
£ 1 £ 1
w w
2 2
go.s - 1 Eo.s b o
0 30 17/3 120 23/06 210 240 270 300 20/12 0 30 17/3 120 23/06 210 240 270 300 20/12
= f=
= 05 =]
@ @
.C e
[} [
o} o ico
0 30 17/3 120 23/06 210 240 270 300 20/12 0 30 17/3 120 23/06 210 240 270 300 20/12
Time (days) in 2015 Time (days) in 2015

[Balasis et al., under preparation]




Summary

The newly proposed Swarm-inspired Dst index [Balasis et al., RSTA 2019] monitors
magnetic storm activity at least as good as the standard Dst / SYM-H indices.

It yet remains to be investigated whether the standard Dst or the Swarm Dst index is a
better representation of the currents contributing to the coupled ionosphere-
magnetosphere system (e.g. ring current), especially during stormy periods.

Due to the global coverage and superior sampling rate (1 Hz) of the Swarm Dst in
comparison to the 4 / 6 stations coverage and inferior sampling rate (1 hour / 1 minute)
of the standard Dst / SYM-H, the new index may be utilized for space weather
forecasting purposes.

The Hurst exponent and various entropy measures show the complexity dissimilarity
among different “physiological” (normal) and ‘““pathological” states (intense magnetic
storms) of the magnetosphere. They imply the emergence of two distinct patterns: (i) a
pattern associated with normal periods, which is characterized by a lower degree of
organization / higher complexity, and (ii) a pattern associated with the intense magnetic
storms, which is characterized by a higher degree of organization / lower complexity.



Multivariate information-theoretic
method: causal inference approach

www.nature.com/scientificreports

SCIENTIFIC REPg}RTS

OPEN Common solar wind drivers behind

~magnetic storm-magnetospheric
- substorm dependency

Received: 19 July 2017 Jakob Runge (H'*°, Georgios Balasis(®?, loannis A. Daglis*?, Constantinos Papadimitriou® &
Accepted: 2 November 2018 : Reik V. D(:mner®t"6

Published online: 19 November 2018
: Thedynamical relationship between magnetic storms and magnetospheric substorms is one of the

: most controversial issues of contemporary space research. Here, we address this issue through a

¢ causalinference approach to two corresponding indices in conjunction with several relevant solar wind
: variables. We find that the vertical component of the interplanetary magnetic field is the strongest

¢ and common driver of both storms and substorms. Further, our results suggest, at least based on

: the analyzed indices, that there is no statistical evidence for a direct or indirect dependency between

¢ substorms and storms and their statistical association can be explained by the common solar drivers.

: Given the powerful statistical tests we performed (by simultaneously taking into account time series of
: indices and solar wind variables), a physical mechanism through which substorms directly or indirectly
drive storms or vice versa is, therefore, unlikely.

@ ISSS 2021

IAASARS Web School, 1-5 February 2021




Storm-substorm relationship

@ The storm-substorm relationship is the more controversial
aspect of magnetospheric dynamics where it is not clear
whether and in which direction storms and substorms
influence each other (Sharma et al., 2003).

@ Although it has been traditionally assumed that the main
phase of a magnetic storm is the interval in which many
intense substorms take place successively a number of
questions had been raised about the storm/substorm
relationship (Gonzalez et al., 1994; Kamide et al., 1998).

@ Daglis et al. (2003): No storms have been observed during
which intense substorms did not occur. This implies that
storms and substorms have a common cause, yet does not
necessarily mean that one results in the other.

/@ ISSS 2021
IAASARS Web School, 1-5 February 2021




Substorms

= Akasofu coined the term “substorm” (Akasofu, 1964). His thesis advisor
Sydney Chapman insisted that he use this term or else he wouldn’t be
allowed to publish (Bruce Tsurutani):
» Brightening of equatorward most loop; Breakup and expansion; Recovery
» The typical time scale is ~15 min to 1 hr

@ Although the Akasofu 1964 scenario is “well accepted”, in a recent private
conversation with Bruce Tsurutani, he mentioned that this scenario is
actually one of “typical features”, not one of repeatable “check-list” items.

= 5o one question is what are the variations from this norm, how frequently do they occur
and are they externally or internally driven?

@ Are Substorms An Incremental Unit of a Magnetic Storm?

»  Substorms can occur without magnetic storms and magnetic storms can occur without
substormes.

@ Ann. Geophys., 35, 965-978, d0i:10.5194/angeo0-35-965-2017, 2017.

-0 8 ISSS 2021
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Multivariate information
theoretical approach

De Michelis et al. (2011) using transfer entropy (TE) suggested that
there is information flow between storms and substorms and its
direction depends upon the activity level.

Wing et al. (2016) used mutual information (MI), conditional MI
and TE to discovering solar wind drivers of the outer radiation
belt (e.g. Vsw is found to be the most dominant driver of the
geosynchronous MeV electron fluxes).

Directional, multivariate causality measures using graphical
models (Runge et al., PRL 2012, PRE 2012, Journal of Climate
2014) allow for the identification and statistical evaluation of
linear as well as nonlinear causality between variables.

Our goal is to detect which solar wind variables causally drives
storm and substorm activity and whether and in which direction
storms and substorms influence each other .

ISSS 2021
Web School, 1-5 February 2021




Substorm AL :» Storm SYM-H

~substorms

@ ISSS 2021

~ IAASARS Web School, 1-5 February 2021
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@ ISSS 2021
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http://wdc.kugi.kyoto-u.ac.jp/
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Causal reconstruction

/@ ISSS 2021
IAASARS Web School, 1-5 February 2021



Lag functions of information-
transfer measures

METHODS

k = 10 nearest-neighbor estimator
(Kraskov et al. 2004)

Rescaled to correlation scale [0, 1]

Lag steps: 20 minutes
Max lag: 120 minutes
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Lag functions of information-
transfer measures
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METHODS

Condition on past:
I(Xt-r; Yt | Yt-l)

k = 10 nearest-neighbor estimator
(Kraskov et al. 2004)

Rescaled to correlation scale [0, 1]

Lag steps: 20 minutes
Max lag: 120 minutes
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Lag functions of information-
transfer measures

e bivTE o [TY

2001 (k=50)

— SYM-H

i

METHODS

Condition on past:
I(X._.; Y, | Parents(Y)))

k = 10 nearest-neighbor estimator
(Kraskov et al. 2004)

Rescaled to correlation scale [0, 1]
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Lag steps: 20 minutes
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Results
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Summary

The main driver of substorms as measured by AL is B, while V_ . P, and
B are less relevant
Regarding time lags, the AL index first responds to B, (lag 20-40 min), then

very weakly to B (20-40 min) and eventually to V__ (80-120 min), while the lag
of Py, is not very robust.

B, and V_  also drive storms as measured by SYM-H, but are less strong.
P4, and B are also less relevant.

The SYM-H index also first responds to B, (lag 20-40 min) and earlier to P |
(20 min), then to V_ (40-80 min) and rather weakly with non-robust lags to B.

Most importantly, our iterative causal algorithm analysis suggests that B, ,

V_ . and P, are sufficient to explain the previously found spurious link
AL — SYM-H.

@ ISSS 2021

IAASARS Web School, 1-5 February 2021




Take home messages

@ Complex systems approaches are useful as complementary tools for many
space weather - related problems of time series analysis and spatio-
temporal data analysis.

@ Here, complex systems-based methods have the potential to identify
previously unrecognized precursory structures and, thus, contribute to a
better understanding of dynamical processes manifested in observable
magnetic field fluctuations prior to geospace magnetic storms and provide
a novel way to anticipating and predicting incipient transitions in the
dynamical regime of geomagnetic field variations in time and space.

= In addition to space weather forecasting, we expect a better understanding
of the relationship between storms and substorms by disentangling the
manifold processes interlinking both types of geospace phenomena.

@ ISSS 2021
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Summary

The Team attempts to combine advanced mathematical tools and identify key directions
for future methodological progress relevant to space weather forecasting using Swarm,
SuperMAG, and other space/ground datasets. By utilizing a variety of complementary
modern complex systems based approaches, an entirely novel view on nonlinear
magnetospheric variability is obtained. Taken together, the multiplicity of recently developed
approaches in the field of nonlinear time series analysis offers great potentials for
uncovering relevant yet complex processes interlinking different geospace subsystems,
variables and spatio-temporal scales. The Team will provide a first-time systematic
assessment of these techniques and their applicability in the context of geomagnetic
variability.
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