

machine learning and flare forecasting

michele piana

the MIDA group

dipartimento di matematica, università di genova

CNR – SPIN, genova

an Al prelude

data at the core

"information consumes the attention of its recipients. hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it"

(herbert simon, nobel prize for economy)

from big data to

- rich data
- meaningful data
- understood data
- interpreted data

focus on computation

- data simulation
- data analysis
 - \circ inverse problems
 - \circ machine learning

all this is artificial intelligence

data simulation

at disposal:

- a mathematical model mimicking the data formation process
- a set of input parameters for the model
- a numerical method for the solution of the model equations
- objective to accomplish: the set of simulated data

example: simulation of flaring emission

- model: MHD equations + standard model + bremsstrahlung equation
- input parameters: properties of the propagation medium
- numerical method: FEM, FDM, BEM,...
- objective to accomplish: the evolution of the flaring emission along time and spectral energy

data analysis – inverse problems

at disposal:

- a mathematical model mimicking the data formation process
- a set of experimental measurements
- a numerical method for the solution of the inverse problem
- a statistical model to exploit for formulating the inversion method
- objective to determine: input parameters in the model

example: "most people, if you describe a train of events to them, will tell you what the result would be...there are few people, however, who, if you tell them a result, would be able to evolve from their inner consciousness what the steps where which led up to that result. this power is what i mean when i talk of reasoning backwards, or analytically... there are fifty who can reason synthetically for one who can reason analytically..."

(sherlock holmes in 'a study in scarlet')

data analysis – machine learning

at disposal:

- a historical set of physical parameters (features) with corresponding labels describing the occurrence of a specific condition
- a set of un-labelled incoming features
- a numerical method able to generalize
- objective to determine: the set of labels associated to the set of incoming features

example: flare forecasting:

- historical data: a set of feature vectors extracted from AR magnetic images by means of pattern recognition + X-ray data stating flare occurrence and corresponding class
- incoming data: set of images of a new AR
- objective to determine: probability of occurrence of a flare generated by the new AR and corresponding class

simulation vs analysis: a math perspective

simulation:

- well-posedness: stable and unambiguous problems
- crucial issues:
 - $\circ~$ approximation accuracy
 - computational burden

analysis

- ill-posedness: unstable and ambiguous problems
- crucial issues:
 - \circ $\,$ how to restore uniqueness and stability
 - reconstruction/generalization accuracy

a tentative general scheme

- $A: X \rightarrow Y$ map mimicking the image formation process
 - $f \in X$ input parameters
 - $g \in Y$ experimental data set

simulation: A(f)

inverse problems and machine learning: $V(f,g) + \lambda ||B(f)||_p^p = minimum$

- inverse problems: V(f,g) measures how much accurately the candidate solution fits the experimental mesurements through the model; $||B(f)||_p^p$ realizes stability
- machine learning: V(f,g) measures how much accurately the candidate predictor would reproduce the label of the historical set; $||B(f)||_p^p$ realizes generalization

the flare problem: a machine learning perspective

• flare forecasting

 o data: SDO/HMI data of active regions (ARs); GOES flare observations and classification (for labelling)
 o unknowns: binary prediction with corresponding flare class

o method: regularization networks

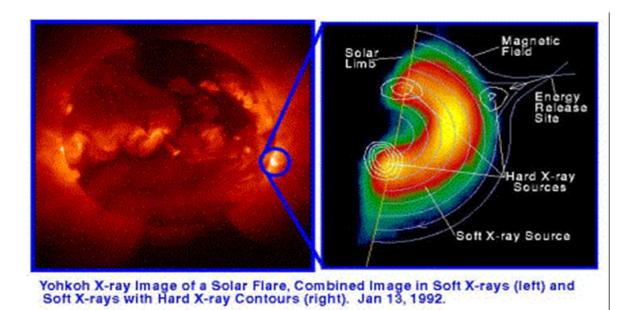
flaring source reconstruction

data: hard X-ray visibilities measured by STIX in solar orbiter
 unknowns: shape and physics parameters of the hard X-ray source

 \circ method: deep neural networks

a physics prelude

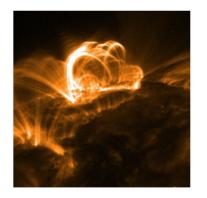
solar flares: phenomenology



- generate from ARs
- extend over 10,000 kilometers
- release more than 10³² ergs in 10-100 seconds
- accelerate billion tons of material to more than a million km per hour
- produce electromagnetic radiation at all wavelengths
- are the main trigger of space weather (connections with CMEs, SEPs, solar wind)

the flare paradox

- inductance: 10⁻⁶ henry
- voltage: 220 V
- light-up time (estimated): 10⁻⁹ s
- light-up time (observed): instantaneous



- inductance: 10 henry
- voltage: 10⁶ V
- light-up time (estimated): 3 x 10⁵ years
- light-up time (observed): minutes

flare-related data

• vector magnetograms:

o information on ARs and their productivity
o SDO/HMI (looking ahead: PSI in solar orbiter)

• EUV maps:

flare morphology
SDO/AIA (looking ahead: EUI in solar orbiter)

- hard X-ray visibilities:
 - \circ acceleration mechanisms
 - RHESSI (looking ahead: STIX in solar orbiter)

flare forecasting

the data

point-in-time SDO/HMI images:

- time range: 09/14/2012 04/30/2016
- four issuing times: 00:00 UT 06:00 UT 12:00 UT 18:00 UT
- cadence: 24 hours

features (for each AR):

• 171 features identified in each active region:

o 167 extracted with a specific pattern recognition algorithms

longitude and latitude of the AR

 \odot binary label encoding the presence of a flare in the past

flare class (if occured)

 overall 4442 sets of 171-dimension feature vectors (one AR may last for more than one HMI image)

training set and test set

we consider supervised learning methods: we need to construct a labeled training set for each issuing time:

- 1. 66% active regions (ARs) are randomly extracted from the overall set of ARs
- 2. feature vectors (FVs) associated to each AR are labeled by annotating whether a flare with class at least C1 occured in the next 24 hours
- 3. the labelling process is performed by using GOES data
- 4. the set of remaining FVs is not labeled and is used as test set for experiments

the problem

given a set of 171 features extracted from an AR in the test set, we want to:

- 1. predict whether an at least C1 flare occurred in the next 24 hours
- 2. determine which features among the 171 ones mostly impacted the prediction (i.e., compute the weights with which the features contributed to the prediction task and rank them)

the algorithms

- hybrid LASSO
- hybrid logit
- support vector machine for classification
- random forest

the routines for the four methods (and for many more) are available at flarecast.eu

hybrid LASSO – first step

- X is an NxF matrix with N=4442, F=171:
 o each row contains a feature vector
 O X is the training set
- y is an Nx1 vector made of binary labels
- β is an Fx1 vector made of feature weights

compute:

1.
$$\hat{\beta} = \operatorname{argmin}_{\beta}(\|y - X\beta\|_{2}^{2} + \lambda\|\beta\|_{1})$$

2. $\hat{y} = X\hat{\beta}$

hybrid LASSO – second step

- 3. apply an unsupervised clustering algorithm to $\hat{y} = X\hat{\beta}$: the outcome is a partition of \hat{y} in two classes (which corresponds to determine a data-adaptive threshold)
- 4. when a new feature vector x arrives compute the number $x^t \hat{\beta}$ and and assign it to the closest class

retrieved information:

- flare prediction
- set of feature weights $\hat{\beta}$ computed against the training set

flare prediction: outcome

- a real number which is a probability measure for the (GOES class labelled) flare occurrence
- a binary prediction based on the probability measure
- some skill scores explaining the reliability of the prediction

flare prediction: assessment

skill scores against the test set:

$$TSS = \frac{TP}{TP + FN} - \frac{FP}{FP + TN} \quad \text{(true skill statistic)}$$

$$HSS = \frac{2 \cdot (TP \cdot TN - FN \cdot FP)}{(TP + FN) \cdot (FN + TN) + (TP + FP) \cdot (FP + TN)} \quad \text{(heidke skill score)}$$

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} \quad \text{(accuracy)} \qquad FAR = \frac{FP}{TP + FP} \quad \text{(false alarm ratio)}$$

$$POD = \frac{TP}{TP + FN} \quad \text{(probability of detection)}$$

results: about training and scores

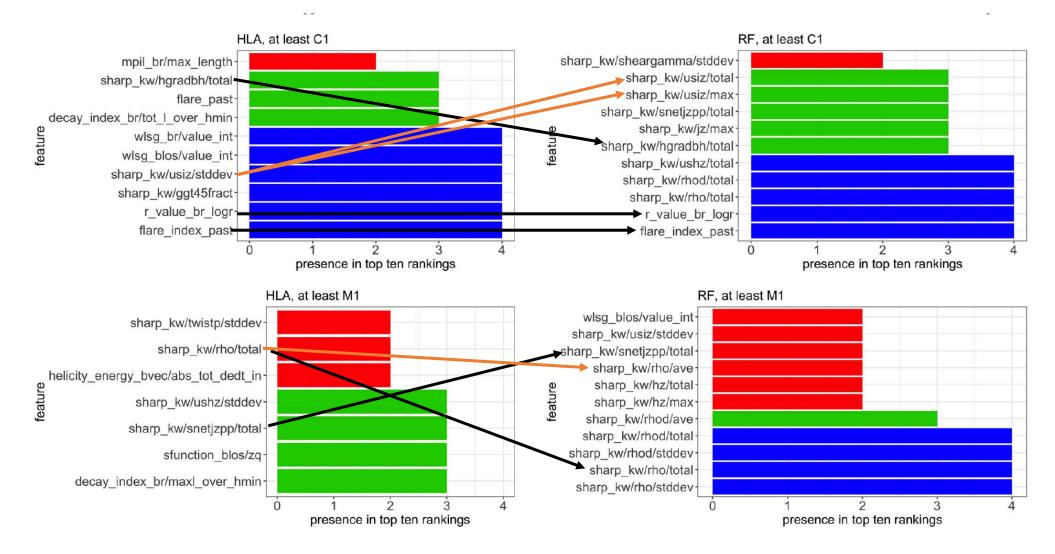
	Test Set-C1+	Test Set-C1+	Test Set-M1+	Test Set-M1+ HSS		
00:00:00UT	TSS	HSS	TSS			
HLA	0.48 ± 0.06	0.51 ± 0.05	0.56 ± 0.14	0.27 ± 0.06		
RF	0.53 ± 0.05	0.52 ± 0.04	0.48 ± 0.14	0.33 ± 0.09		
06:00:00UT	TSS	HSS	TSS	HSS		
HLA	0.53 ± 0.03	0.54 ± 0.03	0.67 ± 0.05	0.35 ± 0.04		
RF	0.54 ± 0.03	0.54 ± 0.03	0.49 ± 0.08	0.42 ± 0.06		
12:00:00UT	TSS	HSS	TSS	HSS		
HLA	0.51 ± 0.04	0.54 ± 0.03	0.66 ± 0.06	0.38 ± 0.04		
RF	0.53 ± 0.03	0.53 ± 0.03	0.51 ± 0.09	0.43 ± 0.06		
18:00:00UT	TSS	HSS	TSS	HSS		
HLA	0.54 ± 0.04	0.55 ± 0.03	0.64 ± 0.07	0.39 ± 0.04		
RF	0.55 ± 0.03	0.55 ± 0.03	0.53 ± 0.09	0.43 ± 0.06		

training according to active regions

	Test Set-C1+	Test Set C1+	Test Set-M1+	Test Set-M1+
	TSS	HSS	TSS	HSS
HLA	0.58 ± 0.01	0.51 ± 0.01	0.70 ± 0.02	0.31 ± 0.03
RF	0.61 ± 0.01	0.56 ± 0.02	0.71 ± 0.03	0.39 ± 0.02
Florios et al. (2018)	0.60 ± 0.01	0.59 ± 0.01	0.74 ± 0.02	0.49 ± 0.01
Bobra & Couvidat (2015)			0.76 ± 0.04	0.52 ± 0.04

training according to features

results: top-ten rankings



number of times each feature is selected in the top-10 rankings, on average over 100 random realizations of the test set, for all issuing times

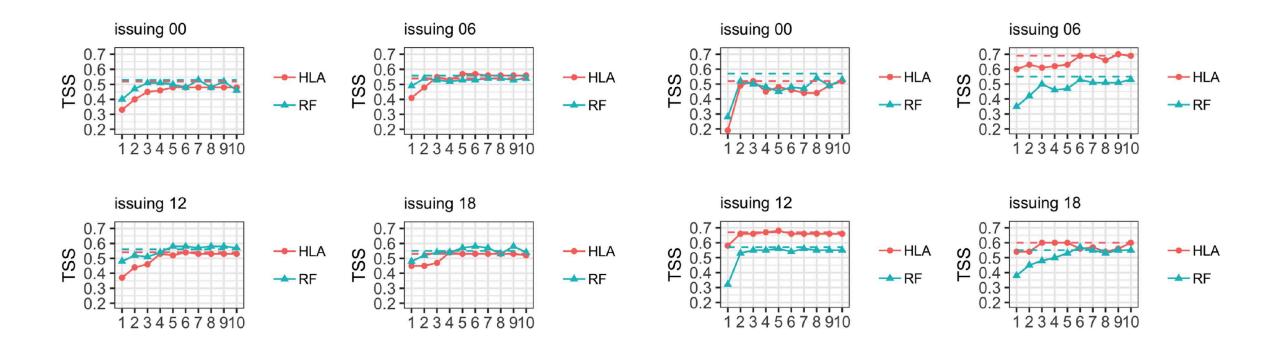
feature ranking: results - 3

	at least C1 flares								at least C1 flares						
	Hybrid Lasso	Hybrid Logit	SVC	Random Forest		average	std		Hybrid Lasso	Hybrid Logit	SVC	Random Forest		average	std
flare_index_past	13,98	28,84	19,91	3,51		16,56	10,63	<u>wlsg_br/value_i</u> nt	3,23	5	23,95	30,02		15,55	13,45
sharp_kw/hgradbh/total	3,47	37	18,59	16,57	\square	18,95	13,87	-flare_inde x_past	13,89	31,13	33,92	5,47		21,10	13,68
wlsg_br/value_int	3,74	14,43	22,86	43,14		21,04	16,68	sharp_kw/usiz/total	36,44	15,8	11,39	26,1		22,43	11,19
sharp_kw/jz/max	26,05	28	16,94	18,58		22,27	5,29	sharp_kw/hgradbh/total	29,06	7,55	24,87	39,45		25,23	13,29
sharp_kw/usiz/max 🗸	24,2	36,75	34,79	18,37		28,53	8,73	sharp_kw/ggt45fract	5,25	17,14	50,68	28,25		25,33	19,33
wlsg_blos/value_int	1	45	46,61	25,39		30,24	20,00	ising_energy_br/ising_energy	24,14	19,67	26,49	55,1		31,35	16,08
r_value_br_logr	3,52	2,81	128,91	14		35,68	62,19	wisg_blos/value_int	12,83	35,08	41,12	51,11		35,04	16,21
sharp_kw/ggt45fract 🖌	14,99	32	57,6	49,3		38,35	19,00	r_valu e_br_logr	6,52	4,13	126,06	16,87		38,40	58,70
sharp_kw/usiz/stddev=	17,15	49,46	54,26	45,89		41,69	16,72	sharp_kw/usiz/stddev	4,67	22,41	69,63	57,61		38,58	30,21
sharp_kw/gamma/total	61,65	20,76	52,95	34,67		42,51	18,35	sharp_kw/usiz/max	31,77	44,87	80,57	19,66		44,22	26,33

issuing time: 12:00:00

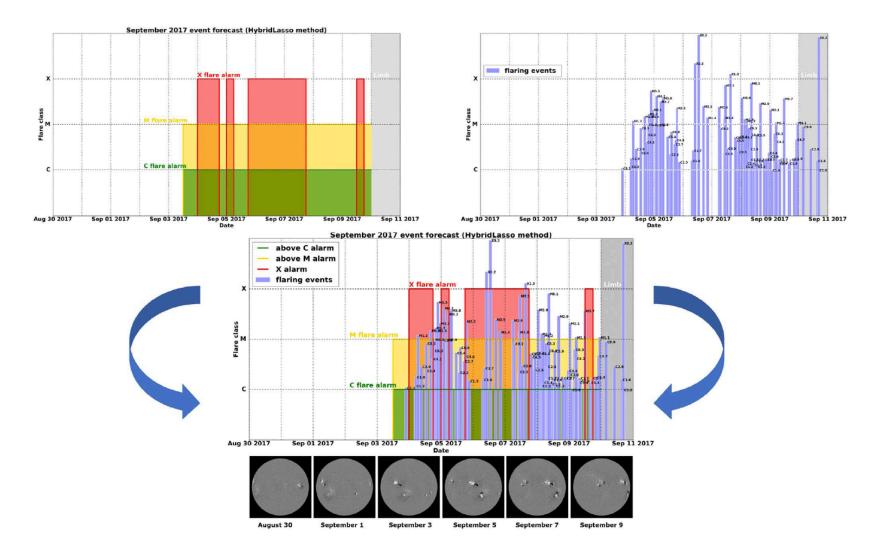
issuing time: 00:00:00

results: redundancy of information



TSS scores obtained by using just the 10 top-ten features added one at a time

machine learning as a warning machine forecasting of the september 2017 flaring storm



some references

- poggio t and girosi f 1990 networks for approximation and learning, *proc* IEEE 78 (9), 1481-1497
- bertero m, poggio t and torr v 1988 ill-posed problems in early vision, proc IEEE 76 869
- bertero m 1989 linear inverse and ill-posed problems *adv electron electr phys* 75 1
- rosasco I, de vito e, caponnetto a, piana m and verri a 2004 are loss functions all the same? *neural* comput 16 1063
- benvenuto f, campi c, massone a m and piana m 2020 machine Learning as a flaring storm warning machine: was a warning machine for the 2017 september solar flaring storm possible? *ApJL* 904 L7
- campi c et al 2019 feature ranking of active region source properties in solar flare forecasting and the uncompromised stochasticity of flare occurrence *ApJ* 883 150
- benvenuto f, piana m, campi c and massone a m 2018 a hybrid supervised/unsupervised machine learning approach to solar flare prediction *ApJ* 853 90
- giordano s, pinamonti n, piana m and massone a m 2015 the process of data formation for the spectrometer/telescope for imaging X-rays (STIX) in solar orbiter *SIAM J Imag Sci* 8 1315