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The talk is divided in two parts

In the first part, we consider a system (turbulence in three 
dimension). I will argue that, over the last 30 years, we have made 
enormous progress on many “open” questions. In particular we have 
developed a very powerful framework which unifies many different 
statistical properties observed in turbulent flows.

In the second part we look at turbulence from different points of 
view focusing on other general questions (rare or extreme events) 
and discussion how to use emergent methodology (machine 
learning) to look at the available informations in a different way.
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FOCUS OF THE FIRST TALK: 

Homogenous and Isotropic fully 3d fully developed turbulence (HIT) 

This is a “narrow” view with respect to the large numbers of problems on turbulence. 
(there is not “the problem” of turbulence) 

Assumption: we consider a “simple” Newtonian incompressible fluid described by the 
Navier-Stokes equation

∂v
∂t

+ v∇v = −
1
ρ

∇p + νΔv

divv = 0

ρ = const

Viscous effect (phenomenology) 



�4

Re = 0.16 Laminar Flow Re = 1800 Turbulent flow

An important dimensional number: the Reynolds number

Re =
UL
ν

U
Re is the ratio of the characteristic time 
of viscous effect (L2/𝞶) with respect to 
the characteristic time due to velocity 
advection (L/U)

Re → ∞ corresponds to ν → 0

For a car moving at 100 km/h, Re is order 107
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The general question we want to address concerns the statistical properties of 
velocity fluctuations in the limit Re →∞ (fully developed turbulence) 

One question (among others): do the statistical properties of velocity fluctuations 
depend on the forcing mechanism and the viscous effects? 

Universality with respect to:

• forcing mechanisms

• dissipation mechanism

REMARK

We assume to know the equation of motion describing turbulence (Navier-Stokes 
equation) although the dissipation mechanism (𝛎𝛥v) is a “phenomenological” 
approximation.  
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Numerical simulations play an important role

F Toschi 2009

We are now able to simulate turbulence flow with Re ≈ 107 


(close to the one achievable in laboratory experiments) 

Re = (Reλ)2
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The basic property of fully developed turbulence

ϵ = ν⟨(∇v)2⟩
Energy dissipation in a turbulent flow is given by:

The “zeroth law” of turbulence (viscous anomaly) states that:

𝛆 is independent of Re for Re →∞

<…> = space/time average

This is not trivial (not true for 2d turbulence) and it implies

Turbulence generates its own “ultraviolet” divergences! 

rv ! Re

1/2
for Re ! 1
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First (historical) evidence of viscous anomaly: the Richardson 
diffusion

Idea: define P(R) as the probability distribution for 2 particles 
to be at distance R

�tP = div[D(R)rP ] D(R) = AR4/3

Definition of turbulent diffusion

R

From Richardson paper 1926

R

D(R)

dR2

dt
= AR4/3
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Since                 (velocity difference) then                   . 


Thus Richardson  diffusion    D ≈ R4/3   implies that in the limit Re → ∞   the 
velocity field is “rough” (Holder continuos): 

dR
dt

∼ δU(R)
dR2

dt
∼ δU(R) R ≡ D(R) ∼ R4/3

δU(R) ∼ R1/3

The key observation (Gawedzki) is that Richardson diffusion leads to the breaking 
of Lagrangian trajectories in the limit of Re→∞. 

Consequences of Richardson Diffusion
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Historical remark: in the introduction 
to his paper Richardson wrote a 
paragraph

dR2

dt
= AR4/3 → R2/3(t) = R2/3(0) + Bt

2 particles starting at distance R can 
collapse to the same position.

Even for 2 particles starting with the same 
initial position, their distance growth in time

Breakdown of lagrangian trajectories
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The Kolmogoroff 1941 theory for homogeneous and isotropic turbulence

𝜺 is assumed to be independent on Re. Then  for Re →∞ ⟨(δv(r))3⟩ = −
4
5

ϵr

δv(r) ≡ (v(x + r) − v(x)) ∙
r
r

Exact equation⟨(δv(r))3⟩ = −
4
5

ϵr + 6ν
d
dr

⟨(δv(r))2⟩

Kolmogorov conjecture is that the probability distribution P[𝛿v(r)] depends only on 𝜀 
and r. Therefore

δv(r) ∼ ϵ1/3r1/3 agreement with Richardson findings

< (𝛿v(r))3> negative implies non linear energy transfer from large to small scales

only relevant quantity for hom. iso. turbulence
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The Kolmogoroff 1941 theory for homogeneous and isotropic turbulence

Viscous effect are relevant at scale 𝜂 where 

ϵη ∼ 6ν
d
dr

⟨(δv(r))2⟩ |r=η → η = ( ν3

ϵ )
1/4

∼ Re−3/4

There exists a range of scales (inertial range) for 𝜂<< r << L (large scale of the system) 
where we should observe 𝛿v(r) ≈ r1/3. (energy spectrum E(k) ≈ k-5/3)

δv(η)η
ν

∼ 1

τη =
η

δv(η)
∼ ( ν

ϵ )
1/2

U
Example: for U=1m/sec L = 1m and 𝝂=10-5 (air) we have

𝜼 ≈ 1 mm   𝝉𝜼 ≈ 1 mm sec



The Kolmogoroff 1941 equation for homogeneous and isotropic turbulence

P[δv(r)] = P[ε,r] → δv(r) ≈ ε1/3 r1/3.Kolmogorov 41 conjecture

Dissipation scale η dissipation

forcing

δv(r) ≈ε1/3r1/3

 δv(r) ≈ 𝜼

inertial range

⌘ =

✓
⌫3

✏

◆1/4

cartoon


⟨(δv(r))3⟩ = −
4
5

ϵr + 6ν
d
dr

⟨(δv(r))2⟩
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ℇ

DNS results

<δv(r)3>/r

Ishihara,Gotoh,Kaneda 2009

⟨(δv(r))3⟩ = −
4
5

ϵr is observed to be true 
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The Kolmogorov theory implies that the statistical properties of turbulence 
fluctuations are “universal” (provided r<<L for isotropy to hold) and are 
independent of the dissipation mechanism. Is that true ?? 

Prediction of Kolmogorov theory for r in the inertial range

Sp(r) ≡ ⟨(δv(r))p⟩ ∼ ϵp/3rp/3 then we should observe
Sp(r)

S2(r)p/2
∼ const

P [ δv(r)
S2(r)1/2 ] independent of r

h.i. turb.

boundary layers S4(r)
S2(r)2

Pdf of δv



For the Kolmogorov theory to be true, the statistical properties of the inertial range are 
independent of the forcing mechanism and on the dissipation mechanism (universality). 
Moreover, we should get

�p(l) ⌘
Sp(l)

S2(l)p/2
⇠ const for L �� �Sp(l) = h(�v(l)pi

log(l)

log(Γp(l))

η

ε

boundary layers

h.i. turb.

strong fluctuations of 
energy dissipation.

Casciola et al. 2003
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Kolmogorov theory is not correct: clear deviations (although small) in the inertial range

What is wrong? 

δv(r) = ϵ1/3r1/3 = U(L)( r
L )

1/3

with ϵ ∼
U(L)3

L

If U(L) (large scale fluctuations) are gaussian then P(ϵ) ∼
1

ϵ2/3
exp ( −ϵ2/3

2σ2 )
Energy dissipation can show strong fluctuations. However they are independent of r 

⟨(δv(r))p⟩ = ⟨ϵp/3⟩rp/3

one may wonder whether in computing <𝜺p/3> we need to take into account 
fluctuations in the energy dissipation 

To explain the observations  we need some space/time correlation in the energy 
dissipation and/or in the correlation between 𝛅v(r) and the energy dissipation. 

We need some “statistical/geometrical” features of the system which we are missing.
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Let us investigate the problem differently. We consider a lagrangian particle which 
is transported by an homogeneous isotropic turbulent flows at large Re.

dx
dt

= v(x, t)

Given x(t) we can measure the acceleration a(t). The Kolmogorov theory suggests

a ∼
δv(η)

τη
∼ Re1/4ϵ3/4

Knowing P[𝛆] (in the Kolmogorov theory) we can compute P[a]

Kolmogorov prediction
Data

Dissipation are not 
properly taken into 
a c c o u n t b y t h e 
Kolmogorov theoryL Biferale, G Boffetta, A Celani, BJ Devenish, A Lanotte, F Toschi 2005
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A closer look to the acceleration velocity 

The acceleration shows strong fluctuations 
when the particle becomes trapped in a 
vortex filaments

for a review see, Toschi and Bodenschatz 2009, Ann. Rev. Fluid Mech.

Biferale, Boffetta, Celani, Lanotte,Toschi, 2005

La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J. & Bodenschatz, E. 2001l Nature 2001
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The previous result suggests different scenarios


- small scale turbulent fluctuations are dominated by vortex tubes or coherent 
structures immersed in a “random sea” of Kolmogorov-like fluctuations; (implications: 
non universality of inertial range properties; non trivial dependence on the 
dissipation mechanism;….) 


- for extremely large Re, all deviations with respect the Kolmogorov theory disappear


- we still assume that “scaling” of 𝛿v(r) versus r is true and we  must look for a 
generalisation of the Kolmogorov theory (implications: universality in the scaling of 
Sp(r) ….)
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Some remarks on the scale invariance of the Navier-Stokes equations

∂v
∂t

+ v∇v = −
1
ρ

∇p + νΔv r ! �r
v ! �hv
t ! �1�ht

⌫ ! �1+h⌫

✏ ! �3h�1✏ h=1/3 is the value selected by the Kolmogorov theory

We generalise the scale invariance by assuming that any h is possible 
although for each h we give a “weight” proportional to 𝛌3-D(h)

Parisi Frish 1983,  RB, Paladin, Parisi, Vulpiani 1984
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This generalisation implies that the energy dissipation is a multifractal field.

D(h) is can be thought to be the fractal 
dimension of the set for which 𝛿v(r) ∼ rh

�v(r) ⇠ rh P (h) ⇠ r3�D(h)

Sp(r) =

Z
dhrphr3�D(h) ⇠ r⇣(p)

⇣(p) = infh[ph+ 3�D(h)]

ζ(p) ≤
p
2

ζ(2) (anomalous) scaling)

ζ(3) = 1 Kolmogorov exact result
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If the multifractal generalisation is the correct way to describe turbulent 
fluctuations we need to answer several questions:

- is that true that Sp(r) ∼ r𝜍(p) with 𝜍(p) non linear function of p? (anomalous 
scaling)


- is the anomalous scaling universal ?


- how anomalous scaling can explains strong fluctuations near the dissipation 
range (i.e. acceleration)?


- how can we compute D(h) and/or 𝜍(p) from the equation of motions?

Knowing 𝜍(p) we can compute D(h) by the inverse Legendre transform.  
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The meaning of anomalous scaling

A : random variables

<A(r)p> ≠ <A(r)>p

Slope 2

R,B, Baudet Ciliberto Massaioli 
Tripiccione Succi 1993

K41

test of anomalous scaling in turbulent flows

Extended self similarity

The value of 𝜍(p) depends how to make the 
fit and we do not know how to compute 
finite size effects in Re

Re=105
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Anomalous scaling in Re RB, Biferale,Ciliberto, et. al. 1995

Courtesy by L. Biferale



a=1, b= -0.4, c= -0.6

SHELL MODELS: simplified model of turbulence to study anomalous scaling and 
multifractal behavior (for a review see Biferale 2006)

kn = 2n k0 → un complex variable 
non linear interactions with required invariants and scale symmetry

AMAZING !!!



Superposition of “istanton like” solution: local scaling

ṽ(k, t) = �k�hfh[(t� t⇤)k
1+h]

With suitable probability distribution for “h” and “t*”

Siggia 78, Parisi 92, Daumont, 
Dombre, Gibson 99, Bifera le , 
Daumont, Dombre, Lanotte 99L’vov 
2002, .....}

The asymptotic limit for p→∞ : link with coherent 
structures?

�p ! ph0 + 3�D0
?

Numerical simulations of shell models support another view of multifractal field

IS MULTIFRACTALITY RELATED TO STRUCTURES ?
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The fluctuations near the dissipative scale can be computed assuming anomalous 
scaling in the inertial range. 

Let us apply this argument using the multifractal framework.

�v(⌘)⌘

⌫
⇠ 1

a =
�v2(⌘)

⌘

definition (scaling wise) of the dissipation scale

⌘ = ⌘(h) = Re�
1

1+h P [h] = Re�
3�D(h)

1+h the dissipation scale fluctuates!

We can compute the probability distribution of the acceleration a as 

Remark: we estimate D(h) using inertial range anomalous scaling. 

�v(⌘) = U0

⇣ ⌘

L

⌘h
P [h] =

⇣ ⌘

L

⌘3�D(h)

U0 assumed gaussian

Frisch, U.& Vergassola, M. 1991. 
Paladin,G. & Vulpiani, A. 1987

h(rv)2pi = h
✓
�v(⌘)

⌘

◆2p

⇠ Re�(p) �(p) = suph


2p(1� h)� 3 +D(h)

1 + h

�



Kolmogorov prediction
Data
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Non trivial prediction based on the multifractal theory.

multi fractal prediction

L Biferale, G Boffetta, A Celani, BJ Devenish, A Lanotte, F Toschi 2005
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Dissipation range in for Lagrangian Turbulence
The point of view of a lagrangian particle.

⇥

L
⇠ ⇤3/4

�1/4L
⇠ LRe�3/4

⌅⌘ =
⇥

�v(⇥)

⇥�v(⇥)

⇤
= 1

��
T

=
��

L/U
⇠ TRe�1/2

Lagrangian dynamics enables us to study in a better way the effect of dissipation 

Lagrangian dynamics means to study the velocity field experienced by 
a particle driven by the turbulent flow.
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Eulerian structure functions

Lagrangian structure functions

Lagrangian exponents can be predicted from the Eulerian exponents 
Borgas, MS. 1993

Sp(r) = h(�u(r))pi ⇠ r⇣E(p)

Sp(⌧) = h(v(t+ ⌧)� v(t))pi ⇠ ⌧ ⇣L(p)

�v(⌧) ⇠ �u(r) ⌧ ⇠ r

�u(r)

r ! �r u ! �hu ⌧ ! �1�h⌧

⇣E(p) ! ⇣L(p) = infh


ph+ 3�D(h)

1� h

�

R B, L Biferale, R Fisher, DQ Lamb, F Toschi 2010

⇣E(p) = infh [ph+ 3�D(h)]

error due anisotropic effect



�32

3==Gaussian

F (�) =
S4(�)

S2(�)2

S4(�) = S2(�)
a(�)

F (�) = S2(�)
a(�)�2

Intermittency and coherent structures

a(τ) =
dlogS4(τ)
dlogS2(τ)

a(𝛕) can be considered as a local measure 
(in 𝛕) of intermittency 

Effects of vortices on intermittency behavior

Light 

Heavy 

plot from E. Calzavarini

trace

Outside 
vortices

Inside 
vortices

anomalous scaling in 
the inertial range

L Biferale, G Boffetta, A Celani, A Lanotte, F Toschi 2005

J Bec, L Biferale, G Boffetta, M Cencini, S Musacchio, F Toschi 2006
R Benzi, L Biferale, E Calzavarini, D Lohse, F Toschi 2009

2

1.7

1.5
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Theoretical prediction of the MF for different Reynolds: 

intermittency shows up before scaling.

Benzi, Biferale 2010

a(r) =
dlogS4(r)
dlogS2(r)



Major international effort, Arneodo et. al. PRL 2008
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The inertial properties of turbulence (i.e. the function D(h)) are able to explain 
quantitatively the increase of intermittency observed in the dissipation range. 


Vortices appear to be relevant in the dissipation range, although their statistical 
properties are constrained by the inertial range dynamics and do not affect 
anomalous scaling. 

a(τ) =
dlogS4(τ)
dlogS2(τ)

a(𝛕)

theor. estimate
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What did we obtain? 

Open questions:


- we still cannot “prove” the existence of viscous anomaly in the Navier-Stokes 
equation, although we have a deep physical intuition on why it occurs 
(breaking of lagrangian trajectories);


- we are not (yet) able to compute D(h) and/or the anomalous exponents (maybe 
easier than the problem of viscous anomaly);
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What we get (A LOT!)


1. we have a consistent way to describe turbulence both in the inertial range 
and in the dissipative range (independent on the existence of vortices or 
other coherent structures);


2. the multifractal function D(h) is able to predicts (so far) all the scaling 
properties in r or Re for quantities which are invariant under the same 
group of transformation of the Navier-Stokes equations


3. we know how to estimate finite size effects in Re and we have good 
evidence that D(h) is universal;


4. the statistical properties of turbulent fluctuations are independent on the 
large scale forcing and on the detailed mechanism of energy dissipation 
(universality);


5. some of the above results can be generalised for non isotropic forcing;
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How can we use our results?


- improvement of numerical schemes for realistic applications (machine 
learning approach?);


- basic understanding of turbulence effects in many scientific problems:

statistics of non inertial particles;

turbulence effects in population dynamics and evolution 
(phytoplankton) in the ocean;


- we can explore similarities and/or differences (if any) for fluid turbulence 
with different physical properties (incomplete list):


superfluid turbulence;

magnetohydrodynamics;

complex fluids (for instance two phase flows, fluids with polymer…)

geophysical flows (turbulence in stratified medium, rotating 
turbulence…);

looking at the above problems we may eventually understand how to 
compute D(h);
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Focus of the second talk 

We consider three different problems:


1) large scale reversal in turbulent flows and in particular 
magnetic reversal in dynamo


2) how we may obtain something non trivial using new development 
in machine learning


3) how turbulence may be used to understand some basic 
properties of avalanche dynamics




The case of magnetic reversals in the dynamo    

Experimental results

Large scale mechanism or 
“turbulent noise”?

+forcing



What can we learn using a simple approach?

There are two important numbers in the systems  Re = UL/ν and Rem = UL/νm. Geophysical 
dynamo are believed to occurs for Rem <<Re  and for Re>>1: very (!) difficult problem for 
direct numerical simulations.


To make progress we (RB, JF. Pinton 2009) use a simplified approach:

the vector fields u and B are replaced by “shell variables” Un and Bn  

kn = 2n , n=1..25.  Un and Bn  are complex numbers which satisfy the equations:

where Φn  is  a non linear operator which (for ν=νm=0) satisfies the 
requirements of energy and cross-helicity conservations. 

i

3
�n(u,B) ! �u •rB



We assume a saturation in the large scale magnetic field and B1=0 
(geometry constrain on the largest scale)

F2(u,B) ⌘ i

3
[�2(u,B)� �2(B, u)]

This quantity represents the non linear interaction due to larger (n<2) 
and smaller (n>2) scales. Also we expect, for small enough 𝝼m, that 
dynamo occurs. Thus we expect that “on the average” F2(u,B) represents 
an instability for the amplitude of the shell B2

dB2

dt
=

i

3
[�2(u,B)� �2(B, u)]� amB3

2 � ⌫mk22B2

F2(u,B) = �B2 + f(t)

where 𝝱>0 is the instability and f(t) are fluctuations (eventually strong)



The behaviour of B2 can be argued to satisfies approximately the 
equation

dB2

dt
= �B2 � amB3

2 � ⌫mk22B2 + f(t)

We now understand the effect of the term amB3
2

This term breaks the rotational invariant in the complex plane B2= B2r+B2i

Rotational invariance is preserved by the non linear interactions (the 
term proportional to 𝝱). 



We are assuming that the large scale magnetic field B2  reaches a 
saturation for B2i ∿ 0 and finite value of B2r (positive or negative). 

This is a “typical” argument obtained by using the theory of dynamical 
system and in particular bifurcation theory. It can be generalised and, in 
some cases, it can be proved to be rigorous. 

This conclusion can be reached by looking at the equation for |B2|2

d|B2|2

dt
= �|B2|2 � am|B2|2(B2

2r �B2
2i)� ⌫mk22|B2|2 + ....

Neglecting the …… terms, equilibrium is reached if

� � am(B2
2r �B2

2i)� ⌫mk22 = 0

This implies, for small 𝞶m, B2i ⇠ 0 B2r ⇠ ±

�

am

�1/2



B2r

B2r

B2r

νm=0.00028

νm=0.00026

νm=0.00024

Results from numerical simulations with Re=107 of the full non linear model

The equilibrium of B2r depends on the turbulent energy transfer from 
the velocity to the magnetic field: STATISTICAL EQUILIBRIUM 



We can approximate the dynamics of B2r with the “standard” prototype 
model borrowed from dynamical system:

Nonlinear turbulent 
simulations

D o u b l e w e l l 
potential

νm=0.00026



Since the equilibrium are “statistical equilibrium”, their values change when an 
external forcing is applied, i.e. there is a non trivial response to external 
perturbations. This is not true for the simplified approach!

dB2r

dt
= B2r(B

2
0 �B2

2r) +Asin(!t) +
p
✏dW (t)

A simple example

plus the full non linear model

dB2

dt
=

i

3
[�2(u,B)� �2(B, u)]� amB3

2 � ⌫mk22B2 +Asin(!t)



The equilibrium depends on the fluctuations around it (very complex situation) for 
the full non linear model. The external forcing changes the equilibrium and the 
fluctuations !! This is not true for our “simplified” model

νm=0.00026

Different response functions 
for the same external 
forcing !

In this case, a dynamical system approach fails to reproduce the dynamics. 
This is a “generic” features in many complex systems.

Full non linear model

Simple dynamical model
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Lagrangian particle velocity signal, different viscosities

1 eddy turnover time

velocity gradients

h�v(⌧)2i = A✏⌧

h�v(⌧)2i = B⌫�↵⌧2
⌧ � ⌧⌘
⌧  ⌧⌘

Machine learning and turbulence 

A Corbettaa, V Menkovskib, RBc and F Toschi, Science 2021, in press 

Velocity experienced by a lagrangian particle. 

The constant A and B and the 
exponent 𝜶 are known
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Machine learning

𝛎

Not surprising. Upon averaging over many 
validation test, we obtain the result are good ! 
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The “standard approach”.

Let Re the Reynolds number of our system. In order to compute Re given the 
velocity signal we can proceed as follows

1) compute 
C = lim⌧!0

1

v2rms

⌧
�v(⌧)2

⌧2

�

The average <…> is done over several eddy turnover times:

h...i = 1

N
⌃i C = hCii =

1

N
⌃iCi

Where Ci is the value of  
“C” averaged over 1 eddy 
turnover time.

2) From the turbulence theory we know

where D depends on the geometry (it is supposed to be known) and 𝛂 can be computed 
using the multifractal theory. The error of Re depends on the error on C and it small 
for N large enough.

C = DRe↵

Re =
vrmsL

⌫

We assume to know both vrms and L. The knowledge of 𝛎 is equivalent to the 
knowledge of Re

For a flow at Re=105 and eddy turnover time 1 sec, 
after 5 minutes we reach an accuracy of 30%.



Suppose that we use the previous procedure with only 1 eddy turnover time, N=1

Ci

C
=

Re↵p
Re↵

where Rep is the “predicted value” of Re with just 1 eddy turnover time.

From each eddy turnover time we obtain different values of  Rep because of 
fluctuations

Re↵p = Re↵i

Re↵p
Re↵

= Re↵i�↵

𝜶i are fluctuations around 𝜶 due to the fluctuations of the dissipation scale

Simplified multifractal (lognormal) pdf for  𝜶i b  1

P [↵i] = Re

�b(↵i�↵)2 = exp[�b(↵i � ↵)2log(Re)]

multifractal fluctuations
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We can now compute our error over 1 eddy turnover time

error over 1 eddy 
turnover times

p
h(↵i � ↵)2i ⌘ � =

s
1

2blog(Re)

⇠ = log

✓
Rep

Re

◆
=

↵i � ↵

↵

log(Re)

�⇠ ⇠ �

↵

log(Re) ⇠ 1

↵

r
log(Re)

2b

P [↵i] = Re

�b(↵i�↵)2 = exp[�b(↵i � ↵)2log(Re)]

↵ log

✓
Rep

Re

◆
= (↵i � ↵)log(Re)

Re↵p
Re↵

= Re↵i�↵
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We can now compute our error over 1 eddy turnover time

error over 1 eddy 
turnover times�⇠ ⇠ �

↵

log(Re) ⇠ 1

↵

r
log(Re)

2b

�

✓
Rep
Re

◆
⇠ e�⇠ �

✓
Rep
Re

◆
⇠ 100

�⇠N ⇠ 1

↵


log(Re)

2bN

�1/2 error over N eddy 
turnover times

An example. For  Re = 105  �⇠ ⇠ 5

For a flow with eddy turnover time 1sec, after 5 minutes we have �⇠N ⇠ 0.28

�

✓
Rep
Re

◆

N

⇠ e�⇠N ⇠ 1.32 (30% accuracy)

Using 1 eddy turnover time we have

How does the machine learning perform?
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from machine learningResults from 1 eddy turnover time

Using machine learning (pattern recognition) we obtain error of 10% !!

P


⌫pred
⌫true

�

P


⌫pred
⌫true

�
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NOTE: machine learning was trained by using signal for different viscosity using a 
shell model and the velocity signal 

U(t) = ⌃nReal(un(t))
which is known to behave as a lagrangian particle. 

After training, machine learning was applied to data from DNS simulations. 

DNS Simulation

Shell model
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Machine learning uses pattern recognition algorithm able to “learn” small fluctuations 
at different time scales and their correlations within the signal.

This is equivalent to “learn” the multifractal fluctuations in the inertial range and to 
learn how  they correlates at different scales. 

Machine learning, in this particular case, is able to sample the multifractal “spectrum” 
better then any naive statistical approach based on “standard tools”. 

Why machine learning is performing so well?

A tentative explanation. 

More work on this interpretation is needed.  
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a=1, b= -0.4, c= -0.6

 Let us consider a shell model of turbulence.

kn = 2n k0 → un complex variable


non linear interactions with required invariants and scale symmetry

Let chose a particular form of fn f1 =
(1 + i)F

u⇤
1

f2 =
(1 + i)F

u⇤
2

E ⌘ ⌃n|un|2

✏ = ⌫⌃nk
2
n|un|2 P ⌘ ⌃n|fnu⇤

n| = 4F

energy

energy dissipation 
Rate of energy input

Avalanches in turbulence
I. Castaldi, RB, F. Toschi and J. Trumpert, in preparation.
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dE

dt
= P � ✏(t) rate of energy dissipation is time dependent

if ✏(t)  P ! dE

dt
> 0

if ✏(t) > P ! dE

dt
< 0

The energy grows in time

The energy is dissipated

energy 
dissipation ✏(t)
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E(t)

✏(t)

avalanche like events

Time scale of dissipation much 
shorter than the time for 
energy to grow.
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Questions to be investigated: avalanche size, time between avalanches

These are general questions which are considered to be crucial in a number of 
physical problems (not only turbulence!).
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t_i(k) = time at which dE/dt change 
sign from positive to negative

t_f(k) = time at which dE/dt change 
sign from negative to positive
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To analyse the “avalanche” dynamics we must first define what we mean by 
avalanche and which may be the relevant informations to be studied. 

At this stage, our previous knowledge of turbulence is not relevant.

2) Inter event time or waiting time between events tw(k)= t_i(k)-t_f(k-1)

1) Size of the event 𝜟E(k) = E[t_i(k)]-E[t_f(k)]
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Then the basic question concerns the probability 
distribution of P[𝜟E(k)] and P[tw(k)]

In seismology P[𝜟E(k)] show a scaling behaviour known as the Guttenberg-Richter law. 

For random uncorrelated processes P[tw(k)] is a Poisson distribution.

2) Inter event time or waiting time between events tw(k)= t_i(k)-t_f(k-1)

1) Size of the event 𝜟E(k) = E[t_f(k)]-E[t_i(k)]
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-0.35-1.65

Both probability distributions of size and inter event time are 
scaling functions of their argument ! 

P[𝞓E]

Scaling may not be so surprising !!  After all we are looking at a turbulent flows where 
energy dissipation shows non trivial scaling properties in space (i,e, kn) and time. 

-1.65

-.35
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There are no correlations between size and inter event time

tw

𝜟E

A non trivial observation
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A closer look to P[tw]. 

𝜟E is defined between some minimum value 𝜟E0 and some maximum value 𝜟EM
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Let us now look at the inter 
event time between events 
whose size 𝜟E is larger 
than some threshold 𝜟E_t

The we can look at the probability distribution of tw in the “coarse grained” signal: 

P[tw|𝜟E>𝜟E_t]
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The non trivial results is that P[tw|𝜟E>𝜟E_t] does not change its functional form! 

Probability theory 
tells us that there 
exists non tr ivial 
correlation among tw 

A similar effect is also observed in earthquake dynamics (Corral 2004). 

New and non trivial physics to learn?

𝚫E_t is changing by 2 
order of magnitudes. 
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Thanks for your attention


