
Turbulence	in	Space	Plasmas:	From	
MHD	scales	to	kinetic	domain	

Vincenzo	Carbone	
Dipartimento	di	Fisica,	Università	

della	Calabria	

ISSS	course:	
Dynamical	Systems	and	Machine	Learning	
Approaches	to	Sun-Earth	Relations	
L’Aquila,	February	2020	

UNIVERSITÀ DELLA CALABRIA 
	
	
 
Dipartimento di FISICA 

1	



I	was	sitting	at	my	desk	looking	at	the	topic	of	my	lectures,	at	the	
wide,	sometimes	confusing	and	contradictory	literature	…	and	I	
sensed	an	infinite	scream	passing	through	the	universe	…	

paraphrase	by	E.	Munch,	1893	

1.  Fluid	turbulence	presents	
some	problem;	

2. Magnetic	field	add	some	
annoyance;	

3.  In	Space	Plasmas,	both	1.	
and	2.	add	a	lot	of	
contradiction	and	
confusion.	

SUMMARY:	I	would	like	to	describe	how	fluctuations,	usually	
observed	in	the	interplanetary	space,	can	reach	small	scales	thus	
dissipating	energy	in	a	collissionless	plasma	
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A peculiar stochastic process: strange mixing 
of order and chaos 

Main features: 
1)  Randomness both in space and time 
2)  Turbulent “structures” (eddies) on all 

scales 
3)  Unpredictability and instability to very 

small perturbations 

Turbulence is far from a sequence of 
random numbers with a well defined 
spectrum and uncorrelated phases. 
You cannot reproduce a “turbulent field” 
putting at random sand on a table and 
collecting snapshots! 
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The Kolmogorov energy 
spectrum can be observed 

almost everywhere in 
turbulent flows 

Details	of	the	turbulent	motion	are	unpredictable,	
but	statistical	behaviours	are	reproducible	

Injection	range	

Inertial	range	

Dissipative	
range	

The	-5/3	scaling	law	within	the	
inertial	range,	rapidly	becomes	
a	distinctive	feature	of	
turbulence.	

E(k) ≈ k−5/3

Δur = u(x + r)−u(x) Δur
2 = 2 E(k)g(kr)dk

0

∞

∫
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The	interplanetary	
space	is	
permeated	by	the	
solar	wind,	a	
supersonic	plasma	
flow	coming	from	
the	exterior	of	the	
Sun	(solar	corona).	
	
Spacecrafts	
represent	local	
probes	in	the	solar	
wind.	They	
detected	high	
amplitude	
fluctuations	of	
plasma	
parameters	within	
solar	wind.	
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Radial	coverage	of	spacecrafts	

Inner	heliosphere	

Outer	heliosphere	

Single	spacecrafts	but	
CLUSTER:	a	suite	of	four	
identical	spacecfracts	
flying	in	a	tetrahedal	
formation	(sometimes	in	
solar	wind	near	1	AU	at	
Earth’s	orbit).	
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Actually	two	kind	of	wind	streams	are	observed,	FAST	streams	
and	SLOW	streams	(coming	from	different	sources)	

superimposed	to	fluctuations	with	different	characteristics.	
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Slow	stream	
Fast	stream	 SLOW	STREAMS:	

Enhanced	density	
fluctuations	

FAST	STREAMS:	
Enhanced	
temperature	
fluctuations	

Some	differences	between	fluctuations	
in	fast	and	slow	streams	
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This was enough to frame 
fluctuations in SW as an 

example of fully 
developed turbulence 

P( f ) ≈ f −5/3

First	observations	of	spectral	properties	of	
magnetic	fluctuations	indicated	the	
existence	of	a	Kolmogorov-like	energy	
spectrum	spanning	almost	four	decades.	

Using	the	Taylor	hypothesis	the	
spectra	are	interpreted	in	terms	of	
wavevectors	scaling	law	

E(k) ≈ k−5/3

ΔBτ = B(t +τ )− B(t)

ΔBτ = 2 P( f )g( f τ )df
0

∞

∫

Coleman	(1968)	

Spectral	properties	are	detected	by	time	
series	from	the	Mariner	2	spacecraft	
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Despite	some	
theoretical	

complications	
(inhomogeneities,	
compressibility,	

anisotropy)	we	have		a	
lot	of	convinging	
evidences	of	

Kolmogorov-like	power	
spectrum	for	magnetic	

fluctuations:	
	

Low-frequency	
fluctuations	in	solar	

wind	can	be	described	
in	the	framework	of	
classical	turbulence	
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The solar wind as a wind tunnel 

In situ measurements of high 
amplitude fluctuations for all 
fields (velocity, magnetic field, 
temperature…). A unique 
possibility to measure low-
frequency turbulence in plasmas 
over a wide range of scales. 

For a review: 
R. Bruno & V. Carbone, Turbulence in the Solar Wind 
Lecture Notes in Physics 928 (Springer, 2016) 11	



Low-frequency	plasma	fluctuations	are	described	by	MHD	
equations.	Turbulence	is	the	result	of	nonlinear	dynamics	

z+ z- 

Elsasser variables define 
pseudo-energies 

Nonlinear interactions in MHD happens only between fluctuations propagating in 
opposite direction with respect to the large-scale magnetic field  
à slow down of nonlinear interactions with respect to fluids: eddies move apart. 

MHD	equations	couple	velocity	
field	fluctuations	and	magnetic	
fluctuations,	share	the	same	
“structure”	with	Navier-Stokes	
equations	à	quadratic	
nonlinearities	vs	dissipation.	

Incompressible	MHD	

Δz±( )
2
= E±
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Alfvènic fluctuations at 0.3 AU 
within the high-speed stream 

u ≈ ± b
4πρ

Nonlinear	
interactions	might	
be	damped	during	
these	periods.		
	
Does this 
means no 
turbulent 
cascade in fast 
wind? 

z∓ ≈ 0

A	further	complication:	u-b	correlations	
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Phenomenological	arguments	leading	to	Kolmogorov’s	
spectrum	(from	MHD)	

±Δ rz

r⇒ r 'λ
z± ⇒ (z± )'λ h

Let us consider the dissipation 
rate for both pseudo-energies 

( )
±

±
± Δ
≈

NL

rz
τ

ε
2

The characteristic time (eddy-
turnover time) represents the 
lifetime of turbulent eddies 

∓

r
NL z

r
Δ

≈±τ ( )
r
zz rr
∓ΔΔ

≈
±

±

2

ε

Characteristic	
turbulent	fluctuations	
across	eddies	at	the	
scale	r.	

In	the	limit	of	zero	viscosity	equations	are	SCALING	
INVARIANT,	say	they	remains	the	same	(for	any	value	of	h)	
for	the	following	scaling	transformations	

hh r
xzrxz

r
z )()( ±±± −+

≈
Δ

h
r rz ≈Δ ±

Are	scale-invariant	

We	expect	scaling	solutions	where	
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This leads to the Kolmogorov scaling law 3/1rur ≈Δ

r ≈1/k 

rrr uzz Δ≈Δ≈Δ ± ∓

The energy transfer rate is  
constant (Kolmogorov’s hypothesis) only when  

h = 1/3 

13' −±± ⇒ hλεε

Scaling	invariance	and	statistics:	fluid-like	

[ ] ∫
∞

⎥⎦

⎤
⎢⎣

⎡ −=−+
0

2 1)(2)()( dk
kr
sinkrkExurxu

Second-order	moment	of	fluctuations	
are	related	to	the	usual	spectral	
energy	density	

E(k) ≈ ε 2/3k−5/3Δur( )
p
=Cpε

p/3r p/3

Kolmogorov	scaling	
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Phenomenological arguments for 
magnetically dominated turbulence 

∓
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Since the Alfvèn time in some case 
is LESSER than the eddy-turnover 
time, nonlinear interactions are 
reduced because the cascade is  
effectively realized in a time T: 

When the flow is dominated by a (large-scale) magnetic field, there exists a 
new physical time, the Alfvèn time, related to the sweeping of Alfvenic 
fluctuations due to the large-scale magnetic field 

T is the time to effectively realize the cascade 

A different expression for the 
pseudo-energies transfer rates 
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Kraichnan spectrum 

The energy transfer rate is  
scaling invariant only when  

h = 1/4 

4/1rur ≈Δ

14' −±± ⇒ hλεε

( ) ( ) 4/4/' pp
Ap

p
r rcCz ±± =Δ εLinear scaling for the p-th order 

moments 

  ( ) ( ) 2/32/12/1'
2

2 )( −±±± ≈⇒=Δ kkErcCz Ar ε

DMV-80: An initial unbalance between both pseudo-energies is maintained by 
the energy cascade. This should be enough to explain BOTH the existence of a 
power spectrum and the presence of one single Alfvènic “mode” fluctuation. 

Iroshnikov-Kraichnan scaling 

−+ ≈ εε
At variance with the fluid-like case, 
here both pseudo-energies are 
transferred at “the same” rate 

A	flatter	spectrum	in	
the	inertial	range	

17	

A	different	scaling	



Data analysis and numerical simulations:  
Perhaps a Kolmogorov spectrum for magnetic 

energy, a flatter spectrum for kinetic energy 
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Yaglom’s	law	

An exact relation from MHD equations 
similar to Kolmogorov’s 4/5-law 
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Pseudo-energy dissipation rate tensor 

An exact Yaglom’s statistical relation can be derived 
from MHD equations 

Two-points	differences	of	
Elsässer	variables	

A		statistical	relation	obtained	from	fluid	equations	(NS	or	MHD)	for	
the	third-order	moment	of	fluctuations,	in	the	stationary	state.	

Large-scale	inhomogeneity	 Pressure	anisotropy	

Dissipation	
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Assuming local isotropy and global homogeneity, finte transfer rate in the limit 
of vanishing viscosity, after longitudinal integration, the equation reduces to a 
Yaglom-like relation à a linear relation between the third-order mixed 
moment calculated through separations along the longitudinal (streamwise) 
direction, and the separation itself. 

MHD	turbulence	 Fluid	turbulence	
(Kolmogorov’s	4/5-law)	

Note	that	the	Yaglom	law	for	MHD	looks	similar	to	the	
Yaglom	law	for	a	passive	scalar	in	fluid	turbulence	

The	passive	scalar	is	
advected	by	the	velocity	
field	
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The Yaglom relation is satisfied by most datasets of 
Ulysses spacecraft during fast streams 

Although	the	data	are	
somewhat	contaminated	by	
the	inhomogeneity	and	local	
anisotropy,	the	observed	scale	
collapse	onto	the	Yaglom	law	
appears	very	robust	in	most	
periods	of	Ulysses	dataset.	

The first REAL evidence 
that (low frequency) solar 
wind can be described in 
the framework of MHD 
turbulence 

L. Sorriso-Valvo et al., PRL (2007) 

22	



From Yaglom’s law we can estimate the values for the 
energies transfer rates at different heliocentric distances 

As a comparison, energy transfer rate per unit 
mass in usual fluid flows is about 1 ÷ 50 J/Kg s 

cgs units 

Roughly	of	the	same	order	
of	magnitude,	about	few	

hundred	J/Kg	sec.		
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The	problem	of	solar	wind	heating		

Estimate of the heating rate needed to heat the solar 
wind (say to obtain the observed small radial cooling) 

Vasquez et al., JGR 2007 

Solar wind model à Adiabatic expansion, 
temperature should decrease with 
helioscentric distance (radial cooling) with 
a typical scaling with dfistance 

3/4)( −≈ rrT

Spacecraft measurements à actually 
temperature decay is slower than 
expected. Conjecture: Turbulence 
should heat solar wind. 

ξ−≈ rrT )(

]1;7.0[∈ξ
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We can ask whether the estimated turbulent energy flux 
towards dissipative scales, from Yaglom’s law, is enough 

for solar wind heating 

A good agreement of the 
radial evolution of 
dissipation energy rate 
measured from Yaglom’s 
law, with the model of 
heating rate needed to 
explain the slower 
cooling of solar wind, 
with respect to adiabatic 
cooling.  

Heating	by	turbulent	energy	means	that	energy	
MUST	be	dissipated	in	some	way	at	small	scales.	
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Intermittency	

The	second-order	moment	(power	spectrum)	does	
not	play	any	privileged	role.	Turbulence	in	Solar	
Wind	shares	anomalous	scaling	laws	with	usual	fluid	
flows	for	high-order	moments	of	fluctuations	
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Despite the Yaglom-law and a 5/3-spectrum are 
observed, experiments show a strong departure from 
the Kolmogorov’s conjecture for high-order moments 

The departure has 
been attributed to 
INTERMITTENCY 
in fully developed 
turbulence 

1)  u along the main flow;  
2)  Taylor hypothesis to 

transform length scales in 
time scales 

Fluid flows: Intermittency, measured as the distance from 
the Kolmogorov’s linear law, is stronger for passive scalar 27	



The same behaviour in Solar Wind turbulence 

Solar wind: Intermittency is 
stronger for magnetic field than 
for velocity field. Scaling laws for 
velocity field in the solar wind 
coincide with that observed in 
fluid flows (through extended 
self-similarity) 

THIS DOES NOT IMPLY THAT THE 
MAGNETIC FIELD IS A “PASSIVE 
VECTOR”: statistics cannot prove, 
just disprove 

Strong jumps of magnetic 
orientation are responsible for 
the strongest intermittency 
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Comparison with velocity 
fluctuations in fluid flows A collection of 

data from 
laboratory fluid 
flows (black 
symbols) and 
solar  
wind velocity 
(white 
symbols). 
 
Differences 
only for 
unreliable high 
order 
moments, 
perhaps due to 
different 
geometry of 
dissipative 
structures. 

29	
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What is “intermittent” in turbulence 

1) A random signal at large separations;  
2) Bursts of activity at smaller separations  

Natural variables: 
Fluctuations at a given scale 
(separation time) 

Δu = u(t+τ) – u(t)
ΔB = B(t+τ) – B(t)	
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Gaussian 
PDF at 
large 

scales 

Stretched 
exponential 

PDF at 
small scales 

Intermittency implies a departure from 
global self-similarity (multifractals) 

PDFs of normalized 
variables changes 
with scale 

Probability of occurrence of 
strongest events are higher 
than a Gaussian 
à Random fluctuations, with 
highly correlated phases, are 
present, they are an 
unavoidable characteristic of 
real turbulence.  

Turbulence CANNOT be 
described by a random 
phase process 

Magneto-gravity waves and modulations of the solar neutrino flux

L. D’Alessi1, A. Vecchio1, M. Laurenza2, V. Carbone1,3, M. Storini2

Abstract

An oscillating magnetic field deep within the solar radiative region can signif-

icantly alter the helioseismic g–modes. The presence of density gradients along

g–modes, can excite Alfvn waves resonantly, the resulting waveforms show sharp

spikes in the density profile at radii comparable with the neutrino’s resonant oscil-

lation length. This process should explain the observed quasi-biennal modulation

of the solar neutrino flux.

Subject headings: solar neutrino, gravity waves

�B⌧p
h�B2i

(1)

Time variability of solar neutrino flux has been studied since the appearence of the

first results of Homestake experiment (Davis et al. 1968). In an attempt to interpret the

discrepancy between theoretical and observed flux, Sheldon (1969) suggested a dependence

of neutrino flux with solar activity, due to a time variable production rate of the neutrinos

in the core of the Sun. Through the analysis of Homestake data, Sakurai (1969) showed the

existence of a quasi-biennal periodicity both in the solar neutrino flux and in the sunspot

number. In order to make a connection between the periodicity observed both in solar

neutrino and sunspot data, Sakurai climed that fluctuations of the core temperature, which is

responsible of the pp chain e�ciency, should be at the origin of this quasi-biennal modulation.

However the analysis by Lanzerotti et al. (1981) carried on a set of data which cover

a longer time period, exclude any connection between events in the core with the ones

which occur in the photosphere. While the results of analysis of Kamiokande data over the

Cycle 22 of the 11-yr solar cycle (Fukuda et al. 1996) show that there is no correlation of

the solar neutrino flux with sunspot numbers on 11-yr time scale, the debate on possible

1Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, cubo 31C, I-87036 Rende (CS), Italy

2IFSI-INAF, via Fosso del Cavaliere, I-00133 Roma, Italy.

3LICRYL, INFM-CNR, Ponte P. Bucci, cubo 31C, I-87036 Rende (CS), Italy.
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Times	between	bursts	

Interesting! the underlying cascade process is 
NOT POISSONIAN, that is the intermittent (more 
energetic) bursts are NOT INDEPENDENT 

The times between events 
(waiting times) at the 
smallest scale, are 
distributed according to a 
power law 

P(Δt) ≈ Δt−β

The turbulent energy cascade 
generates  
intermittent “coherent”  
events at all scales. 
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Wavelets and Local Intermittency Measure: 
disentangle “structures”  

Intermittency: the energy content, at each 
scale, is not homogeneously distributed  

i
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w
mil 2

2

... =
L.i.m. greater than a threshold  
means that at a given scale and  
position the energy content is greater  
than the average at that scale 

Gaussian	background	 Structures	

Complete	signal	

l.i.m. smaller 
than threshold 

l.i.m. larger 
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threshold 
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Conditioned structure functions 
(using only the background) do 
not show anomalous scalings! 

Localized structures with an 
high-energy content, 
represent the main 
ingredient for intermittency 

34	

Analysis of the magnetic field 
fluctuations around isolated structure 
allows to identify them. 



Identified as tangential 
discontinuities (current 
sheets). They are 
spontaneously generated 
at all scales inside MHD 
turbulence by the 
nonlinear dynamics.  

What kind of structures in MHD (1) 

Veltri & Mangeney, 1999 
Bruno et al., 1999 
Veltri et al., 2005 

The component of the 
magnetic field which 
varies most changes 
sign, and is almost 
perpendicular to the 
average magnetic field.  
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In MHD isolated structures are recognized as current sheets, 
where a lot of physical processes occur: reconnection, 
particle acceleration, magnetic annihilation, etc. 

Intermittent current 
sheets are 
generated by the 
nonlinear energy 
cascade and 
observed both in 
space, or better, in 
numerical 
simulations at very 
small scales. 
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Compressive 
discontinuities are 
sometimes observed. 
These structures can 
be either parallel 
shocks or MHD slow-
mode (like) wave 
trains. 

What kind of structures in MHD (2) 

Veltri & Mangeney, 1999 
Bruno et al., 1999, 2001, 2003, 2004 
Veltri et al., 2005 
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Anisotropy	

The	solar	wind	fluctuations	are	intrinsically	anisotropic,	a	large	
scale	magnetic	field	cannot	be	eliminated	through	a	galilean	
transformation.	
	
1)  Polarizations	anisotropy:	the	three	components	of	fluctuations	

have	different	amplitudes	along	different	directions;	
2) Wavevectors	anisotropy:	fluctuations	in	Fourier	space	depend	

differently	on	the	wavevector	directions	parallel	and	
perpendicular	to	the	mean	field.	

Large	scales	in	fluid	flows	are	anisotropic,		
Kolmogorov’s	hypothesis	K41	requires	a	return-to-
isotropy	at	intermediate	(inertial	range)	scales.	
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Polarization	anisotropy	
Determine	the	eigenvalues	and	
eigenvectors	of	the	one-point	
variance	matrix	

1)	Ratios	of	eigenvalues	à	statistical	properties	of	
anisotropy	of	magnetic	fluctuations;	
2)	Eigenvectors	à	three	unitary	vectors	forming	a		
(minimum	variance)	reference	system	where	one	of	
the	axis	is	aligned	along	the	direction	of	minimum	
fluctuations.	

Variance	matrix	computed	on	running	averages	of	different	
amplitudes,	gives	information	both	on	the	time	evolution	and	
on	the	scaling	properties	of	anisotropy	

39	
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The	scaling	properties	of	
the	eigenvalues	are	evident.	
Burst-like	behaviour	of	
anistropy	at	small	scales.		

Eigenvalues	of	variance	matrix,	
as	a	function	of	time,	at	two		
different	scales	
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Pdfs	of	eigenvalues	at	a	given	scale	

One	of	the	eigenvalues	
sistematically	smaller	
than	the	other	two:		
	
Fluctuatons	lye	on	a	
plane	à	Magnetic	
turbulence	
approximately	two-
dimensional,	at	
variance	with	usual	
fluid	flows.	
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PDF’s	of	the	angle	between	the	
minimum	variance	eigenvector	
and	the	direction	of	the	large-
scale	magnetic	field,	at	three	
scales.		
	
Minimum	variance	nearly	
aligned	to	the	background	
magnetic	field	at	large	scale,	
broadening	at	small	scales.	

At	large	scales	fluctuations	lye	in	a	plane	almost	
perpendicular	to	the	background	magnetic	field.	At	
smaller	scales	the	plane	changes	direction	continuously	

42	



High-order	polarization	anisotropy	
Compute	the	n-th	order	
variance	matrix.	Some	out-
of-diagonal	elements	
contain	only	anisotropic	
contributions,	and	can	be	
compared	to	diagonal	
elements	where	isotropic	
and	anisotropic	
contributions		cohexist.	

Tensors	can	be	fitted	by	a	suitable	analytic	functional	shape,	
where	the	anisotropic	scaling	exponents	can	be	recovered		
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FAST	

SLOW	

Second-order	structure	tensor	
The	contribution	of	anisotropic	off-diagonal	
elements	is	not	negligible	for	all	scales,	that	
is	the	return-to-isotropy	invoked	by	K41	

fails	in	solar	wind	turbulence	

44	

*	à	fully	anisotropic	components	

Differences	among	scaling	exponents	are	small,	
the	anisotropic	contribution	does	not	vanishes	



Wavevector	anisotropy	

∂
∂t
− ik ⋅ cA

Decorrelation	time	of	
fluctuations,	when	they	move	
apart,	depends	on	the	angle	
between	the	wavevector	of	
fluctuations	and	the	
“background”	magnetic	field.	
This	time	is	shorter	for	
perpendicular	wavevectors,	that	
is	the	turbulent	energy	cascade	
is	roughly	realized	mainly	in	the	
perpendicular	direction.	

Single	spacecrafts	cannot	be	used	to	compute	wavevector	anisotropy.	
The	four	Cluster	spacecrafts	have	been	recently	used	(k_filtering).	Just	
some	wavevector	scales	have	been	investigated,	depending	on	the	
relative	distances	of	the	four	satellites.	
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Elliptic	anisotropy	is	observed	

Narita	et	al.	PRL	(2010)	

Maximum	power	
direction	in	the	
perpendicular	
plane		

Minimum	power	
direction	in	the	
perpendicular	
plane	 46	



The dissipation of turbulent 
energy 

Once	the	energy	is	transferred	to	small	scales,	it	
must	be	dissipated.	
In	usual	fluid	flows	the	dissipative	term	is	at	work	
at	small	scales.	In	MHD	turbulence	(numerical	
simulations)	the	situation	is	quite	similar.	
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Dissipation of energy in classical turbulence   
When the dissipative time becomes of the order of the nonlinear eddy 
turnover time, the energy cannot be transferred efficiently to small scales 

We observe a depletion in the 
energy spectrum starting at the 
Kolmogorov’s characteristic scale 

The	larger	the	Reynolds	number	
the	smaller	the	dissipation	scale	

Viscosity	at	work	
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Dissipation of energy in classical turbulence 
through isolated bursts: finite-time singularities 

Dissipative structures are very localized both in 
space and time (intermittency in the dissipative 
domain). Energy is dissipated through isolated 
bursts.  
This process can be viewed as the generation of 
finite-time singularites: 

Numerical simulation 

The sum of eddy-turnover times CONVERGES as 
the scale length tends to zero. 

The energy is transferred towards structures of ZERO length in a 
FINITE time, this should generates a singularity. 49	



Geometry of dissipative bursts 

Intermittent dissipative structures: 
Filaments in usual fluid flows, sheets in MHD flows 

Dissipative structures near the wall 

Current sheet 
50	



Time series of flare events Hard X-ray  ( > 20 keV): 
Intermittent spikes, duration 1-2 s,           
Emax ~ 1027 erg 
Numerous smaller spikes down to 1024 erg (detection limit) 

 Example	of	Solar	flares:	impulsive	annihilation	of	magnetic	
energy	at	spontaneously	generated	current	sheets	in	a	
turbulence	inside	the	solar	corona	
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Power law statistics of flares 

Total energy, separation times, peak energy and 
(more or less!) lifetime of individual bursts seems  
to be distributed according to power laws. 52	



Same statistics for MHD simulations 
and shell models 

1) Total energy of bursts 
2) Time duration 
3) Energy of peak 
4) Waiting times 
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1.  Where	does	cascading	turbulent	energy	go	
on	small	scales	in	solar	wind?	

	
2.  How	is	turbulent	energy	dissipated	at	

small	scales,	thus	heating	the	medium?	

What	happens	in	Solar	Wind	

At	least	four	characteristic	scales	in	plasmas	(lengths	
and	frequencies):	ion-inertial	length	(shielding	of	
protons	to	electromagnetic	waves)	and	ion-gyration	
radius	(size	of	gyration	of	ions).	The	same	for	
electrons	but	at	smaller	scales	(higher	frequencies)	
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At	scales	lesser	than	the	characteristic	ion	scales	the	MHD	
approximation	fails,	solar	wind	fluctuations	become	kinetic	and	

cannot	be	described	within	the	MHD	framework:	small	scales	fall	in	
the	realm	of	plasma	physics.	

Spacecrafts probe a collisionless (or 
maybe a weakly collisional) medium. 
Viscosity cannot be a real physical 
quantity and a ∇2-like dissipative term 
does not actually exist in space plasmas.  

Mean-free-path of 
the order of the 
Sun-Earth distance 
   λ = 1 AU 

1.  What	we	actually	observe	as	“dissipation	range”	of	solar	wind	
turbulence,	at	scales	lesser	than	the	inertial	range	scales?		

2.  What	is	the	framework	to	describe	fluctuations	at	frequencies	
beyond	the	ion-cyclotron	frequency?	

3.  What	kind	of	process	“replaces”	viscous	dissipation	at	small	
scales	to	dissipate	energy?	

Three	big	questions	rise	

55	



A range of scales with a steeper power law 
energy spectrum is observed  

All	is	present	here,	
but	viscosity	

break at the 
proton inertial 
frequency, or at 
the proton 
gyroradius, both 
approximately 
near 1 Hz  

How	observations	
can	be	interpreted	
in	terms	of	a	
“dissipation	range”	
of	turbulence?	
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Linear	plasma	theory.	The	usual	MHD	branches	(Alfven	waves,	
magnetosonic	fast	and	slow	waves)	split	into	various	branches	of	

quasi-perpendicular	(anisotropic)	propagating	modes	(Ion-Bernstein,	
Kinetic	Alfvèn	waves,	Whistler,	kinetic	slow	modes)	.	

Nonlinear	dispersive	effects	on	wave-wave	couplings	come	into	play:	
Small	scales	should	represent	a	dispersive/dissipative	range	due	to	
nonlinear	wave	couplings	and	collisionless	dissipation.	

MHD	modes	 Kinetic	modes	

Theoretical	dispersion	relations	of	modes	
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Dispersive effects: Electric field fluctuations dominate 
at small scales with respect to magnetic fluctuations 

S.D. Bale et al., PRL (2005) 

Evidence for 
electrostatic 
turbulence beyond 
the spectral break? 
 
Magnetic 
fluctuations are 
residual à weak 
wave turbulence? 

dissipative/dispersive range inertial range 58	



Overall	picture	of	fluctuations:	
The	energy	cascade	continues	through	nonlinear	

coupling	of	kinetic	wave-modes	which	open	several	
channels	of	energy	transfer	to	small	scales.	

Assume	that	energy	
damping	is	localized	
on	two	main	scales	
for	ions	and	
electrons.	

Kinetic	instabilities	
can	inject	further	
energy	into	the	
system	at	ion	scale	
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Kinetic	instabilities	at	ion	
scales	are	generated	by	
ion	temperature	
anisotropy,	observed	at	
low	plasma-beta.	

Plasma	beta	represents	
the	ratio	between	kinetic	
and	magnetic	pressure.	

Departure	from	
temperature	isotropy	
constrained	by	kinetic	
instabilities	furnishes	
evidences	for	residual	
Coulomb	collisions	at	
ion	scale,	for	low	
plasma	beta	
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Lack of statistical universality in the high-frequency range, 
spectral properties are related to the MHD energy cascade 

ACE spacecraft C. Smith et al., ApJ Letters (2006) 

Broader distribution of observed 
spectral indices in the high-
frequency range. 

A rough estimate of the energy cascade 
rate of inertial range is directly related to 
the steepening of the high-frequency range: 
The higher ε, the steeper the spectrum. 61	



Where does MHD turbulence breaks down 
in solar wind turbulence? 

While the characteristic plasma 
frequencies evolve with distance 
from the Sun, the spectral break 
frequency looks to be constant. 

  
à  Break neither directly related to 
proton inertial length nor to proton  
gyroradius. Perhaps affected by 

anisotropy. 

S. Perri et al., ApJL 2010 

The	characteristic	frequency	break	of	
the	Kolmogorov	spectrum	depends	on	
the	model	assumed	to	describe	small	
scale	plasma	fluctuations.	
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Anisotropy	
beyond	the	ion-

cyclotron	
frequency	
much	more	

bursty	than	at	
large	scales	
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Observations of strong intermittency 
beyond the ion scale 

Helios 

Cluster 

Probability distribution 
functions (PDF) of 
normalized wavelets 
coefficients on different time 
scales depends on scale: 

O. Alexandrova et 
al., ApJ (2008) 

Kurtosis	
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Sometime, no intermittency is 
observed at small scales. Scaling 

exponents look regular 

At variance with inertial range, 
intermittency observed at small-

scales seems to be not a 
universal feature of turbulence.  
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All	kind	of	universality	is	lost	at	small	
scales,	different	samples	give	almost	
different	results.	What	kind	of	plasma	

process	generates	magnetic	fluctuations	
beyond	the	ion	scale?	

1) 	Wave-wave	coupling	channels;	
2) 	A	different	kind	of	strong	MHD-like	
turbulence.	

How	the	turbulent	MHD	cascade	
continues	beyond	the	ion	scale?		
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Hall MHD turbulence: the simplest way to 
reproduce dispersive effects 

Hall	term	

A	breakdown	of	the	scale-free	features,	the	Hall	term	introduces	a	characteristic	
scale.	Two	competing	non-linear	terms:	energy	is	transferred	on	times	of	the	order	
of	the	eddy-turnover	time	up	to	the	Hall	scale.	At	this	scale	the	energy	cannot	be	
transferred	on	the	same	time,	but	on	a	new	characteristic	time.	

3/7)( −≈ kkE

A	conjecture:	At	the	proton	cyclotron	frequency	there	is	a	breakdown	of	the	
usual	“alfvenic” turbulence,	and	a	new	kind	of	turbulence	appears	
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Alfvenic turbulence becomes dispersive. The spectral dynamical alignment 
between V and B is lost in favor of a spectral correlation between N and V.  

C(V-B) 

C(V-N) 
MHD Hall MHD 

Hall MHD vs. MHD: energy spectra from numerical 
simulations 

Density N Velocity V Magnetic field B 

S. Servidio et al., (2007) Slope = 7/3 
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The Hall effect causes a breakdown of  
Alfvènic turbulence to a “Magnetosonic  
Turbulence” → enhanced role of density 



Hall-MHD turbulence generates anti-correlated 
fluctuations between density and magnetic fields 

A cut along x 
at a fixed y 

density 

magnetic 
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“Travelling	eddies” (soliton-like)	within	
magnetosonic	turbulence	sometimes	observed	

by	Cluster	spacecrafts	

Density	and	magnetic	field:	a	
“travelling”	structure	at	two	
different	times	
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Small scale structures appears in Hall-
MHD as current sheets or compressive 
structures. A new kind of turbulence? 
Current	sheets	 Strong	divergence	

of	velocity	field	
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Gyrokinetic	model	a	framework	for	
wave-wave	coupling,	no	fluid-like	

-	The	equation	is	supplied	by	equations	for	electric	and	magnetic	fields	
-	Fokker-Planck	collisional	operator	at	the	ionic	scale	to	reproduce	residual	collisions	

A	generalized	energy	is	conserved,	thus	generating	cascades	in	the	phase	space	
Entropy	and	magnetic	energy	

Expansion	of	the	distribution	function	of	particles	at	the	ion	
scale	(ordering	through	a	small	parameter)	

Maxwellian	 Response	to	
maxwellian	
(dissipation)	

Gyrocentric	distribution	
function	in	terms	of	
average	gyroradius	for	
particles	
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Enhanced 
electric field at 
small scales (red 
line), enhanced 
role of 
compressibility 
(purple line) 

3/7−
⊥
k

Gyro-kinetic simulations 
Couplings	of	Kinetic	Alfven	Waves	(KAW)	or	Whistlers	
could	generate	the	dispersive	(anisotropic)	spectrum	
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Different scenarios for this range:  
weak/strong turbulence depending on the dispersion relation 

of kinetic modes used to describe fluctuations 

1)	Fast/Whistler	mode	turbulence	or	strong	whistler	turbulence	starts	
at	the	proton	inertial	length.		
Leith	(1967),	Zhou	&	Matthaeus,	(1990),	Biskamp	et	al.	(1996,	1999)	Stawicki,	Gary	&	Li,	
(2001),	Gary	et	al.	(2008),	Gary	and	Smith	(2009).	
	
2)	Compressible	or	incompressible	Hall	MHD	turbulence	naturally	
results	in	a	steepening	of	the	magnetic	turbulent	spectrum	at	the	Hall	
frequency,	and	enhanced	compressibility	
Gosh	et	al.	(1996),	Servidio	et	al.,	(2007),	Galtier,	(2006),	Galtier	&	Buchlin,		(2007),	
Alexandrova	et	al.,	(2008).	
	
3) Nonlinear	coupling	of	Kinetic	Alfven	Waves.	Essentially	transverse	
to	the	ambient	field.	At	the	ion	Larmor	radius,	the	Alfvènic	cascade	
continues	through	the	KAWs	branch.		
Howes	et	al.	(2006,	2008),	Schekochihin	et	al.	(2009)	 74	



Observations dont help us to clarify the origin of the 
dispersive region →  the description of the 

dispersive region remains somewhat confusing! 

“At our present level of understanding, the best we can say is 
that quasi-parallel whistlers, quasi perpendicular whistlers, and 
Kinetic Alfvèn Waves all probably contribute to dispersion 
range turbulence in the solar wind. 
Thus, the critical question is not which mode is present, but 
rather, what are the conditions which favor one mode over the 
other?” 

Conclusions by P. Gary & C. Smith, JGR 114, A12105 (2009) 

Looking for “modes” in solar wind turbulence (at 
kinetic scales)? Dispersion relation requires more 
than one satellite, then it can be investigated using 
Cluster satellites and k-filtering method of analysis. 
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Dispersion relation using 4 Cluster satellites  
F. Sahraoui et al. (PRL, 
2010) compared the 
observed dispersion relation 
with linear solutions of 
Vlasov equations. 

The best fit seems 
to be obtained for 
KAW dispersion 
relation. 

On data:  
Wave-telescope (k-
filtering) technique, 
based on the 
assumption of  plane-
waves 
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Same data, same periods, same technique 

Y. Narita et al. 2011, GRL 

All wave modes should 
eventually be present, 
wavevectors 
perpendicular to 
background magnetic feld 
A k(ω) relation is not 
observed, that means a 
one-to-one relation 
between frequency and 
wavevector is not 
observed. 
Results STRONGLY 
depend on the k-filtering 
assumptions 
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Don’t	forget	dissipation!	What	kind	
of	process	replaces	viscosity	in	solar	

wind	collissionless	medium?	

In	the	dispersive	region,	dissipation	must	be	also	
at	work,	at	the	same	scales,	along	with	
dispersive	wave-wave	couplings.		
1.  Wave-particle	interactions:	resonant	

collisionless	heating;	
2.  Stochastic	heating:	non-resonant;	
3.  Something	else	…	
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Cluster data up to 100 Hz seems to show two breakpoints: at 
the Doppler-shifted proton and electron gyroscales:  

The “true” starting point of “dissipation”? 

F. Sahraoui et al., PRL (2009) O. Alexandrova et al., PRL (2012) 

Two	different	models	but	the	same	“interpretation”:	Kinetic	Alfven	Waves	turbulence	
followed	by	a	“dissipative	range”	maybe	generated	by	collisionless	Landau	damping		

Double	power	laws	
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Wave	energy	can	be	dissipated	through	
collisionless	wave-particle	interactions	
(Landau	damping)	
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The	Vlasov-Poisson	system	describe	the	self-
consistent	approach	to	collisionless	wave-particle	
interaction	(Boltzmann	without	collisions).	

The	wave	damps	

The	physical	mechanism	(Landau,	1946):	
Resonant	particles	can	exchange	energy	
with	the	wave.	In	a	decreasing	f(x,v)	
there	are	always	more	electrons	taking	
energy	from	the	wave	than	those	giving	
energy	to	it	(head-on	and	tail-on	
collisions	with	the	wave	potential	wall)	
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Landau	damping	is	a	linear	process:	
nonlinear	saturation	

Nonlinear	effects	occur	when	the	resonant	particles,	
after	 the	 first	 energy	 exchange,	 reach	 the	 opposite	
side	of	the	potential	well.	
O’Neil	(1965):	the	particles	which	gain	energy	in	the	
first	 interaction	 with	 the	 wave	 lose	 it	 after	 a	 time	
equal	to	the	“trapping	time”		

Saturation of Landau damping 
by a kind of “phase-mixing” 

The	 resonant	particles	are	 trapped	 in	 the	
potential	 well:	 closed	 trajectories	 in	 the	
phase	 space,	 while	 the	 untrapped	
electrons	travel	through	open	trajectories.		

eEk
m

p =τ
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Vlasov-Maxwell simulations  
 Hybrid Vlasov-Maxwell 

simulations (ions → 
particle, electrons → fluid) 
1d in space 3d in velocity 
 
Trigger by circularly left-
hand polarized Alfvèn 
waves in the perpendicular 
plane and in parallel 
propagation  
 
Energy is carried to small 
scales in longitudinal 
electrostatic fluctuations of 
acoustic form 

F. Valentini et al., 2008, 2009 

A plateau is generated in the distribution 
function, due to the trapping of ions 
(nonlinear saturation of Landau damping)   
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Due to trapping, dispersion relation shows two 
branches of electrostatic waves at small scales 

A new branch of waves (ion-
bulk) in the numerical 
dispersion relation 
 
Bursts of electrostatic activity 

S/WAVES (onboard STEREO sc) à 
Wavepackets dominated by 

occasional electrostatic fluctuations 
observed in the range 0.7 - 4 KHz.  

83	



Typical observed waveforms look 
similar to simulations 

Stereo	sc	observations	in	
solar	wind	

Vlasov-Maxwell	
simulations	
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During the saturation phase 
of wave-particle interactions 

a field-aligned beam is 
generated. 

à coherent beam-wave 
instability: 

Particle In Cell simulations: 
Heating due to field-aligned 
proton beams generated by 

parametric instability of 
Alfvèn-cyclotron waves 

Araneda et al. PRL (2008) 
Del Zanna, Velli, 
Londrillo, SW10 (2003) 85	



PIC code simulations: Signature for electron heating (mainly in 
the parallel direction), due to wave-particle interactions 

detected by elongation of the velocity distribution function 

Camporeale & Burgess, ApJ (2010) 

Comparison with linear Vlasov theory 
show that, although all modes are 
present, the Langmuir mode seems to be 
the one whose electron compressibility is  
close with numerical simulations. 86	



Stochastic heating 
Non-resonant	energy	diffusion	
process	due	to	strong	fluctuations	at	
the	ion	gyro-radius.	In	a	constant	
background	magnetic	field	particles	
diffuse	in	the	perpendicular	plane	
thus	experiencing	stochastic	
increasing	of	kinetic	energy	
corresponding	to	a	perpendicular	
heating.	Perhaps	enough	for	solar	
wind	heating.	

Gyrokinetic	models	present	
stochastic	heating	as	phase	mixing	
of	entropy	cascade	in	phase	space,	
when	a	Fokker-Planck	collisional	
operator	is	used	in	numerical	
simulations.	
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A	different	(almost	provocative)	approach	to	
describe	magnetic	fluctuations	at	small	scales	
1)  At	small	scales	a	lot	of	different	characteristic	plasma	micro-scales	appear,	

thus	breaking	the	scale-free	behaviour;	
2)  Kinetic	wave-modes	exhibit	at	the	same	time,	and	on	the	same	scales,	both	a	

dispersive	and	dissipative	character,	due	to	wave-wave	and	wave-particle	
interactions;	

3)  Measurements	at	relatively	large	scales,	just	beyond	the	ion	gyroscale,	are	
interpreted	in	terms	of	“turbulent	cascade”	invoking	specific	wave-wave	
interactions,	not	really	theoretically	supported.	

Let	us	consider	a	Ito	stochastic	equation	for	magnetic	
fluctuations	with	two	competing	contributions	

a)  A	linear	term	due	to	“dissipation”	(wave-particle,	stochastic	heating,…)	
b)  A	stochastic	term	due	to	wave-wave	couplings,	without	bring	into	question	any	mode	
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Spectrum	of	magnetic	fluctuations	
depends	on	two-point	correlations	
of	stochastic	forcing	term.	

The	stochastic	term	is	due	to		wave-wave	
couplings,	dispersion,	etc.	Let	us	conjecture	
an	exponential	decay	for	the	two-point	
correlations	with	some	decay	rates	
distributed	according	to	a	probability	of	
occurrence	

The	power	spectrum	depends	on	the	scaling	exponent	and	on	the	dissipation	
rate.	A	continuous	spectrum,	also	compatible	with	a	double	power	law,	as	often	
invoked	to	interpret	observations	

The	relation	is	able	to	reproduce	the	observed	spectra	
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Statistical	analysis	using	Cluster	datasets	
allows	us	to	recover	scaling	exponents	
and	dissipation	rates	(often	beyond	the	
instrumental	range).	

The	steeper	the	scaling	exponent,	the	
larger	the	dissipation	frequency.		 90	



Fluctuation-Dissipation	
Relation	relates	the	
average	dissipation	rate	
with	the	statistically	
stationary	state	

The	long	time	evolution	tends	to	a	non-equilibrium	
statistically	stationary	state	ρ(A,F,Ω)	

Let	us	identify	ρ(A,F,Ω)	as	a	non-equilibrium	electron	“temperature”	
kBT	(even	far	from	thermodynamic	equilibrium	neither	maximal	
entropy	nor	maxwellian	distributions	are	required),	and	using	the	
typical	spectrum	of	fluctuations	

The	classical	scaling	of	
the	damping	rate	of	
Landau	damping	
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FDR	in	terms	of	electron	plasma-beta	
A	Landau-damping	scaling	is	
fully	compatible	with	Cluster	
data	within	solar	wind.	

FDR	identifies	collisionless	Landau	damping	as	the	main	dissipation	
mechanism,	and	is	able	to	open	a	“window”	even	on	scales	which	cannot	
be	directly	observed,	using	measurements	at	ion	scale.	

The	spectral	properties	are	
not	necessarily	due	to	a	
cascade	process,	rather	they	
are	a	consequence	of		FDR	
which	governes	both	
fluctuations	and	dissipation.	
Fluctuations	and	dissipation	
adjust	themself	to	an	out-of-
equilibrium	statistically	
stationary	situation.	

92	



Conclusions	

1.  Although	some	hypotheses	do	not	exactly	work,	large-scale	
fluctuations	in	solar	wind,	allows	us	to	think	these	fluctuations	
can	be	(robustly)	described	in	the	framework	of	MHD	turbulence;	

2.  On	smaller	scales,	at	about	ion	gyro-radius	or	inertial	length,	
linear	MHD	modes	become	kinetic,	exhibiting	a	dispersive	and	
dissipative	character	due	to	various	kind	of	wave-wave	and	wave-
particle	interactions.	

3.  Observations	of	small	scales	fluctuations	do	not	indicate	so	clearly	
a	theoretical	framework,	apart	for	the	fact	that	they	represent	
some	kind	of	“plasma	fluctuations”	which	must	be	dissipated,	
perhaps	through	Landau	damping.	A	“pandora’s	box”	of	possible	
interpretation	of	the	various	phenomenon	are	then	possible.		
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