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Dynamical systems

Dynamical systems can be classified according to different dimensions:

• Time-discrete vs. time-continuous

• Deterministic vs. stochastic (different mathematical frameworks, addressed by 
different model types and analysis techniques)
– How to deal with deterministic dynamics corrupted by noise? Filter noise (averaging, time scale 

separation/decomposition,…)? Separate or combined model/analysis?

• Linear vs. nonlinear (functional type of dependencies among different variables or 
observations of the same variable at different points in time)

• For deterministic systems: conservative vs. dissipative (in a statistical mechanics 
sense: how does the state space volume covered by the system change with time)

• Also for deterministic systems: regular (fixed point/periodic/quasiperiodic vs. 
deterministic-chaotic)
– Conservative (Hamiltonian) dynamics: mixed state space with coexisting domains

– Dissipative systems: attractors and repellors with their respective (time-forward or time-backward) 
basins of attraction, including possible multistability
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Overview (no exhaustive classification, there exist more methods!)

Duality between two approaches based on dynamical systems theory and information theory/statistical 
mechanics

Single time series analysis – for diagnosing/classifying the dynamics of a macroscopic observable

• State-space based methods (Correlation dimension, recurrence plots)

• Information-theoretic methods (Entropies, complexity measures)

Bi- and multivariate analysis – for diagnosing/classifying/quantifying dependencies among variables

• State-space based methods (Single- and multi-channel singular spectrum analysis, Cross-/joint 
recurrence plots)

• Information-theoretic methods (Mutual information/redundancies, transfer entropy)

Ultimate goals of both aspects:

• Selection of a proper model class/empirical model development

• Predicting the dynamical behavior

Nonlinear time series analysis
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Phase/state space concept

Dynamical systems typically have more than one relevant state variable

 n-dimensional state space spanned by these variables
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Time-delay embedding

Dynamical systems typically have more than one relevant state variable

But: one can often only observe/measure some component!

 How to estimate the true (topological) dimensionality of the system?
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Time-delay embedding

Takens embedding theorem: Chaotic attractors can be reconstructed from a single 
component (a time series) using proper embeddings

Common approach: time-delay embedding

Embedding delay t: identify independent components in time

• Linearly independent: first root of auto-covariance function (difficult especially for 
non-stationary and long-range dependent data); alternatively: de-correlation time

• Statistically least dependent: first minimum of mutual information function

Embedding dimension m: false nearest-neighbor method

𝒙 𝑡 = (𝑥 𝑡 , 𝑥 𝑡 − 𝜏 , … , 𝑥(𝑡 − 𝑚 − 1 𝜏)
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Time-delay embedding

Example: storm surge data (Siek et al., Nonlin. Proc. Geophys., 2010)

9Reik V. Donner, reik.donner@h2.de



Time-delay embedding

Theoretical considerations: for addressing all relevant “directions” of the dynamical system 
under study, an embedding dimension of m=2D+1 or higher theoretically guarantees 
complete unfolding of the trajectory (with D being the topological dimension of the 
system)

Practically, m=D is usually sufficient; choice of delay (choice of intrinsic time scale) often does 
not change results much

Problem: unknown D – what are suitable values of m? Depends on analysis method

• Some concepts intentionally use high-dimensional (over-) embedding (e.g. SSA), since 
they themselves attempt a dimensionality reduction explicitly or implicitly

• Estimation of fractal dimensions: conservative estimates – dimension D of the system 
(e.g. in the sense of correlation dimension) can only be properly estimated from a time 
series of length N if D < log10 (N)

• Consequence: for diagnosing nonlinear characteristic properties, high-dimensional 
embedding is often not necessary

• Even more: too high-dimensional embedding is often counter-productive – loss of 
statistical power due to reduced number of state vectors, introduction of numerical 
artifacts
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Chaotic dynamics and exponential 
divergence

Chaotic systems: trajectories of a deterministic system starting at points that 
are close in phase space diverge exponentially for a certain time period
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Complex deterministic systems:

• Redundancies between individual variables due to nonlinear interactions

• Scaling behavior of individual components

 non-integer (fractal) dimensions (smaller than topological dimensions of state space)

 transfer of notion from discrete mathematics (fractal sets) to time series analysis

 implies relationships between dynamical characteristics of a time series and 
geometric characteristics of the trajectory in state space

• Fractal dimensions  time series roughness ((multi-)fractal formalism)

• Dissipative-chaotic dynamics implies strange attractor (asymptotic set with non-
integer dimension)

• Note: non-integer dimensions do not imply chaos (e.g. strange non-chaotic 
attractors in quasiperiodically driven systems)

Fractal dimensions
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Correlation integral / correlation sum:

Scaling behavior: 

Grassberger-Procaccia algorithm

=> Requires saturation of scaling with m

𝐶(𝜀,𝑚)~𝜀𝐷2(𝑚)

Correlation dimension

Example: GP algorithm for the
Hénon system (source: Scholarpedia)
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Practical estimation: remove sojourn points (neighborhood relationships due to 
temporal auto-correlations – subsequent observations)

 Theiler window

Additional requirement: sufficiently long time series (typically: N ~ 10D)

Short and/or noisy time series: no plateau of log C / log e with increasing embedding 
dimension m

 Need alternative approaches (e.g., dimension densities)

Correlation dimension
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Approximate entropy

Improved measures:

• Sample entropy

• Fuzzy entropy

Incorporation of multi-scale information: multi-scale entropy (many algorithmic 
variants)

State space based entropy measures
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Recurrence: General idea

Recurrence of recent states is a typical 
feature of dynamical systems (Poincaré
1890):

“a system recurs infinitely many times 
as close as one wishes to its initial 
state”

Temporal pattern of recurrences 
encodes fundamental dynamic 
properties (Robinson & Thiel 2009)
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Eckmann et al. 1987: Visualization of recurrences in 

terms of “recurrence plots” based on the binary 

recurrence matrix

Recurrence plots

Periodic Lorenz (chaotic) White noise

(Donner et al., IJBC, 2011)
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Estimation of dynamical invariants
Diagonal lines indicate predictability – distribution of diagonal line lengths is 

related to certain dynamical invariants (Thiel et al., Chaos, 2004)

K2: 2nd-order Rényi entropy 
(measure for dynamical disorder)
D2: correlation dimension

(von Bloh et al., Nonlin. Proc. Geophys., 2005)
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Estimation of dynamical invariants
Example: complexity in modeled and observed climate data

(von Bloh et al., Nonlin. Proc. Geophys., 2005)

19Reik V. Donner, reik.donner@h2.de



Estimation of dynamical invariants
Example: stability of extrasolar planetary systems

(Asghari et al., A&A, 2004)
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Recurrence quantification analysis

Different types of dynamics result in different appearances of recurrence plots

 quantified in terms of statistical properties of diagonal and vertical “line” 
length distributions (recurrence quantification analysis)   [Marwan et al., 
Phys. Rep., 2007]

 Measures explicitly based on temporal interdependences
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Recurrence quantification analysis
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Recurrence rate

Determinism

Mean diagonal length

Divergence

Laminarity

Trapping time

Recurrence quantification analysis
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Recurrence quantification analysis
Statistics on length distributions of diagonal and vertical structures characterize 

the complexity of dynamics

Example: logistic map

(Marwan et al., Phys. Rep., 2007)
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Recurrence quantification analysis

Example: sunspot numbers
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Recurrence quantification analysis

Example: sunspot areas – variability on different scales (time series filtered by 
continuous wavelet transform with a Morlet wavelet)

(Donner, Lect. Notes Earth Sci., 2008)
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Recurrence networks: General idea

Time series
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Suppose we have 
1. a bound measurable set S embedded in a d-dimensional metric space with a 

continuous PDF p(x)
2. a set V of N points drawn randomly according to p(x)
3. a function f: S2 -> [0,1] with f(x,y)=f(|x-y|) being monotonically decreasing, 

describing with which probability two elements of V at positions x and y are 
mutually linked.

An undirected graph (V, E) with the elements of the edge set E being determined by f
is called a random geometric graph.

In what follows:   f(x,y) = Q(e-|x-y|)

Random geometric graphs
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Random geometric graphs

(Dall and Christensen, PRE, 2002)
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Why is this relevant here?

Let S be the manifold describing a (chaotic) attractor of some (dissipative) dynamical 
system, p(x) being the associated invariant density.

Then the geometric structure of the attractor can be approximated by a finite set of 
elements of S drawn at random according to p(x).

The properties of the resulting random geometric graphs reveal geometric 
characteristics of the attractor, which are commonly related to dynamical 
properties.

Random geometric graphs
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Interesting property describing the attractor geometry: network transitivity (version of 
the global clustering coefficient)

Random geometric graphs: transitivity

(Dall and Christensen, 
PRE, 2002)

Classical result: for a random geometric 
graph in a metric space of integer 
dimension d, transitivity scales 
exponentially with d

Dall and Christensen, PRE, 2002: analytics 
for Euclidean norm

Donner et al., EPJB, 2011: analytics for 
maximum norm: T=(3/4)d
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What if we construct a random geometric graph for a set S that does not fill the d-
dimensional space, but has a lower (fractal) dimension?

Conjecture: T is larger than expected for d dimensions, since 3-loops occur more often 
than for an isotropic alignment of vertices.

Definition of a new notion* of generalized dimension: transitivity dimension

If S homogeneously fills a subset of dimension d: DT = d.

*This notion is different from the classical concept of fractal dimensions based on consideration of 
scaling characteristics with varying e.

Random geometric graphs: transitivity
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Example: hourly Dst index for year 2001 (Donner et al., Chaos, 2018)

Period close to maximum of solar 
activity cycle 
Emergence of two periods with 
severe geomagnetic storms

Recent work: storm and non-storm 
periods exhibit distinct temporal 
organization structure, indicating 
“pathological” conditions during 
storms

Application: Magnetosphere dynamics
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(Donner et al., Chaos, 2018)
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Comparison with other methods (ROC analysis):

(Donner et al., Chaos, 2018)

Recurrence-based
Symbolic dynamics
based entropies

State space based entropies
Correlation-based measures

Application: Magnetosphere dynamics
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Measure AUC

Shannon entropy 0.670

Block entropy 0.862

Tsallis entropy 0.871

T complexity 0.860

Kolmogorov entropy 0.867

Approximate entropy 0.893

Sample entropy 0.890

Fuzzy entropy 0.892

Hurst exponent 0.730

LVD dimension density 0.845

Best recent approaches also based on 
phase space viewpoint !

Application: Magnetosphere dynamics
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Determinism 0.956

Laminarity 0.938

Trapping Time 0.940

Transitivity 0.959

Global Clustering 0.918

Average Path Length 0.806

Application: Magnetosphere dynamics
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(Donner et al., JGR Space, 2019)

Extension to solar wind drivers
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(Donner et al., JGR Space, 2019)

Extension to solar wind drivers
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(Alberti et al., J. Space 
Weather Space Clim., 2020)

Scale-specific analysis: SYM-H index
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Here: empirical mode decomposition of 1-minute resolution SYM-H time series for 
two representative time periods in summer 2018, application of recurrence 
analysis to the different intrinsic mode functions



Here: hourly Dst data for 2015, recurrence network transitivity, pointwise significance 
testing using shuffle surrogates

Scale-specific windowed analysis
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Comparison: same test with shuffle vs. IAAFT surrogates as benchmarks
(further improvement: areawise significance test of Lekscha and Donner (Proc. R. Soc. 

A, 2019) 

Scale-specific windowed analysis
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Multivariate extensions of recurrence 
plots
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Multivariate extensions of recurrence 
plots
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Cross-recurrence plots
Useful for joint study of two variables representing the same physical quantity and 

exhibiting the same probability distribution (example: activity indices at both solar 
hemispheres, velocity/pressure/temperature of a turbulent medium at two points 
in space,…)

Different analysis options:

1. Cross-recurrence quantification analysis

Note: once the requirements “same observable” and “same PDF” are not met, this 
analysis can still be performed, yet with questionable interpretability of the results.

Possible modifications: PDF transform of both time series prior to quantitative analysis, 
“cross-anti-recurrence” for negatively correlated zero-mean quantities (replacing vector 
difference in distance by vector sum)
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Applicable to time scale adjustment or dynamic time warping (Marwan et al., NPG, 
2002)
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Example: Zolotova & Ponyavin, A&A, 2006:
Northern vs. Southern hemispheric sunspot areas



Inter-system recurrence networks
Idea: Combing recurrence and “cross-recurrence” matrices with different densities of 

intra- and inter-system edges – coupled network paradigm
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Inter-system recurrence networks
Asymmetries between interacting network measures: coupling direction

(Feldhoff et al., Phys. 
Lett. A, 2012)

so far only heuristic arguments!
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Inter-system recurrence networks
Example: Two diffusively coupled Rössler oscillators

(Feldhoff et al., Phys. 
Lett. A, 2012)
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Inter-system recurrence networks
Example: Coupling between Indian and East Asian Summer Monsoon

(Feldhoff et al., Phys. 
Lett. A, 2012)
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Inter-system recurrence networks
Example: Coupling between Indian and East Asian Summer Monsoon

Result: clear indication for a coupling ISM 
=> EASM

(Feldhoff et al., Phys. 
Lett. A, 2012)
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Joint recurrences
Idea: study simultaneous recurrences of two or more systems (Romano et al., EPL, 

2005; Feldhoff et al., EPL, 2013)

(Feldhoff et al., EPL, 2013)
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Joint recurrences & Generalized 
synchronization

Allows for general functional relationship between different systems (Rulkov et al., 1995) 
– detection is problematic

Romano et al., EPL, 2005: in presence of GS, recurrences of both systems occur at the 
same time – recurrence plots become the same, density of points in joint RP 
approaches that of single-system recurrence plots
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Joint recurrences & Generalized 
synchronization

Example: two coupled Rössler oscillators (Romano et al., EPL, 2005)
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Joint recurrences & Generalized 
synchronization

Problem: limit of JPR=1 is hardly approached in complex scenarios (e.g., coupled Rössler
systems in funnel regime)

Idea: use higher-order characteristics (three-point relations: transitivity)

absence of synchronization: 

generalized synchronization: locking of effective dynamical degrees of freedom

Characteristic parameter: transitivity ratio
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Example: Coupled Rössler systems
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Example: Coupled Rössler systems

(Feldhoff et al., EPL, 2013)
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Example: Coupled Rössler systems

(Feldhoff et al., EPL, 2013)
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Conditional recurrence

Coupling direction between two variables can be estimated using conditional recurrence
probabilities (Romano et al., PRE, 2007)

59Reik V. Donner, reik.donner@h2.de

Example: chaotic Rössler system driven by a 
stochastic van-der-Pol system (Romano et al., 
PRE, 2007)



Conditional recurrence

Partial mean conditional recurrence probability (Zou et al., IJBC, 2011: distinguish direct
from indirect couplings if more than two variables are involved
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Conditional recurrence

Systematic application of those ideas: convergent cross-mapping (Sugihara et al., 
Science, 2012) – method for detecting causality among variables

 Predictability of dynamical state space neighbors of one variable from dynamical
neighbors of the other implies causal effect
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Take home messages

Recurrence as a fundamental paradigm of dynamical systems

Recurrence plots to qualitatively distinguish different types of dynamics

Recurrence quantification analysis and recurrence network analysis – suite of measures of
dynamical and geometric complexity to characterize nonlinear time series quantitatively

Bi- and multivariate extensions of recurrence plots, recurrence quantification analysis and
recurrence networks to study interdependency between time series reflecting different 
subsystems or different variables (coupling identification and quantification, 
synchronization detection, direct vs. Indirect coupling, causality)

Cautionary note: not all variables are equally suited for recurrence analysis to provide
interpretable information – depends (among others) on observability of associated
variable
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