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SUMMARY: | would like to describe how fluctuations, usually
observed in the interplanetary space, can reach small scales thus

dissipating energy in a collissionless plasma

1. Fluid turbulence presents
some problem;

2. Magnetic field add some
annoyance;

3. In Space Plasmas, both 1.
and 2. add a lot of
contradiction and
confusion.

| was sitting at my desk looking at the topic of my lectures, at the
wide, sometimes confusing and contradictory literature ... and |

sensed an infinite scream passing through the universe ...
paraphrase by E. Munch, 1893 2




A peculiar stochastic process: strange mixing
of order and chaos

Turbulence is far from a sequence of
random numbers with a well defined
spectrum and uncorrelated phases.
You cannot reproduce a “turbulent field”
putting at random sand on a table and
collecting snapshots!

Main features:

1) Randomness both in space and time

2) Turbulent “structures” (eddies) on all
scales

3) Unpredictability and instability to very
small perturbations




Details of the turbulent motion are unpredictable,
but statistical behaviours are reproducible
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The Kolmogorov energy
spectrum can be observed
almost everywhere in
turbulent flows

E(k) ~ k—5/3

The -5/3 scaling law within the
inertial range, rapidly becomes
a distinctive feature of
turbulence.
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The interplanetary
space is
permeated by the
solar wind, a
supersonic plasma
flow coming from
the exterior of the
Sun (solar corona).

Spacecrafts
represent local
probes in the solar
wind. They
detected high
amplitude
fluctuations of
plasma
parameters within
solar wind.




Radial coverage of spacecrafts
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Actually two kind of wind streams are observed, FAST streams
and SLOW streams (coming from different sources)
superimposed to fluctuations with different characteristics.
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Some differences between fluctuations

in fast and slow streams
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Fig. 3.12 High velocity streams and slow wind as seen in the ecliptic during solar minimum

FAST STREAMS:
Enhanced
temperature
fluctuations




First observations of spectral properties of
magnetic fluctuations indicated the
existence of a Kolmogorov-like energy
spectrum spanning almost four decades.
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Spectral properties are detected by time
series from the Mariner 2 spacecraft

AB_ = B(t+7)-B(?)

(AB)=2[ P(/)g(fo)df

P(f)=/f""

Using the Taylor hypothesis the
spectra are interpreted in terms of
wavevectors scaling law

E(k) ~ k—5/3

This was enough to frame
fluctuations in SW as an
example of fully
developed turbulence ,



power density

trace of magnetic fied spectral matrix
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Despite some
theoretical
complications
(inhomogeneities,
compressibility,
anisotropy) we have a
lot of convinging
evidences of
Kolmogorov-like power
spectrum for magnetic
fluctuations:

Low-frequency
fluctuations in solar
wind can be described
in the framework of
classical turbulence
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The solar wind as a wind tunnel
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In situ measurements of high
amplitude fluctuations for all
fields (velocity, magnetic field,
temperature...). A unique
possibility to measure low-
frequency turbulence in plasmas
over a wide range of scales.

Lecture Notes in Physics 928

Roberto Bruno
Vincenzo Carbone

Turbulence

in the Solar
Wind
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For a review:

R. Bruno & V. Carbone, Turbulence in the Solar Wind
Lecture Notes in Physics 928 (Springer, 2016)
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Low-frequency plasma fluctuations are described by MHD
equations. Turbulence is the result of nonlinear dynamics

9
a_l: +(u-V)u=—VPy +vVu+ (b-V)b

b 2
+@-V)b=—(b-V)u+nV-b.

MHD equations couple velocity
field fluctuations and magnetic
fluctuations, share the same
“structure” with Navier-Stokes
equations = quadratic
nonlinearities vs dissipation.

Elsasser variables define

dt
b = B/\/I{H_p Incompressible MHD
)z L0z o
.d; + (SJ* ()13) = —VP+vV?z-
B.
:zi = v; —Z
d7p

pseudo-energies

)
z" *;, <_* zZ

Nonlinear interactions in MHD happens only between fluctuations propagating in
opposite direction with respect to the large-scale magnetic field
- slow down of nonlinear interactions with respect to fluids: eddies move apart.
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A further complication: u-b correlations
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Nonlinear
interactions might
be damped during
these periods.

.| Does this
2 | means no
turbulent
= cascade in fast
— | wind?
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Phenomenological arguments leading to Kolmogorov’'s
spectrum (from MHD)

Oy ,]i + .3,?{),,3? = 0, P+ vd? [i

In the limit of zero viscosity equations are SCALING

INVARIANT, say they remains the same (for any value of h)

for the following scaling transformations

Az 7 (x+r)-z" (%)

=) — =~ ; Are scale-invariant
r r
We expect scaling solutions where Azi ~ ]/'h
r
Let us consider the dissipation . (AZi
rate for both pseudo-energies & = i_r
(3Y)
The characteristic time (eddy- N r
turnover time) represents the ~ Typ = AT —>
lifetime of turbulent eddies r

Az

r=r'A

Zi — (Zi)'ﬂ«h

Characteristic
turbulent fluctuations
across eddies at the
scaler.
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Scaling invariance and statistics: fluid-like

+ 1= 13%h-1 The energy transfer rate is
E =€ A constant (Kolmogorov’s hypothesis) only when
h=1/3
Az* ~Az" =~ Au,
This leads to the Kolmogorov scaling law Ay = 7‘1/3
r
Second-order moment of fluctuations -
are related to the usual spectral _ B _ sinkr
energy density <[u(x +7) u(x)]2> - 2_[E(k)[1 - }dk
p _ o2/37,-53
<(A%) >= Cer ek ER=EK

) Kolmogorov scaling
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Phenomenological arguments for
magnetically dominated turbulence

When the flow is dominated by a (large-scale) magnetic field, there exists a
new physical time, the Alfven time, related to the sweeping of Alfvenic
fluctuations due to the large-scale magnetic field

N (AZ: )2 T is the time to effectively realize the cascade

v
Since the Alfven time in some case T, =—
is LESSER than the eddy-turnover . T, C4
time, nonlinear interactions are 7= Ty .
. T +
reduced because the cascade is A Ty =~
effectively realized in a time T: Az;

A different expression for the + (AZ: )2 (AZ,:T_ )2

pseudo-energies transfer rates E =

16



Kraichnan spectrum

+ + 4h—1
— '
E e A » A different scaling

The energy transfer rate is AM,, =V Iroshnikov-Kraichnan scaling
scaling invariant only when
h=1/4
' ' - + ' + /4 /4
Linear scaling for the p-th order <(AZ )p> =C (CAg )p 7P
moments r p

‘ <(Azi )2> — Cé (CAEi )l/2r1/2 = E*(k) = k32 A flatter spectrum in

: the inertial range

At variance with the fluid-like case,
here both pseudo-energies are E + ~ £ B
transferred at “the same” rate

DMV-80: An initial unbalance between both pseudo-energies is maintained by
the energy cascade. This should be enough to explain BOTH the existence of a
power spectrum and the presence of one single Alfvénic “mode” fluctuation.
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Data analysis and numerical simulations:
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Figure 2. Distributions of spectral indices for kinetic, magnetic, and total energies for individual snapshots in numerical simulations of MHD turbulence. Left plot:
balanced turbulence, 80 snapshots: right plot: imbalanced turbulence, 196 snapshots. The average spectral indices are indicated by arrows. Normal distributions with
the mean values and variances matching those of the data are also shown. 18



Yaglom’s law

An exact relation from MHD equations
similar to Kolmogorov’s 4/5-law
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An exact Yaglom’s statistical relation can be derived
from MHD equations

A statistical relation obtained from fluid equations (NS or MHD) for
the third-order moment of fluctuations, in the stationary state.

Two-points differences of

AZ Zi ;) = Z7 (i) Elsdsser variables

zj =a; +4;

Large-scale inhomogeneity Pressure anisotropy

| 3
0 v AT
or, (A4 (AZFAZT)) = —(ZT (0, +0a) (AZFAZS)) — 115 +
v wlazEazE) - 22 ()
J; | ! 300,
N
|
Dissipation

Pseudo-energy dissipation rate tensor
20



Assuming local isotropy and global homogeneity, finte transfer rate in the limit
of vanishing viscosity, after longitudinal integration, the equation reduces to a
Yaglom-like relation - a linear relation between the third-order mixed
moment calculated through separations along the longitudinal (streamwise)
direction, and the separation itself.

. 5. 4 o3 4
(AZF|IAZE) = —— ™t (Auf) = — et
+) L
MHD turbulence Fluid turbulence

(Kolmogorov’s 4/5-law)

Note that the Yaglom law for MHD looks similar to the
Yaglom law for a passive scalar in fluid turbulence

. . . The passive scalar is
UP(r,t) —u(nt) - Vo(rt) = xAg(r,t) + f(r,t) advected by the velocity

field
(150 #][5:91?) = —3¢7
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The Yaglom relation is satisfied by most datasets of

r

<Az |AZ?> [(km/sec)’]

-
o

Ulysses spacecraft during fast streams

Although the data are
somewhat contaminated by
the inhomogeneity and local
anisotropy, the observed scale
collapse onto the Yaglom law
appears very robust in most
periods of Ulysses dataset.

!

The first REAL evidence
that (low frequency) solar

wind can be described in
the framework of MHD

turbulence

L. Sorriso-Valvo et al., PRL (2007)
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From Yaglom’s law we can estimate the values for the
energies transfer rates at different heliocentric distances

Ulysses, 1996, hourly means
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As a comparison, energy transfer rate per unit
mass in usual fluid flows is about 1 + 50 J/Kg s

Roughly of the same order
of magnitude, about few
hundred J/Kg sec.

FIG. 2 (color online). Hourly averaged
quantities are represented as a function
of the flight time of Ulysses. The top
panels represent, respectively, the solar
wind speed, the magnitude of the mag-
netic field, the particle density, the dis-
tance from the Sun and the heliolatitude
angle. In the bottom panel are plotted the
values of € . calculated through a fit
using the relation (3) during the periods
where a clear linear scaling exists.
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The problem of solar wind heating

Solar wind model - Adiabatic expansion,

temperature should decrease with T(V) ~ 7'_4/3
helioscentric distance (radial cooling) with —

a typical scaling with dfistance

Spacecraft measurements = actually T(?‘) ~ I/'_§
temperature decay is slower than

expected. Conjecture: Turbulence .
should heat solar wind. 5 = [0791]

Estimate of the heating rate needed to heat the solar
wind (say to obtain the observed small radial cooling)

Vasquez et al., JGR 2007
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We can ask whether the estimated turbulent energy flux

towards dissipative scales, from Yaglom’s law, is enough
for solar wind heating

A good agreement of the
radial evolution of
dissipation energy rate
measured from Yaglom’s
law, with the model of
heating rate needed to
explain the slower
cooling of solar wind,
with respect to adiabatic
cooling.
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Heating by turbulent energy means that energy
MUST be dissipated in some way at small scales.
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Intermittency

The second-order moment (power spectrum) does
not play any privileged role. Turbulence in Solar
Wind shares anomalous scaling laws with usual fluid
flows for high-order moments of fluctuations



Scaling exponents

Despite the Yaglom-law and a 5/3-spectrum are
observed, experiments show a strong departure from
the Kolmogorov’s conjecture for high-order moments

Sp(m) = ([u(t +7) —u(t)]™) ~ 7on

2.5

2.0 1

1.5 1

1.0 5

0.5 4

N I N I T I T T T T T T T I T N

1 Wind-Tunnel data

4

—&— Velocity
—&— Temperature (passive)

0.0

1) u along the main flow;

2) Taylor hypothesis to
transform length scales in
time scales

The departure has
been attributed to
INTERMITTENCY
in fully developed
turbulence

Fluid flows: Intermittency, measured as the distance from
the Kolmogorov’s linear law, is stronger for passive scalar
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The same behaviour in Solar Wind turbulence

2.2 T . T . r . r . | |
2_0.‘ —®— magneftic slow i
18 ]| —®  moagnefic fast i Solar wind: Intermittency is
7 | e A ~~* ] stronger for magnetic field than
14 . ' * e 1 for velocity field. Scaling laws for
5] ~e—* | velocity field in the solar wind
C/C, 1o 1 coincide with that observed in
08 - i fluid flows (through extended
0.6 - i self-similarity)
04 4 i
o2 Q0 - o ’
1 2 3 4 5 G
n , . . Fas'fWind at0.9 AU |
THIS DOES NOT IMPLY THAT THE s Enacan e
MAGNETIC FIELD IS A “PASSIVE 1
VECTOR": statistics cannot prove, o
just disprove v 11 -
ol
Strong jumps of magnetic .,
orientation are responsible for 1
the strongest intermittency " 5080 ' " 50.84
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Comparison with velocity

fluctuations in fluid flows

4

Not reliable here

U -

10

15 20

25

A collection of
data from
laboratory fluid
flows (black
symbols) and
solar

wind velocity
(white
symbols).

Differences
only for
unreliable high
order
moments,
perhaps due to
different
geometry of
dissipative
structures.
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What is “intermittent” in turbulence

Natural variables: Au = u(t+T) - u(t)
Fluctuations at a given scale  Apg — B(t+T1) - B(t)
(separation time)

T=R1sec T=81sec l
T=11min 7=11min
au. =% W\MMMWWWWMWM

T=23h

2.0 22 04 326 2.8 33.0 o e i
DoY 1976 - Helios 2 data 32 ’ ° s
DoY 1976 - Helios 2 data

1) A random signal at large separations;
2) Bursts of activity at smaller separations
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Intermittency implies a departure from
global self-similarity (multifractals)

Stretched
exponential
PDF at
small scales

]

Gaussian
PDF at

large
scales

PDF(8B)

PDF(&B)

10k

10"

L

10k

0°F

4

PDFs of normalized
variables changes
with scale

AB,;

(AB?)

Probability of occurrence of
strongest events are higher

than a Gaussian

- Random fluctuations, with
highly correlated phases, are

present, they are an

unavoidable characteristic of

real turbulence.

Turbulence CANNOT be
described by a random

phase process
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The times between events
(waiting times) at the
smallest scale, are
distributed according to a
power law

P(At) = At

The turbulent energy cascade
generates

intermittent “coherent”
events at all scales.

Interesting! the underlying cascade process is
NOT POISSONIAN, that is the intermittent (more

energetic) bursts are NOT INDEPENDENT
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Wavelets and Local Intermittency Measure:
disentangle “structures”

Intermittency: the energy content, at each £(x) = \
scale, is not homogeneously distributed )=

0

> wap, ()

]=—OO 1=—00

2 L.i.m. greater than a threshold §
Jim. = ‘Wij means that at a given scale and W, = f f (X)l//ij (x)dx
L.m. = <‘ 2> position the energy content is greate. ~oo
W,
I

than the average at that scale
i l.i.m. larger
] than a gaussian
threshold

Complete signal 1

l.i.m. smaller
than threshold

Gaussian background Structures 3
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Conditioned structure functions
(using only the background) do
not show anomalous scalings!

Localized structures with an
high-energy content,
represent the main
ingredient for intermittency

Analysis of the magnetic field
fluctuations around isolated structure
allows to identify them.
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What kind of structures in MHD (1)

Magnetic field (7y)

100 —

A (degrees)

The component of the
magnetic field which
varies most changes
sign, and is almost
perpendicular to the
average magnetic field.

C(v, B)
o
|
0
o

-1

] )

120.158

Veltri & Mangeney, 1999
Bruno et al., 1999
Veltri et al., 2005

120.162
Time (days)

120.166

Identified as tangential
discontinuities (current
sheets). They are
spontaneously generated
at all scales inside MHD
turbulence by the
nonlinear dynamics.
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In MHD isolated structures are recognized as current sheets,
where a lot of physical processes occur: reconnection,
particle acceleration, magnetic annihilation, etc.

t=1000.000"",

Intermittent current
sheets are
generated by the
nonlinear energy
cascade and
observed both in
space, or better, In

120

110

SOB _
numerical

80 simulations at very
small scales.

190 200 210 220 230 240



What kind of structures in MHD (2)

Compressive
discontinuities are
sometimes observed.
P e SR S U " These structures can
be either parallel

Velocity Fluctuat.
T

b=
=
3 057 shocks or MHD slow-
P - mode (like) wave
g trains.
g
8 -0.5- ,

324.782 324.786 324.79

Time (days)-

Veltri & Mangeney, 1999
Bruno et al., 1999, 2001, 2003, 2004

Veltri et al., 2005 .



Anisotropy

Large scales in fluid flows are anisotropic,
Kolmogorov’s hypothesis K41 requires a return-to-
isotropy at intermediate (inertial range) scales.

The solar wind fluctuations are intrinsically anisotropic, a large
scale magnetic field cannot be eliminated through a galilean
transformation.

1) Polarizations anisotropy: the three components of fluctuations
have different amplitudes along different directions;

2) Wavevectors anisotropy: fluctuations in Fourier space depend
differently on the wavevector directions parallel and
perpendicular to the mean field.




Polarization anisotropy

Determine the eigenvalues and

SIJ = <BIBJ> — <Bl> <Bj> eigenvectors of the one-point

variance matrix

1) Ratios of eigenvalues - statistical properties of
anisotropy of magnetic fluctuations; Globally

2) Eigenvectors = three unitary vectors forming a

(minimum variance) reference system where one of A3 << /\2 S )\]
the axis is aligned along the direction of minimum

fluctuations.

S5 (Aty,11) = (BY (1)B” (1)) — (BY (1)) (B! (1))

Variance matrix computed on running averages of different
amplitudes, gives information both on the time evolution and

on the scaling properties of anisotropy »
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Eigenvalues of variance matrix,
as a function of time, at two
different scales

The scaling properties of

the eigenvalues are evident.

Burst-like behaviour of
anistropy at small scales.
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Pdfs of eigenvalues at a given scale

At=46 sec

One of the eigenvalues
sistematically smaller
than the other two:

Fluctuatons lye on a
plane 2 Magnetic
turbulence
approximately two-
dimensional, at
variance with usual
fluid flows.

0.1 1 10
100 '
10 At=46 sec
0.1 1 10
100
E At=46 sec
10 |
1
0.1

0.1
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0.10 _ SW — 2::.05.:;: - PDF’s of the angle between the
i — At=0.09 sec {1 minimum variance eigenvector
0.08L _ and the direction of the large-
A | 1 scale magnetic field, at three
0.08 E 1 scales.
0.04 F 1 Minimum variance nearly
T 1 aligned to the background
0.02 4% 1 magnetic field at large scale,
broadening at small scales.
0.00 [ T i o L A
0 20 40 60 80

At large scales fluctuations lye in a plane almost
perpendicular to the background magnetic field. At
smaller scales the plane changes direction continuously
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High-order polarization anisotropy

Compute the n-th order
variance matrix. Some out-

N - - \1 of-diagonal elements
Sarazwan(l) = ([Bay (r +1) | Ba, (T,)' contain only anisotropic
X [Bay (1 +1) = Bay(7)] - - - contributions, and can be
X [Ba,, (r+1)— Ba,(7)]). compared to diagonal
elements where isotropic
and anisotropic
contributions cohexist.
Aay -, ™ (I/0)"

S () = e ’
[1 + Bm tm (~l/77)2] Ca, .-

X [14+ Day ...a,, (I/Lo)|?Cotan ™™ .

..'an

Tensors can be fitted by a suitable analytic functional shape,

where the anisotropic scaling exponents can be recovered s



S;i(r)

Sifr)

10!
: Second-order structure tensor
: The contribution of anisotropic off-diagonal
? elements is not negligible for all scales, that
1] is the return-to-isotropy invoked by K41
? fails in solar wind turbulence
Fast Slow
3 Cayay, R=09AU R=09AU
4] Cex  0.66+0.03  0.60 %+ 0.02
10 Cuv 0.62+0.03 0.62+0.02
10! : Czz 0.66 £+ 0.04 0.57 +0.02
| . Coo(¥)  0.66+0.03  0.60 =+ 0.02
10° == | Cx=(*) 0.67 £0.03 0.59 4+ 0.02
: Co=(%¥)  0.59+£0.02  0.62+0.02
1071l Cozze 1194003  1.18 4 0.04
i Crzzz(*) 1.544+0.03 1.33 +£0.03
102 Cozez(*) 1.55£0.03 1.37 £ 0.02
. i * > fully anisotropic components
OTF Ll stow . .
S ] Differences among scaling exponents are small,
7 g S SN U S S the anisotropic contribution does not vanishes




Wavevector anisotropy

Single spacecrafts cannot be used to compute wavevector anisotropy.
The four Cluster spacecrafts have been recently used (k_filtering). Just
some wavevector scales have been investigated, depending on the

relative distances of the four satellites.

elliptic anisotropy E/E
100 L 1072
107°
0
107
-100L_. . 107°
—-100 0 100

0
——ik-c
ot A

Decorrelation time of
fluctuations, when they move
apart, depends on the angle
between the wavevector of
fluctuations and the
“background” magnetic field.
This time is shorter for
perpendicular wavevectors, that
is the turbulent energy cascade
is roughly realized mainly in the
perpendicular direction. 45



Elliptic anisotropy is observed

GSE coordinate system MFA coordinate system
BO

wz Lrad/\wem’)

Minimum power Maximum power
direction in the direction in the
perpendicular perpendicular

Narita et al. PRL (2010) plane plane 46



The dissipation of turbulent
energy

Once the energy is transferred to small scales, it
must be dissipated.

In usual fluid flows the dissipative term is at work
at small scales. In MHD turbulence (numerical
simulations) the situation is quite similar.
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Dissipation of energy in classical turbulence

When the dissipative time becomes of the order of the nonlinear eddy
turnover time, the energy cannot be transferred efficiently to small scales

We observe a depletion in the

energy spectrum starting at the
Kolmogorov’s characteristic scale

Viscosity at work The larger the Reynolds number

T T T T ™ 82 the smaller the dissipation scale

-1
k1 (cm™) 48



Dissipation of energy in classical turbulence
through isolated bursts: finite-time singularities

Dissipative structures are very localized both in
space and time (intermittency in the dissipative
domain). Energy is dissipated through isolated
bursts.

This process can be viewed as the generation of
finite-time singularites:

£ —1/342/3

'T[ ~ i =

Uy

* - j tot ~ E L= ’
{

Numerical simulation

The sum of eddy-turnover times CONVERGES as
the scale length tends to zero.

The energy is transferred towards structures of ZERO length in a
FINITE time, this should generates a singularity.
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Geometry of dissipative bursts

Intermittent dissipative structures:
Filaments in usual fluid flows, sheets in MHD flows

Dissipative structures near the wall

Current sheet
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Example of Solar flares: impulsive annihilation of magnetic
energy at spontaneously generated current sheets in a
turbulence inside the solar corona

c ; | \
1.0

i

W

i v
U.JJ !|~}~'Ul W\JL’J‘ WLWMJJV.,J_L&,UA» Wity ‘)’

2000 4000 6000 8000 10000
Time {min)

Hard X-ray ( > 20 keV): Time series of flare events
Intermittent spikes, duration 1-2 s,

E..x ~ 10%7 erg

Numerous smaller spikes down to 10%* erg (detection limit) »



Power law statistics of flares

10.0000 F~

1.0000 £

0.1000 F

Flare Frequency

1518 eventa
E Flat part: Slope —1.15 +/— C.04
F Steep part:

™TTT

ope —2.25 +/— Q.08

(RTTTIT EREN NI AR TTT AW T

0.0100 F
F Power — Exponential fit s
Powar—law index —1.09 +/— 0.03 3,
0.0010F Exponentlal eut—off 2100 +/— 10C s X e
0.0001 [ e D O P T
1090 1000 10CC0
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100.000 F
10.000 |
» F
o i
3 1.000 ¢
o :
= i
& OI00F 518 events
= Slope —1.59 +/— 0.05
0.010F
o.001 L o L U I YT

100 10C0 10000

Peak Count Rate (counts.s™)

Flare Frequency

107

1518 events

Slope —1.39

+/— 0.02

Total energy, separation times, peak energy and
(more or less!) lifetime of individual bursts seems

to be distributed according to power laws.

P(1.)

10% 107 108 10

Total Counta

10° 10" 10 10°
7, (hours)
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Same statistics for MHD simulations

and shell models

1) Total energy of bursts
2) Time duration

3) Energy of peak

4) Waiting times

10“—jfm1“n
107
€
(=
10%-
10°—
| | \
0.1 1.0 10.0
TL

P(e), P(p) and P(73)

10-10

0.1

1.0

ey p, TB

10.0 100
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What happens in Solar Wind

. Where does cascading turbulent energy go
on small scales in solar wind?

How is turbulent energy dissipated at
small scales, thus heating the medium?

At least four characteristic scales in plasmas (lengths
and frequencies): ion-inertial length (shielding of
protons to electromagnetic waves) and ion-gyration
radius (size of gyration of ions). The same for
electrons but at smaller scales (higher frequencies)



At scales lesser than the characteristic ion scales the MHD
approximation fails, solar wind fluctuations become kinetic and
cannot be described within the MHD framework: small scales fall in
the realm of plasma physics.

Mean-free-path of Spacecrafts probe a collisionless (or
the order of the maybe a weakly collisional) medium.
: Viscosity cannot be a real physical
Sun-Earth distance quantity and a V?-like dissipative term
A=1AU does not actually exist in space plasmas.

Three big questions rise

1. What we actually observe as “dissipation range” of solar wind
turbulence, at scales lesser than the inertial range scales?

2. What is the framework to describe fluctuations at frequencies
beyond the ion-cyclotron frequency?

3. What kind of process “replaces” viscous dissipation at small
scales to dissipate energy? -



Power Spectral Density (nT? Hz™ ')

A range of scales with a steeper power law

energy spectrum is observed

Injection Range
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109 AL

10%
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10°
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1074
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10~°

Cluster FGM (1 hour

ACE MFTI (58 days)
ACE MFTI (51 hours)
)
)

All is present here,
but viscosity

Inertial Range

f—5/3

Cluster STAFF-SC (1 hour

1073

104

Dissipation Range

f~| Fol3
.al)= "'.:

| E

break at the
proton inertial
frequency, or at
the proton
gyroradius, both
approximately
near 1 Hz

10°% 1072 107t 10 10!

Frequency (Hz)

How observations
can be interpreted
in terms of a
“dissipation range”
of turbulence?
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Linear plasma theory. The usual MHD branches (Alfven waves,
magnetosonic fast and slow waves) split into various branches of
quasi-perpendicular (anisotropic) propagating modes (lon-Bernstein,
Kinetic Alfven waves, Whistler, kinetic slow modes) .

Theoretical dispersion relations of modes

w IB2

IBL, KA
KS .
- Doppler shift o Doppler shift
[ KS
KA
S
A IB1
F
Kinetic modes
MHD modes
kion k kion k

Nonlinear dispersive effects on wave-wave couplings come into play:
Small scales should represent a dispersive/dissipative range due to
nonlinear wave couplings and collisionless dissipation. .




Dispersive effects: Electric field fluctuations dominate
at small scales with respect to magnetic fluctuations

™ S.D. Bale et al., PRL (2005)
i Evidence for
electrostatic
i K turbulence beyond
: L N the spectral break?
s 107
N Tk Magnetic
107 B fluctuations are
ﬂ “™Wg residual = weak
urs - . ‘ s wave turbulence?
0,001 0,010 0.100 g 10000

%P

iInertial range dissipative/dispersive range ss



log(EB)

Overall picture of fluctuations:

The energy cascade continues through nonlinear
coupling of kinetic wave-modes which open several
channels of energy transfer to small scales.

inertial range

dissipation range

kinetic
instabilities
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Assume that energy
damping is localized
on two main scales
for ions and
electrons.

Kinetic instabilities
can inject further
energy into the
system at ion scale
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Probability Density

TJ-p / Tilp

[T T e
104 10-3 1072 101 10°

i mirror- -2
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Bip

Departure from
temperature isotropy
constrained by kinetic
instabilities furnishes
evidences for residual
Coulomb collisions at
ion scale, for low
plasma beta

Kinetic instabilities at ion
scales are generated by
ion temperature
anisotropy, observed at
low plasma-beta.

Plasma beta represents
the ratio between kinetic

and magnetic pressure.

cn
OU




Lack of statistical universality in the high-frequency range,
spectral properties are related to the MHD energy cascade

ACE spacecraft

A~ T 1T T 1T T T T 1
T 3 -
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Broader distribution of observed
spectral indices in the high-
frequency range.

C. Smith et al., ApJ Letters (2006)
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A rough estimate of the energy cascade
rate of inertial range is directly related to
the steepening of the high-frequency range:
The higher €, the steeper the spectrum. ¢,



Where does MHD turbulence breaks down
In solar wind turbulence?

3 e The characteristic frequency break of
, U 2 the Kolmogorov spectrum depends on
o5 \ + |l the model assumed to describe small
A scale plasma fluctuations.
S | While the characteristic plasma
\ frequencies evolve with distance
15 | i from the Sun, the spectral break
'\ frequency looks to be constant.
b\ |
\, —> Break neither directly related to
05 \“‘i\ | proton inertial length nor to proton
Tz gyroradius. Perhaps affected by
s O 0 O —Hoe—a anisotropy.
00 { 2 3 4 5

S. Perri et al., ApJL 2010 62
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Observations of strong intermittency

beyond the ion scale

O. Alexandrova et

al., ApJ (2008)
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eck endin
PRL 103, 075006 (2009) PHYSICAL REVIEW LETTERS 14 AUGUST 2009

Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence

K. H. Kiyani,"* S.C. Chapman,l Yu. V. Khotyaintsev,2 M. W. Dunlop,3 and F. Sahraoui*?

At variance with inertial range,
intermittency observed at small-
scales seems to be not a
universal feature of turbulence.

Sometime, no intermittency is
observed at small scales. Scaling
exponents look regular
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All kind of universality is lost at small
scales, different samples give almost
different results. What kind of plasma
process generates magnetic fluctuations
beyond the ion scale?

How the turbulent MHD cascade
continues beyond the ion scale?

1) Wave-wave coupling channels;
2) A different kind of strong MHD-like
turbulence.
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Hall MHD turbulence: the simplest way to
reproduce dispersive effects

A conjecture: At the proton cyclotron frequency there is a breakdown of the
usual “alfvenic” turbulence, and a new kind of turbulence appears

0B
WZVX(VXB>—

| 1 L,
_ _ R = — !
RiV X (p(V x B) x B) v,

Hall term

A breakdown of the scale-free features, the Hall term introduces a characteristic
scale. Two competing non-linear terms: energy is transferred on times of the order
of the eddy-turnover time up to the Hall scale. At this scale the energy cannot be
transferred on the same time, but on a new characteristic time.

- - sz s TH ~ ? E(k) ~ k—7/3
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Hall MHD vs. MHD: energy spectra from numerical

simulations
Velocity V Magnetic field B ==
Slope = 7/3
o' | L L A

10710

10*15

C(V-B)

Hall MHD C(V-N)

| | | | | | L
20 40 70100 200

NN N N N [N N N N N N N NN

N
~
~
(o]

Density N ==
S. Servidio et al., (2007)

1 T T 1
7 10 20 40 70100 200

Alfvenic turbulence becomes dispersive. The spectral dynamical alignment
between V and B is lost in favor of a spectral correlation between N and V.

The Hall effect causes a breakdown of
Alfvénic turbulence to a “Magnetosonic
Turbulence” — enhanced role of density
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Hall-MHD turbulence generates anti-correlated
fluctuations between density and magnetic fields

A cut along x
at a fixedy

density

/

2.0

1.5

N T T I Y A
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“Travelling eddies” (soliton-like) within
magnetosonic turbulence sometimes observed
by Cluster spacecrafts

O.3|||I||||I||||I|| 50
40 prbsssEtbbaa, ?‘4070‘(0».” .
~ A +t
-
30+
|_
c
20
10+
O L L 1 1 L L 1 1 1
T — 02:33:00 02:33:20 02:33:40
Cluster: 2001-11-25 Time UT
0.3 0.4 0.5
y FIG. 1. A large scale soliton observed by Cluster spacecraft
. o C2 (dashed) and C4 (solid) in the total magnetic field. Marked
Density and magnetic field: a curve shows fit of by sech?[(r — f)/81] with by = —33 nT and
ut Ili ” t t tt 8t = 4.4 s. The soliton moves with velocity uy = 250 km/s
ravelling structure at two and has a width of 2000 km. The position of Cluster satellites
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Small scale structures appears in Hall-
MHD as current sheets or compressive
structures. A new kind of turbulence?

Current sheets Strong divergence
of velocity field

Tor0|dal Magnetlc Field

of velocity field
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Gyrokinetic model a framework for
wave-wave coupling, no fluid-like

Expansion of the distribution function of particles at the ion
scale (ordering through a small parameter)

fs(t,r,v) = Fo;(v) — T Fos(v) + hs(t, Rs, v, vp).
Os
Response to Gyrocentric distribution
Maxwellian P . function in terms of
maxwellian

average gyroradius for

(dissipation) particles

- The equation is supplied by equations for electric and magnetic fields
- Fokker-Planck collisional operator at the ionic scale to reproduce residual collisions

‘ TQ;(sz ISBI?-
W= |[d dv —— .
[ ' (Z/ ' 2 Fos - S

A generalized energy is conserved, thus generating cascades in the phase space
Entropy and magnetic energy 72




Gyro-kinetic simulations

Couplings of Kinetic Alfven Waves (KAW) or Whistlers _7/3
could generate the dispersive (anisotropic) spectrum kl

10

Enhanced
electric field at
small scales (red

'lllllll L

107! & 3 line), enhanced
1 role of
1072 | { compressibility
(purple line)
10-9 |

104
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Different scenarios for this range:
weak/strong turbulence depending on the dispersion relation
of kinetic modes used to describe fluctuations

1) Fast/Whistler mode turbulence or strong whistler turbulence starts

at the proton inertial length.
Leith (1967), Zhou & Matthaeus, (1990), Biskamp et al. (1996, 1999) Stawicki, Gary & Li,

(2001), Gary et al. (2008), Gary and Smith (2009).

2) Compressible or incompressible Hall MHD turbulence naturally
results in a steepening of the magnetic turbulent spectrum at the Hall

frequency, and enhanced compressibility
Gosh et al. (1996), Servidio et al., (2007), Galtier, (2006), Galtier & Buchlin, (2007),
Alexandrova et al., (2008).

3) Nonlinear coupling of Kinetic Alfven Waves. Essentially transverse
to the ambient field. At the ion Larmor radius, the Alfvenic cascade

continues through the KAWs branch.
Howes et al. (2006, 2008), Schekochihin et al. (2009) -



Observations dont help us to clarify the origin of the
dispersive region — the description of the
dispersive region remains somewhat confusing!

“At our present level of understanding, the best we can say is
that quasi-parallel whistlers, quasi perpendicular whistlers, and
Kinetic Alfven Waves all probably contribute to dispersion
range turbulence in the solar wind.

Thus, the critical question is not which mode is present, but

rather, what are the conditions which favor one mode over the
other?”

Conclusions by P. Gary & C. Smith, JGR 114, A12105 (2009)

Looking for “modes” in solar wind turbulence (at
Kinetic scales)? Dispersion relation requires more
than one satellite, then it can be investigated using
Cluster satellites and k-filtering method of analysis.
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Dispersion relation using 4 Cluster satellites

1.0F ————
0.8}
0.63
0.4}

( \ /e
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0.2 F

0.0

—02E . ...,

FIG. 5: Observed dispersion relations (dots), with estimated
error bars, compared to linear solutions of the Maxwell-Vlasov
equations for three observed angles Oxp (the dashed lines are
the damping rates). The black curves (L, ) are the proton
and electron Landau resonances w = k| |Vin, ., the curves ()
are the proton cyclotron resonance w = wei —kyVin, (the elec-
tron cyclotron resonance 1s also plotted but it lies expectedly
out of the plotted frequency range).

F. Sahraoui et al. (PRL,
2010) compared the
observed dispersion relation
with linear solutions of
Vlasov equations.

The best fit seems
to be obtained for
KAW dispersion

relation.

On data:
Wave-telescope (k-
filtering) technique,
based on the
assumption of plane-

waves
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Same data, same periods, same technique

10™° 1072 107"
kV,/Q

Y. Narita et al. 2011, GRL

__MS

All wave modes should
eventually be present,
wavevectors
perpendicular to
background magnetic feld
A K(w) relation is not
observed, that means a
one-to-one relation
between frequency and
wavevector is not
observed.

Results STRONGLY
depend on the k-filtering
assumptions
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Don’t forget dissipation! What kind

of process replaces viscosity in solar

wind collissionless medium?

In the dispersive region, dissipation must be also

at work, at the same scales, along with

dispersive wave-wave couplings.

1. Wave-particle interactions: resonant
collisionless heating;

2. Stochastic heating: non-resonant;

3. Something else ...
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Cluster data up to 100 Hz seems to show two breakpoints: at
the Doppler-shifted proton and electron gyroscales:
The “true” starting point of “dissipation”?

(0]
E |
. 10°
N Gl -
> o
- [ .
=X 10°°
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=
10t}
107° 107 107 1072 107" 10° 10!
k. (km™
| 117.—8/3 |
Double power laws E(k1) = Ak, " exp(—kipe).
F. Sahraoui et al., PRL (2009) O. Alexandrova et al., PRL (2012)

Two different models but the same “interpretation”: Kinetic Alfven Waves turbulence
followed by a “dissipative range” maybe generated by collisionless Landau damping .




Wave energy can be dissipated through
collisionless wave-particle interactions

(Landau damping)

The Vlasov-Poisson system describe the self-
consistent approach to collisionless wave-particle
interaction (Boltzmann without collisions).

The physical mechanism (Landau, 1946):
Resonant particles can exchange energy
with the wave. In a decreasing f(x,v)
there are always more electrons taking
energy from the wave than those giving
energy to it (head-on and tail-on
collisions with the wave potential wall)
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Landau damping is a linear process:
nonlinear saturation

non-resonant particle

Nonlinear effects occur when the resonant particles, S
after the first energy exchange, reach the opposite

side of the potential well.
O’ Neil (1965): the particles which gain energy in the
first interaction with the wave lose it after a time

equal to the “trapping time”
| m
T =.]—
P \NeEk

The resonant particles are trapped in the 6o 2 4 6 8 10 12 14
potential well: closed trajectories in the = == -
phase space, while the untrapped
electrons travel through open trajectories.

potential well

Saturation of Landau damping S —————
by a kind of “phase-mixing” 0 2 4 6 8 10 12

‘ P 31
Figure 6. Contour plot of the electron distribution function in the phase space.



ViIasov-Maxwell simulations

Hybrid Vlasov-Maxwell
simulations (ions —
particle, electrons — fluid)
1d in space 3d in velocity

Trigger by circularly left-
hand polarized Alfvén
waves in the perpendicular
plane and in parallel
propagation

Energy is carried to small
scales in longitudinal
electrostatic fluctuations of
acoustic form

F. Valentini et al., 2008, 2009

A plateau is generated in the distribution

function, due to the trapping of ions

(nonlinear saturation of Landau damping)
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Due to trapping, dispersion relation shows two
branches of electrostatic waves at small scales

S/WAVES (onboard STEREO sc) =2
Wavepackets dominated by
occasional electrostatic fluctuations
observed in the range 0.7 - 4 KHz.
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A new branch of waves (ion-
bulk) in the numerical
dispersion relation

Bursts of electrostatic activity

iIIIIIIIIIIIIIIIIIHlIII ||II|II|IIIII?II|III‘IIIII

20 40 60 80 100 120
t(ms)

i

I N

0.10 1.00 10.00 83 100.00



(a)

20F T E
10F E
w0 E
—10 E

-20F " " L L L L
00 02 04 08 08 10 1.2

t{ms}

mo

20

power spectrum
2

107

10

0.1 1.0

1
FkHZ)

o

100.0

power spectrum

Typical observed waveforms look
similar to simulations

(b} (¢}
a0 40
20
20 1
10
0 W
[}
=10
=20
-20 1
=30
00 02 04 08 08 10 1.2 1.4 Q 1 3 4
t{ms) t{ms)
1000 00 T T v

w00 m
r 1 ] 5]
—200

-500
300
—1000 =800
-30 -20 -10 0 10 20 30 -20 0 26 40
3 £
10 d g 192 i ]
=L J
N 10! 1
il J
10 E 10° J
10°F 1 g 107! 4
167" E o
g 10 1
- a
o 1 &g
5| ]
10 10
1 . "
01 1.0 10.0 000 0.1 0.0 100.0
F(kHz) {kHz)

Stereo sc observations in
solar wind

E{xot)

003

0.01

0.co

-0.c1

-0.02

power spectrum

(a)

207.7 207.8 2079 208.0 208)

1077

-0.02-0.01 ¢.00 001 Q02 ©.03
E

10 100
Wiy

power spectrum

et

1078

107

107t

L

1o7f

(e}

E{xt)

1w T T

107

1075

power apectrum

1074

10°%

1 10 100 10 100

u”

Vlasov-Maxwell
simulations

84



During the saturation phase
of wave-particle interactions
a field-aligned beam is
generated.

-> coherent beam-wave
instability:

Particle In Cell simulations:
Heating due to field-aligned
proton beams generated by
parametric instability of
Alfvén-cyclotron waves

Araneda et al. PRL (2008)
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FIG. 5 (color). Contour plots of the proton VDF in the (v,, v,)
plane for the dispersive-wave case at four instants of time. The
color coding of the contour lines corresponds, respectively, to 75
(dark red), 50 (red), 10 (yellow) percent of the maximum, with a
final beam density of about 7%.

Del Zanna, Velli,
Londrillo, SW10 (2003) 85



PIC code simulations: Signature for electron heating (mainly in
the parallel direction), due to wave-particle interactions
detected by elongation of the velocity distribution function
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Figure 11. Electron distribution functions in the (x, y)-plane, collected in four

nested boxes of increasing size L. The solid line shows the direction of the mean Comparison with linear Vlasov theory
magnetic field within each box. Velocities are normalized to the speed of light.
show that, although all modes are
present, the Langmuir mode seems to be
the one whose electron compressibility is
Camporeale & Burgess, ApJ (2010) close with numerical simulations. 86



Stochastic heating

Non-resonant energy diffusion
process due to strong fluctuations at
the ion gyro-radius. In a constant
background magnetic field particles
diffuse in the perpendicular plane
thus experiencing stochastic
increasing of kinetic energy
corresponding to a perpendicular
heating. Perhaps enough for solar
wind heating.

Gyrokinetic models present
stochastic heating as phase mixing
of entropy cascade in phase space,
when a Fokker-Planck collisional
operator is used in numerical
simulations.

Ig(Q . [W/kg])

—— 1g scale fit
----- Hellinger et al, 2011

¢ Q. average
¢ Q. average (0.4 - 0.65 au)




A different (almost provocative) approach to
describe magnetic fluctuations at small scales

1) At small scales a lot of different characteristic plasma micro-scales appear,
thus breaking the scale-free behaviour;

2) Kinetic wave-modes exhibit at the same time, and on the same scales, both a
dispersive and dissipative character, due to wave-wave and wave-particle
interactions;

3) Measurements at relatively large scales, just beyond the ion gyroscale, are
interpreted in terms of “turbulent cascade” invoking specific wave-wave
interactions, not really theoretically supported.

Let us consider a Ito stochastic equation for magnetic
fluctuations with two competing contributions

db(t) = —b(t)dt + Fo&(t)dt .

a) Alinear term due to “dissipation” (wave-particle, stochastic heating,...)

b) A stochastic term due to wave-wave couplings, without bring into question any mode
88



2 (E0E%) Spectrum of magnetic fluctuations
PN ’ depends on two-point correlations
(v — w)(y + iw) of stochastic forcing term.

(bwb:)) -

The stochastic term is due to wave-wave

couplings, dispersion, etc. Let us conjecture (f(t) . §(t')> — exp[—)\(t’ — t)]
an exponential decay for the two-point

correlations with some decay rates

distributed according to a probability of dP(/\) - (/\//\O)_# d/\//\O

occurrence

E(w) ~ A(p)Fgw™ 01 (w2 +42) 7.

The power spectrum depends on the scaling exponent and on the dissipation
rate. A continuous spectrum, also compatible with a double power law, as often
invoked to interpret observations

- The relation is able to reproduce the observed spectra
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Statistical analysis using Cluster datasets
allows us to recover scaling exponents
and dissipation rates (often beyond the
instrumental range).

1+p ~ 8/3
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The steeper the scaling exponent, the
larger the dissipation frequency. 90
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e(t) = (b3/2p0) % +ve = Fy(b(t)E(t)) -

The long time evolution tends to a non-equilibrium
statistically stationary state p(A,F,Q)

Fluctuation-Dissipation
Relation relates the (

average dissipation rate
with the statistically
stationary state

. B2 1/(u—1)
) ) I e
0

Let us identify p(A,F,Q) as a non-equilibrium electron “temperature”
kgT (even far from thermodynamic equilibrium neither maximal
entropy nor maxwellian distributions are required), and using the
typical spectrum of fluctuations

The classical scaling of

— -3/2

1+u=8/3 yz(k T) the damping rate of
B Landau damping
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FDR in terms of electron plasma-beta
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A Landau-damping scaling is
fully compatible with Cluster
data within solar wind.

The spectral properties are
not necessarily due to a
cascade process, rather they
are a consequence of FDR
which governes both
fluctuations and dissipation.
Fluctuations and dissipation
adjust themself to an out-of-
equilibrium statistically

stationary situation.

FDR identifies collisionless Landau damping as the main dissipation
mechanism, and is able to open a “window” even on scales which cannot

be directly observed, using measurements at ion scale.
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Conclusions

1. Although some hypotheses do not exactly work, large-scale
fluctuations in solar wind, allows us to think these fluctuations
can be (robustly) described in the framework of MHD turbulence;

2. On smaller scales, at about ion gyro-radius or inertial length,
linear MHD modes become kinetic, exhibiting a dispersive and

dissipative character due to various kind of wave-wave and wave-
particle interactions.

3. Observations of small scales fluctuations do not indicate so clearly
a theoretical framework, apart for the fact that they represent
some kind of “plasma fluctuations” which must be dissipated,

perhaps through Landau damping. A “pandora’s box” of possible
interpretation of the various phenomenon are then possible.
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