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The talk is divided in two parts

In the first part, we consider a system (turbulence in three
dimension). I will argue that, over the last 30 years, we have made
enormous progress on many ‘open” questions. In particular we have
developed a very powerful framework which unifies many different
statistical properties observed in turbulent flows.

In the second part we look at turbulence from different points of
view focusing on other general questions (rare or extreme events)
and discussion how to use emergent methodology (machine
learning) to look at the available informations in a different way.



FOCUS OF THE FIRST TALK:
Homogenous and Isotropic fully 3d fully developed turbulence (HIT)

This is a "narrow” view with respect to the large numbers of problems on turbulence.

(there is not “the problem” of turbulence)

Assumption: we consider a “simple” Newtonian incompressible fluid described by the
Navier-Stokes equation

ov 1

—+vVvVv=——Vp+rAv

ot p

divv = 0 Viscous effect (phenomenology)

p = const



An important dimensional number: the Reynolds number

UL
Re = —
v

Re is the ratio of the characteristic time
of viscous effect (L2/v) with respect to

the characteristic time due to velocity
advection (L/V)

Re = 0.16 Laminar Flow Re = 1800 Turbulent flow

Re — oo corresponds to v — 0

For a car moving at 100 km/h, Re is order 107




The general question we want to address concerns the statistical properties of
velocity fluctuations in the limit Re —co (fully developed turbulence)

One question (among others): do the statistical properties of velocity fluctuations
depend on the forcing mechanism and the viscous effects?

Universality with respect to:
® forcing mechanisms
® dissipation mechanism

REMARK
We assume to know the equation of motion describing turbulence (Navier-Stokes

equation) although the dissipation mechanism (v4v) is a “phenomenological”

approximation.



Numerical simulations play an important role
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We are now able to simulate turbulence flow with Re = 107
(close to the one achievable in laboratory experiments)



The basic property of fully developed turbulence

Energy dissipation in a turbulent flow is given by:

€ = [/(( VV)2> <..> = space/time average
The “zeroth law” of turbulence (viscous anomaly) states that:

e is independent of Re for Re —o0

This is not trivial (not true for 2d turbulence) and it implies

Vv — Re'/? for Re — o

Turbulence generates its own “ultraviolet” divergences!



First (historical) evidence of viscous anomaly: the Richardson
diffusion

Idea: define P(R) as the probability distribution for 2 particles
(R\ to be at distance R

0P = div|D(R)V P]

Definition of turbulent diffusion

dR?
dt

— AR4/3

LOG,, (SEPARATION L in cMm)

From Richardson paper 1926
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Consequences of Richardson Diffusion

2

Since CCZZ—R ~ SU(R) (velocity difference) then ddi ~ SUR)R = D(R) ~ R*?
5 5

Thus Richardson diffusion D = R43 implies that in the limit Re — c0o the
velocity field is "rough” (Holder continuos):

SU(R) ~ R'3

The key observation (Gawedzki) is that Richardson diffusion leads to the breaking
of Lagrangian trajectories in the limit of Re—oco.



Breakdown of lagrangian trajectories

dR2 4/3 2/3 2/3

—— =AR™ - R“°(t) = R“°(0) + Bt
dt
Even for 2 particles starting with the same
initial position, their distance growth in time

2 particles starting at distance R can
collapse to the same position.

Historical remark: in the introduction

to his paper Richardson wrote a
paragraph

'§1.2. Does the Wind possess a Velocity ?
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The Kolmogoroff 1941 theory for homogeneous and isotropic turbulence

ov(r) = (v(x+r) — v(Xx)) . only relevant quantity for hom. iso. turbulence
r

3 4 d 5 :
((Ov(r))’) = — ger + 61/d—((5v(r)) ) Exact equation
r
€ is assumed to be independent on Re. Then for Re —co ((5v(r))3) = —%er

< (6v(r))®> negative implies non linear energy transfer from large to small scales

Kolmogorov conjecture is that the probability distribution P[6v(r)] depends only on ¢

and r. Therefore
ov(r) ~ €3r!3  agreement with Richardson findings
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The Kolmogoroff 1941 theory for homogeneous and isotropic turbulence

Viscous effect are relevant at scale n where
v ovimn

1/3 v

d
en ~ UGV, = n={—) ~Re ; ()

— ~ | —
€ 4 ov(n) €

|

There exists a range of scales (inertial range) for n<< r << L (large scale of the system)
where we should observe 6v(r) = r'/3. (energy spectrum E(k) = k-5/3)

Example: for U=Im/sec L = Im and v=10-5 (air) we have

n=1lmm wn=1mm sec
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The Kolmogoroff 1941 equation for homogeneous and isotropic turbulence
3 4 d 2
(OV())) =.— —er+ GEERHOVE))
S dr
forcing cartoon
(L)X
~
o —~__-

e
OO0 e

OO0

OO0V OOO0OOD000

Dissipation scale 7

V3 1/4
) = = (")

Kolmogorov 41 conjecture P[8v(r)] = Ple,r] — 8v(r) = ¢l/3 ri/3,



" Coetal DNS results

Yeung & Zhou

Jiménez et al.

Wang et al. (decaying)

Wang et al. (forced)

Gotoh et al.

Ishihara & Kaneda
Kaneda et al. (kpg,n=1) =

Kaneda et al. (kg N=2) a

| |

| |
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Ishihara,Gotoh,Kaneda 2009




The Kolmogorov theory implies that the statistical properties of turbulence
fluctuations are “universal” (provided r<«<L for isotropy to hold) and are
independent of the dissipation mechanism. Is that true ??

Prediction of Kolmogorov theory for r in the inertial range

\)
Sp(l’) = ((6v(n)P) ~ e”>r’>  then we should observe SZE):Q/Z ~ const
P A independent of r
Sy(r)t/= Pdf of ov

boundary layers

£
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For the Kolmogorov theory to be true, the statistical properties of the inertial range are
independent of the forcing mechanism and on the dissipation mechanism (universality).
Moreover, we should get

Sp(l) = <(5U(l)p> I (1) = Sf(plgi)/Q ~ const for L >>n

strong fluctuations of
energy dissipation.

Casciola et al. 2003



Kolmogorov theory is not correct: clear deviations (although small) in the inertial range

What is wrong?

((Sv(r)P) = (ePPyrPP

one may wonder whether in computing <eP3> we need to take infto account
fluctuations in the energy dissipation

U(L)
L

1/3
sv(r) = ePrl = U(L)<%> with € ~

| | i _ 203
If U(L) (large scale fluctuations) are gaussian then  P(e) ~ mexp( 262 >

Energy dissipation can show strong fluctuations. However they are independent of r

To explain the observations we need some space/time correlation in the energy
dissipation and/or in the correlation between dv(r) and the energy dissipation.

We need some “statistical /geometrical” features of the system which we are missing.
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Let us investigate the problem differently. We consider a lagrangian particle which
is tfransported by an homogeneous isotropic turbulent flows at large Re.

dx _
— = v(X,
dt

Given x(t) we can measure the acceleration a(t). The Kolmogorov theory suggests

_ ov(n) ~ Rel/A 3/

Iy

Knowing Ple] (in the Kolmogorov theory) we can compute P[a]

a

10Y

1o Kolmogorov prediction

10_2 E::iz'_:i-f X + D C1'|'Cl

103
104
105

s Dissipation are not

10T properly taken into
account by the

Kolmogorov theory

108
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L Biferale, G Boffetta, A Celani, BJ Devenish, A Lanotte, F Toschi 2005
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Biferale, Boffetta, Celani, Lanotte, Toschi, 2005

ek 1TE1Z2uiz -

A closer look to the acceleration

velocity

The acceleration shows strong fluctuations
when the particle becomes trapped in a
vortex filaments

0 16,000

Acceleration (ms2)

La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J. & Bodenschatz, E. 2001| Nature 2001
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The previous result suggests different scenarios

— small scale turbulent fluctuations are dominated by vortex tubes or coherent
structures immersed in a “random sea” of Kolmogorov-like fluctuations; (implications:
non universality of inertial range properties; non trivial dependence on the
dissipation mechanism;....)

— for extremely large Re, all deviations with respect the Kolmogorov theory disappear

— we still assume that “scaling” of 6v(r) versus r is true and we must look for a

generalisation of the Kolmogorov theory (implications: universality in the scaling of
Sp(r) ....)
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Some remarks on the scale invariance of the Navier-Stokes equations

v — N
ov |
— 4+ vVv=——Vp+rAyv r — \r t s Ay
ot P 1+h
v — AT

€ — )\Sh_le h=1/3 is the value selected by the Kolmogorov theory

We generalise the scale invariance by assuming that any h is possible
although for each h we give a “weight” proportional to A3-P(h)

Parisi Frish 1983, RB, Paladin, Parisi, Vulpiani 1984
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This generalisation implies that the energy dissipation is a multifractal field.

D(h) is can be thought to be the fractal
dimension of the set for which év(r) ~ rh

ov(r) ~ rh P(h) ~ r3—D(h)
Spll= / dhrPhp3= D) p6(P)

((p) = infr[ph + 3 — D(h)]

c(p) < %C(Z) (anomalous) scaling)

£(3) =1 Kolmogorov exact result
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If the multifractal generalisation is the correct way to describe turbulent
fluctuations we need to answer several questions:

— is that true that Sy(r) ~ r<P) with ¢(p) non linear function of p? (anomalous
scaling)

— Is the anomalous scaling universal ?

— how anomalous scaling can explains strong fluctuations near the dissipation
range (i.e. acceleration)?

— how can we compute D(h) and/or ¢(p) from the equation of motions?

Knowing ¢(p) we can compute D(h) by the inverse Legendre transform.

23



test of anomalous scaling in turbulent flows

The value of ¢(p) depends how to make the

fit and we do not know how fo compute
finite size effects in Re

The meaning of anomalous scaling
A : random variables
<A(r)P> £ <A(r)>p

Extended self similarity

R,B, Baudet Ciliberto Massaioli
Tripiccione Succi 1993
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Anomalous scaling in Re RB, Biferale,Ciliberto, et. o

6 8 10 12

P
Courtesy by L. Biferale
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SHELL MODELS: simplified model of turbulence to study anomalous scaling and
multifractal behavior (for a review see Biferale 2006)

kn = 27 ko — un complex variable
non linear interactions with required invariants and scale symmetry

dtiy -
( 1 _ . . "
dt 1 [_-:I.Ln+1 lUn42Up 1 T bhntng 1y,

—ckp_1Up_1tn_g) —vkiu, + fo,

a=1,b=-0.4,c=-0.6
AMAZING !!!

q Sq tun|?)
|_ 0.393 + 0.006 l
| 0.720 £ 0.008| 0.720 £ 0.008 l
3] 1.000£0.005| 1.003+0.009] |

4] 1256 +£0.012| 1.256 +£0.012| |
(5] 1.4794+0.006] 1.488-+0013|
|6] 1706+0015] 1.706 £0.015] |

T 1.901 & 0.010 1910 4 0.020 2005 ; 5. 00 150 200 350 300
log,(k)




Numerical simulations of shell models support another view of multifractal field

Superposition of “istanton like” solution: local scaling

Siggia 78, Parisi 92, Daumont,

@(k,t) - Ek_hfh[(t i t*)kl_l_h] Dombre, Gibson 99, Biferale,

Daumont, Dombre, Lanotte 99L’"vov
2002, .....

With suitable probability distribution for “h” and “t+”

17

The asymptotic limit for p—oo : link with coherent bl R,
structures? A
Cp — Pho +3 — Do i
IS MULTIFRACTALITY RELATED TO STRUCTURES ? O L



The fluctuations near the dissipative scale can be computed assuming anomalous
scaling in the inertial range.

Let us apply this argument using the multifractal framework.

WM 1 definition (scaling wise) of the dissipation scale
vV
h 3—D(h)
dv(n) = Uy (%) P|h] = (%) Uo assumed gaussian
n=n(h) = Re-m%  P[h]=Re tri  the dissipation scale fluctuates!
Frisch, U.& Vergassola, M. 1991.
Paladin,G. & Vulpiani, A. 1987
2p(1 — h) — 3+ D(h)
su(n)\ " - £
(V0)2P) = << . ) ~ Rex®  X(p) = supp T
) 2
We can compute the probability distribution of the acceleration a as a = Un(ﬁ)

Remark: we estimate D(h) using inertial range anomalous scaling.
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Non trivial prediction based on the multifractal theory.

10"
10~ E —— multi fractal prediction
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Dissipation range in for Lagrangian Turbulence

The point of view of a lagrangian particle.

3/4

7 1/aT LRe
n  nov(n)
— — 1
TSy v
Ty _ Tn —1/2
/- ~ TR
T~ LJU :

Lagrangian dynamics enables us to study in a better way the effect of dissipation

Lagrangian dynamics means to study the velocity field experienced by
a particle driven by the turbulent flow.
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Eulerian structure functions
Sy(r) = ((Bu(r))) ~ r=

Lagrangian structure functions

Sp(7) = (((t + 7) — v(t))P) ~ 7P

”
ov(T) ~ du(r) T ~ 5u(r)
r— Ar u — A" T AT

Lagrangian exponents can be predicted from the Eulerian exponents

Borgas, MS. 1993
| error due anisotropic effec DNS —e—
Ce(p) =infy [ph+3 — D(h)] DL (h)
: ph+ 3 — D(h
Ce(p) = Co(p) = infp [ — ()

31



Intermittency and coherent structures
Sa(1) = Sy (7))

F(r) = SQ(T)CL(T)_2

3==Gaussian

~ dlogSy(7)
- dlog$,(7)

a(t) can be considered as a local measure
(in T) of intermittency

plot from E. Calzavarini Effects of vortices on intermittency behavior
_ T _
MIM’ Outside
| L, Hin 1 . -
o ,,q,.;ﬁi'. vortices anomalous scaling in
BN the inertial range
trace
Inside
vortices

J Bec, L Biferale, G Boffetta, M Cencini, S Musacchio, F Toschi 2006
R Benzi, L Biferale, E Calzavarini, D Lohse, F Toschi 2009

L Biferale, G Boffetta, A Celani, A Lanotte, F Toschi 2005
32




Theoretical prediction of the MF for different Reynolds:
intermittency shows up before scaling.

dlogS,(r)
r) =
dlogS,(r)

¢-® l'--o--o._: oeo o0

Benzi, Biferale 2010
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The inertial properties of turbulence (i.e. the function D(h)) are able to explain
quantitatively the increase of intermittency observed in the dissipation range.

Vortices appear to be relevant in the dissipation range, although their statistical

properties are constrained by the inertial range dynamics and do not affect
anomalous scaling.

dlog$,(7)
T) =
dlog$S,(7)

—8- EXP1Re, =124 —*— DNS1 Re,= 140 *~ DNS4 Re, =600
—— EXP2 Re, =690 —©— DNS2 Re, =320 —&—- DNS5 Re, =650
—— EXP3 Re, =740 —%— DNS3 Re, =400

Major international effort, Arneo
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What did we obtain?

Open questions:

— we still cannot “prove” the existence of viscous anomaly in the Navier-Stokes
equation, although we have a deep physical intuition on why it occurs
(breaking of lagrangian trajectories);

— we are not (yet) able to compute D(h) and/or the anomalous exponents (maybe
easier than the problem of viscous anomaly);

35



What we get (A LOT!)

1. we have a consistent way to describe turbulence both in the inertial range
and in the dissipative range (independent on the existence of vortices or
other coherent structures);

2. the multifractal function D(h) is able to predicts (so far) all the scaling
properties in r or Re for quantities which are invariant under the same
group of transformation of the Navier-Stokes equations

3. we know how to estimate finite size effects in Re and we have good
evidence that D(h) is universal;

4. the statistical properties of fturbulent fluctuations are independent on the
large scale forcing and on the detailed mechanism of energy dissipation
(universality);

5. some of the above results can be generalised for non isotropic forcing;

36



How can we use our results?

— improvement of numerical schemes for realistic applications (machine
learning approach?);

— basic understanding of furbulence effects in many scientific problems:
® statistics of non inertial particles;

® turbulence effects in population dynamics and evolution
(phytoplankton) in the ocean;

— we can explore similarities and/or differences (if any) for fluid turbulence
with different physical properties (incomplete list):
® superfluid turbulence;
® magnetohydrodynamics;
® complex fluids (for instance two phase flows, fluids with polymer-...)

® geophysical flows (turbulence in stratified medium, rotating
turbulence...);

® |ooking at the above problems we may eventually understand how to
compute D(h);

37



Focus of the second talk

We consider three different problems:

1) large scale reversal in turbulent flows and in particular
magnetic reversal in dynamo

2) how we may obtain something non trivial using new development
in machine learning

3) how turbulence may be used to understand some basic
properties of avalanche dynamics
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The case of magnetic reversals in the dynamo

PRy :
Dyii + i e Vii = B e VB — 719 +vAi  +forcing
0;B + e VB = B e Vi + v, AB

Experimental results

lime |s 2880

NIT N7l | I ¥

300

mwm W W

~‘ hmnmm mm'

ol [ B n

Maqnetic Field (gauss)

-300 L
95
‘-‘v‘w,.'- r‘!“‘ “,‘ LA"",' | 5 O A AL AT LY [ ,ll“p“"“ | ‘1. ""f' A “’P —\!
A H‘M ,WV’T’;"%' j‘”‘“ M ‘.;yl . un-w

55 1
0 150 300 450 600 750 900 300 340 380

Time(s) Time(s)

Fig. 3: Magnetic fieki measured mside the fow vessel, by a 3-dimensional Hall probe. No external magnetic Geld s applied,

other than the ambient Beld, whose amphitude is about 0.2 gnuss across the measurement volume. The temperature of the outer

A copper cylinder 8 T" — 123 °C. (Main): Time evolution of all three magnetic field components. The main component (red) is

I the amimuthal cne. Note that all components decay to zero at a reversal. The bottom graph shows synchronous recordings of
ar e Scale I I I eChanls I I l Or the power driving the flow. (Right): detail of the time series of the main magnetic Geld and smultansous power consumption
(arrows mark the synchronous events). (Top): Chronos of the magnetic ficki orientation, white for a positive direction, black for

the negative direction, for 2 suocessive recordings 900 and 1800 seconds long (separated by the shaded area, the first sequence

correspondds to the main graph). In this regime, the von Kdrmdn flow s driven with counter-rotating disks at frequencies

“turbulent noise”’? e




What can we learn using a simple approach?

There are two important numbers in the systems Re = UL/v and Ren = UL/vn. Geophysical

dynamo are believed to occurs for Rem <<Re and for Re>>1: very (!) difficult problem for
direct numerical simulations.

To make progress we (RB, JF. Pinton 2009) use a simplified approach:
the vector fields u and B are replaced by “shell variables” U, and B,
kn = 27, n=1..25. U, and B, are complex numbers which satisfy the equations:

(P (u,u) — P,(B,B)) — l/kiun + fn .

| %q)n(u, B) —» —ueVB
(@, (u, B) — ®,(B,u)) — vmk2 B, ,

where ©, is a non linear operator which (for v=vn=0) satisfies the
requirements of energy and cross-helicity conservations.

P (u, w) = knt1[(1+ 0)Untowy g + (2 — 0)Up 1 Wnyo]

+kn[(1 —20)u;, _wni1 — (1 +6)unprwy,_4]
+kn—1 [(2 _ 5)un—lwn—2 + (1 _ 25)un—2fwn—1] ’ (3)




We assume a saturation in the large scale magnetic field and B;=0
(geometry constrain on the largest scale)

dBy i

— = 3(®2(u, B) = ®2(B,u)] — an B3 — vk} B>

Bl %[@2(% B ®.(B )

This quantity represents the non linear interaction due to larger (n<2)
and smaller (n>2) scales. Also we expect, for small enough vm, that

dynamo occurs. Thus we expect that “on the average” Fz(u,B) represents
an instability for the amplitude of the shell B:

H {0 8] =005 S i)

where B>0 is the instability and f(t) are fluctuations (eventually strong)



The behaviour of B, can be argued to satishies approximately the
equation

dBb
— = BB2 — an B} — vmk3Bs + (1)

We now understand the effect of the term a,, B3

This term breaks the rotational invariant in the complex plane Bz= B:-+B:;

Rotational invariance is preserved by the non linear interactions (the
term proportional to ).



We are assuming that the large scale magnetic field B2 reaches a
saturation for Bz ~ O and finite value of Bz (positive or negative).

This conclusion can be reached by looking at the equation for |B;|2

d’BQI2 2 9 9 5 ; .
o :6’32’ —am’32’ (BQT_BQi) —yme‘Bz‘ e
Neglecting the ...... terms, equilibrium is reached if

B — am (B, — BY;) — vmk; =0

3 1/2
This implies, for small v, B2; ~0 By, ~+ {—}
Am,

This is a "typical® argument obtained by using the theory of dynamical
system and in particular bifurcation theory. It can be generalised and, in
some cases, it can be proved to be rigorous.



Results from numerical simulations with Re=107 of the full non linear model

The equilibrium of B2- depends on the turbulent energy transfer from
the velocity to the magnetic field: STATISTICAL EQUILIBRIUM

5 I8 A i g e i
Jr LWJ vm=0.00028
1.5 Mg Pl )

10000 20000 30000 40000 50000 B0000 70000 80000

vm=0.00026

W

[ i

it Bipol b W'ﬁﬂh\a"l’r bl

10000 20000 30000 40000 50000 BO000 70000 20000

vm=0.00024

10000 20000 30000 40000 50000 B0000 70000 80000




We can approximate the dynamics of Bz with the “standard” prototype
model borrowed from dynamical system:

dB
d—t2 — B (D5 — Do) + «/edWV
TIORA ! J
Double well
potential
ik R A ul
]l MR L L L Ll
Nonlinear turbulent
simulations
vmn=0.00026
[ (1]

A

L Uil T
10000 20000 30000 40000 50000 60000 70000 80000




Since the equilibrium are “statistical equilibrium”, their values change when an
external forcing is applied, i.e. there is a non trivial response to external

perturbations. This is not true for the simplified approach!

A simple example

d?f?“ — BB Bl Aot S e i)
dB; &
£ %[(I)Q(u, B) — ®3(B,u)] — am B3 — vy kiBs + Asin(wt)

%(@n(u, u) — ®,(B, B)) — vkiu, + fn ,
plus the full non linear model

L @a(,B) ~ u(B.w) — 2B,




The equilibrium depends on the fluctuations around it (very complex situation) for
the full non linear model. The external forcing changes the equilibrium and the

fluctuations !! This is not true for our “simplified” model

A=0.08. nonlinear mhd Full non linear model

Ay ”'ﬂrﬂ" " W
71 —L-l vm=0.00026

b/ M/J ‘,«‘ws‘w\-‘

20000

ol A=0.1, double well [\’ﬂ Slmple dynam|ca| model
Different response functions

for the same external
forcing !

hr\’\». “v\').IJJ L'N‘%’\"-V\-""w\_.‘lkﬁ 4&‘\,1\‘\.‘W'v Nh"‘f\dw\

20000

In this case, a dynamical system approach fails to reproduce the dynamics.
This is a "generic” features in many complex systems.



Machine learning and turbulence
A Corbetta., V Menkovski.,, RB.and F Toschi, Science 2021, in press

Velocity experienced by a lagrangian particle.
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1 eddy turnover time <5U(7‘)2> = AeT T > Tp
(bv(T)?) = Bv—*r? T< T

The constant A and B and the
exponent a are known



—

Machine learning
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Not surprising. Upon averaging over many
validation test, we obtain the result are good !
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validation &
test o
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The “standard approach”.

Let Re the Reynolds number of our system. In order to compute Re given the
velocity signal we can proceed as follows

1) comput 1 ) 2
g (B g

2 2 b
We assume to know both vims and L. The knowledge of v is equivalent fo the
knowledge of Re
The average <...> is done over several eddy furnover times:

1 1 Where C;is the value of
(o) = Nzi C'=(C;) = NZ’L’CZ' "C" averaged over 1 eddy
turnover time.

2) From the turbulence theory we know (' = DRe“

where D depends on the geometry (it is supposed to be known) and o can be computed

using the multifractal theory. The error of Re depends on the error on C and it small
for N large enough.

For a flow at Re=10% and eddy turnover time 1 sec,
after 5 minutes we reach an accuracy of 30%.
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Suppose that we use the previous procedure with only 1 eddy turnover time, N=1

C; Rep
C  Re®

where Rep is the “predicted value” of Re with just 1 eddy turnover time.

From each eddy turnover time we obtain different values of Rep because of

fluctuations . o
Rep = Re T multifractal fluctuations

Reg‘
— Reaz’ —

Re®

ai are fluctuations around « due to the fluctuations of the dissipation scale

Pla;] = Re blei=a)® — exp[—b(a; — a)?*log(Re)]

Simplified multifractal (lognormal) pdf for a; b<1



We can now compute our error over 1 eddy turnover time

Pla;| = Re blei=a)® exp[—b(c; — a)?log(Re)]

N 1
Vilai —a)?) =0 = \/le()g(Re)

Re? Re
p o —Q Pl _— o
i Re * a log < Re) (a; — a)log(Re)

£ = log <R€p> _ T alag(Re)

Re Q

log Re rror over 1 eddy
0§ ~ _ZOQ(RQ) ~ a\/ 2(b ) :urzovoere’rimzs
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We can now compute our error over 1 eddy turnover time

55 ~ glOg(Re) N l\/lOQ(Re) error over 1 eddy
Qo

o 2 turnover times
1/2
5 1 |log(Re) error over N eddy
SN~ o | 9bN turnover times

An example. For Re =105 0§ ~ 5

For a flow with eddy turnover time lsec, after 5 minutes we have d0{ny ~ 0.28

Re
0 (—p> ~ €%V~ 1.32 (30% accuracy)
Re )

Using 1 eddy turnover time we have

Re, 5¢ 5 % ~ 100
5(@)”6 <Re

How does the machine learning perform?
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Results from 1 eddy turnover time from machine learning

1.0 - 1.0 |
Vprea| 0.8 - (@) 0.8 - 4 / (o)
r Vy 0.6 - 0.6 - from structure functi
rue 04 - 04 - urc runction
0.2 - 0.2 -
0.0 Ll L 0.0 el
103 10° 10° 103 10° 10°
Vpred/Vtrue Vpred/Vtrue
1.0 - 1.0 -
p[”pred] 0.8 - (©) os ] /i ©@
Virue 0.6 - 0.6 - ng?
0.4 - 0.4 {1 ¢
0.2 - 0.2 - Eﬁg
0.0 e 0.0 j DT
10-% 10° 10° 10—% 10° 10°
Vpred / Virue Vpred / Vtrue

Using machine learning (pattern recognition) we obtain error of 10% !
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NOTE: machine learning was trained by using signal for different viscosity using a

shell model and the velocity signal

U(t) = X, Real(u,(t))

which is known fo behave as a lagrangian particle.

After training, machine learning was applied to data from DNS simulations.

103 10° 10°

Vpred / Virue

G v

G

SN0 O

SN =00 O

103 10° 10°

Vpred / Virue

| (d)
‘l

."l

1073 10° 10°

Vpred / Vtrue

| shell model
! |
. %

DNS Simulation
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Why machine learning is performing so well?

A tentative explanation.

Machine learning uses pattern recognition algorithm able to “learn” small fluctuations
at different time scales and their correlations within the signal.

This is equivalent to “learn” the multifractal fluctuations in the inertial range and to
learn how they correlates at different scales.

/

Machine learning, in this particular case, is able to sample the multifractal “spectrum’
better then any naive statistical approach based on “standard tools”.

More work on this interpretation is needed.
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Avalanches in turbulence
1. Castaldi, RB, F. Toschi and J. Trumpert, in preparation.

Let us consider a shell model of turbulence.
Kn = 2" Ko — u, complex variable

non linear interactions with required invariants and scale symmetry

dun, . ;
d_: = 1[aﬂ'ﬁ_+1 Un4oly g+ bkptingiu, 4 a=1l, b= -0.4, c= -0.6
_E'I"n—lun—l un—i] _ I’“kiun T fﬁ- ~
Let chose a particular form of f, fi=
E=3,|u,l’ energy

P=%,|fou,| =4F
Rate of energy input

€ — Vznki‘un‘Q energy dissipation
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— = P — E(t) rate of energy dissipation is time dependent

if e(t) < P — Cif > (0  The energy grows in time

if e(t) > P — 0;—? < 0 The energy is dissipated
0.45

:irjs:;DgZ’rion “Ar E(t) -

0.3 | _
0,3 | -
0,25 | -
0.2} _
0.15 | _
0.1 -
0,05 | L-m .

15000
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]
10000 11000 12000
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Time scale of dissipation much
shorter than the time for
energy to grow.
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Questions to be investigated: avalanche size, time between avalanches

These are general questions which are considered to be crucial in a number of
physical problems (not only turbulence!).

0.0815

0.081 =-=:

Kinetic energy

0.079 |

0.0785

0.0805 |

0.08 |

0.0795

t_i(k) = time at which dE/dt change
sign from positive fo negative

t_f(k) = time at which dE/dt change
sign from negative to positive

46.24 46.26 46.28 46.3
time
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To analyse the “avalanche” dynamics we must first define what we mean by
avalanche and which may be the relevant informations to be studied.

At this stage, our previous knowledge of turbulence is not relevant.

1) Size of the event AE(K) = E[t_i(k)]-E[t_f(k)]

2) Inter event time or waiting time between events tw(k)= t_i(k)-t_f(k-1)

0.0815 _
0.081 |- Fee E(Ri(k))

0.0805 |

0.08 AE(k)

Kinetic energy

0.0795 |

0.079 ¢ = SR E(.'._f(k))

0.0785 ‘ ‘ ‘ ‘
46.24 46.26 46.28 46.3

time 61



1) Size of the event AE(k) = E[t_f(k)]-E[t_i(k)]

2) Inter event time or waiting time between events tw(k)= t_i(k)-t_f(k-1)

Then the basic question concerns the probability
distribution of P[AE(K)] and P[tw(k)]

In seismology P[AE(K)] show a scaling behaviour known as the Guttenberg-Richter law.

For random uncorrelated processes P[tw(K)] is a Poisson distribution.
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Both probability distributions of size and inter event time are
scaling functions of their argument !

10+1 E T T T T T TTT T T T T T TTT T T T lIIII| T T T I: 10+1 F T T TTTTTT T T TTTTTT T T TTTTIT T IIIIlII|

= a P(ty) 1 1 b P[AE] -
10+O \ = | :

- : SN

C ] 10,,_0 | N __

L . - \ 7
107 N\ E TN -.35

: \; ] i . 1
102 | 5* - >*\

- : 107 | S -

B S -1.65 ] - ~~<

i '<< . ] N
10° | A E B

- N ]

5 N ] -

4l N ] 102 | _

107 | S E

i N : i

B ; 4
10° | N _ - _

: N ] 3

- N\ . 10 3 — E
10° \
10-7_ | P T P | ! L1 bl ! i i " L ||_ 10-4 P T Y (O N I A PO " VY N AN NN AT A N PO AT I O P YT 1 .lu

107 1072 1071 10+0 1077 106 107 104 107 1072 107! 10+0

inter event time t, size

Scaling may not be so surprising !! After all we are looking at a furbulent flows where
energy dissipation shows non trivial scaling properties in space (i,e, kn) and time.
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There are no correlations between size and inter event time

A non trivial observation
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10 . | | | |
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A closer look to P[tw].

AE is defined between some minimum value AEy and some maximum value AEm

Let us now look at the inter
event time between events

whose size AE is larger
than some threshold AE_t

Kinetic energy

0.0396 |

0.0395 |

t3

0.0394

9.62

time

9.64

9.66

9.68

The we can look at the probability distribution of tw in the “"coarse grained” signal:

P[tw|AE>AE__1]

65



The non trivial results is that P[tw|AE>AE_1] does not change its functional form!

1O+2: T T T T T T T T T T T T T T T T T R
AN Ptw) —— | Probability theory
RN Pllsize)leg=2e-4a LI | tells us that there
o0 | N Pllsize)lo=5e-4A | exists non trivial
; . P(tsize)|E=26- ] :
: N (tsize) lEg=2e-an correlation among tw
i -.'..3.'-‘?7-}%%(5??*" I:)(J[size)|E0=5e-3A
¥ F g AN ’C"‘Sg.éy\ P(tsize)[Eg=2e-2a <
102 F QL@%‘ slope =1.65 — - - -
= AE_t is changing by 2
10 L[V i
| order of magnitudes.
100 I
i [ S
<:?‘j
D
10-8 . M I I . M P P P . . A P
104 10°® 1072 10 10+0

inter-event time t,

A similar effect is also observed in earthquake dynamics (Corral 2004).

New and non trivial physics to learn? 66



Thanks for your attention
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