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Summary:	
	

	
Learning	Machine:	what	it	is	&	how	it	works	
A	new	name	for	well-defined	technologies	
	

Computational	models	and	Computability	Theory	
Not	everything	can	be	computed	…	
	

Some	notes	on	Computational	Paradigms	
Analog	Computing	and	Neural	Networks	
	
Neural	Network	as	ML	algorithm	
From	formal	Neuron	to	Multiple	perceptron:	Learning	&	Generalization.	
	
	
I	apologize	for	my	broken	English	and	for	the	large	number	of	slides	

Do	we	really	need	Machine	
Learning	Methods	in	Physics?	
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What	is	machine	learning	?	

The	number	of	publications	in	ML	is	growing	exponentially.	

Google	Trends	

Machine	Learning	
Big	Data	

Machine-learning	algorithms	use	statistics	to	find	
patterns	in	massive	amounts	of	data.	And	data,	
here,	encompasses	a	lot	of	things,	numbers,	words,	
images,	clicks,	what	have	you.	If	it	can	be	digitally	
stored,	it	can	be	fed	into	a	machine-learning	
algorithm.	

https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-another-flowchart/	

The	better	the	algorithm,	the	
more	accurate	the	decisions	and	
predictions	will	become	as	it	

processes	more	data.	

Machine	learning	is	a	branch	of	artificial	intelligence	(AI)	focused	on	building	applications	that	learn	
from	data	and	improve	their	accuracy	over	time	without	being	programmed	to	do	so.	In	machine	
learning,	algorithms	are	'trained'	to	find	patterns	and	features	in	massive	amounts	of	data	in	order	to	
make	decisions	and	predictions	based	on	new	data.	

https://www.ibm.com/cloud/learn/machine-learning#toc-what-is-ma-qhM6PX35	
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How	machine	learning	work	!	
https://www.ibm.com/cloud/learn/machine-learning#toc-what-is-ma-qhM6PX35	

There	are	five	basic	steps	for	building	a	
machine	learning	application	(or	model).		
	These	are	typically	performed	by	data	scientists	working	closely	with	
the	business	professionals	for	whom	the	model	is	being	developed.	

Step	1:	Select	and	prepare	a	training	data	set	

Training	data	is	a	data	set	representative	of	the	data	the	
machine	learning	model	will	ingest	to	solve	the	problem	it’s	
designed	to	solve.	
•  labeled	data:	‘tagged’	to	call	out	features	and	classifications		
•  unlabeled	data,	and	the	model	will	need	to	extract	those	features	

and	assign	classifications	on	its	own.	
	
The	training	data	needs	to	be	properly	prepared—randomized,	
de-duped,	and	checked	for	imbalances	or	biases	that	could	
impact	the	training.		
	
It	should	also	be	divided	into	two	subsets:	the	training	subset,	
which	will	be	used	to	train	the	application,	and	the	evaluation	
subset,	used	to	test	and	refine	it.	

Population	

Sample	

Sample	

Training	
Subset	

Evaluation	
Subset	



Rome	3	February	2021	Gaetano	Salina	

An	introduction	to	machine	learning	methods	in	physics	

How	machine	learning	work	!	
There	are	five	basic	steps	…	

Step	2:	Choose	an	algorithm	

Labeled	Data	
•  Regression	algorithms:	Linear	regression	predicts	the	value	of	a	dependent	variable	based	on	the	value	of	an	
independent	variable.	Logistic	regression	is	used	when	the	dependent	variable	is	binary	in	nature.		

•  Decision	trees:	Decision	trees	use	classified	data	to	take	decisions	based	on	a	set	of	decision	rules.	
•  Instance-based	algorithms:	K-Nearest	Neighbor.	It	uses	classification	to	estimate	how	likely	a	data	point	is	to	be	
a	member	of	one	group	or	another	based	on	its	proximity	to	other	points.		

	

Unlabeled	Data	
•  Clustering	algorithms:	Identifying	groups	of	similar	records	and	labeling	the	records	according	to	the	group.	

This	is	done	without	prior	knowledge	about	the	groups	and	their	characteristics.	
•  Association	algorithms:	Association	algorithms	find	patterns	and	relationships	in	data	and	identify	frequent	‘if-

then’	relationships	called	association	rules.	These	are	similar	to	the	rules	used	in	data	mining.		
•  Neural	networks:	Them	were	vaguely	inspired	by	the	inner	workings	of	the	human	brain.	A	neural	network	is	

an	algorithm	that	defines	a	layered	network	of	calculations	featuring	an	input	layer,	at	least	one	hidden	layer,	
where	calculations	are	performed	make	different	conclusions	about	input;	and	an	output	layer.	where	each	
conclusion	is	assigned	a	probability.	

Algorithm	is	a	set	of	statistical	processing	steps.	
The	algorithm	depends	on	the	type	and	amount	
data	set	and	on	the	problem	to	be	solved.	

Sample	

Training	
Subset	

Algorithm	
Selection	
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How	machine	learning	work	!	
There	are	five	basic	steps	…	

Step	3:	Training	the	algorithm	(create	the	model)		
Training	the	algorithm	is	an	iterative	process	
comparing	the	output	with	the	results	it	should	
have	produced,	adjusting	weights	and	biases	
within	the	algorithm	that	might	yield	a	more	
accurate	result,	and	running	the	variables	again	
until	the	algorithm	returns	the	correct.	

Step	4:	Evaluation	of		the	model	
Once	the	model	is	defined,	its	performance	are	
evaluate	using	the	Evaluation	Subset.	The	hope	
and	goal	is	that	model	learns	a	relationship	that	
generalizes	to	new	examples	beyond	the	Training	
Subset.	

Sample	

Training	
Subset	

Algorithm	
Selection	

Evaluation	
Subset	

Evaluation	

Training	

OK	?	

adjusting		
weights	… 	

NO	

Parameters	
Tuning	
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How	machine	learning	work	!	
There	are	five	basic	steps	…	

Step	5:	Using	and	improving	the	model		
The	final	step	is	to	use	the	model	with	new	data	
and,	in	the	best	case,	for	it	to	improve	in	accuracy	
and	effectiveness	over	time.		

Population	

Sample	

Model	

Knowledge	

Machine	Learning	Styles	
	

•  Supervised	machine	learning	trains	itself	on	a	labeled	data	set.	For	
example,	a	computer	vision	model	designed	to	identify	purebred	
German	Shepherd	dogs	might	be	trained	on	a	data	set	of	various	labeled	
dog	images.	

•  Unsupervised	machine	learning	uses	unlabeled	data	and	uses	algorithms	
to	extract	meaningful	features	needed	to	label,	sort,	and	classify	the	data	
in	real-time,	without	human	intervention.	An	unsupervised	learning	
algorithm	can	analyze	huge	volumes	of	emails	and	uncover	the	features	
and	patterns	that	indicate	spam.	

•  Semi-supervised	learning	offers	a	happy	medium	between	supervised	
and	unsupervised	learning.	During	training,	it	uses	a	smaller	labeled	data	
set	to	guide	classification	and	feature	extraction	from	a	larger,	unlabeled	
data	set.		
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The	Knowledge	Discovery	Process	has	the	aim	of	providing	decisions	based	
on	data.	The	ETL	(Extract,	Transform	and	Load,	i.e.	steps	1-3)	is	important	to	
have	an	integrated	Knowledge	Base,	with	unique	and	quality	data,	without	
redundancy.		

Machine	Learning	as	Knowledge	Discovery	Process	
	
		

•  Selection:	Capturing	relevant	prior	knowledge,	identifying	the	data-mining	goal	and	
developing	and	understanding	of	the	application	domain.	Based	on	that,	proper	data	
samples	as	well	as	relevant	variables	can	be	selected.	

•  Pre-processing:	The	selected	data	are	processed.	In	this	step	the	handling	of	missing	values,	the	
identification	(and	correction)	of	noise	and	errors,	the	elimination	of	duplicates,	as	well	as	the	
matching,	fusion,	and	conflict	resolution	for	data	taken	from	different	sources	are	done.	

•  Transformation:	The	clean	dataset	is	transformed	into	a	form	suitable	for	data	mining	algorithms	
analysis.	To	improve	the	analysis	performance	dimensionality	reduction	methods	can	also	be	applied.	

•  Data	mining:	
•  Heuristic	Approach:	the	goal	of	the	is	matched	to	a	particular	method,	such	as	classification,	regression,	or	

clustering	the	transformed	data.	A	decision	about	which	models	and	parameters	might	be	appropriate	must	be	
done	and	matching	a	particular	data	mining	method	with	the	overall	criteria	of	the	KDP	in	Datasets	process	is	
necessary.	

•  Theoretical	Approach:	the	transformed	data	are	used	to	derive	the	“interaction”	parameters	of	a	theoretical	
dynamic	model.	The	KDP	coincides	with	the	understanding	of	the	system's	dynamics.	

•  Evaluation	and	interpretation:	The	patterns	and	models	derived	are	analysed	with	respect	to	their	
validity.	The	user	assesses	the	usefulness	of	the	found	knowledge	for	the	given	application.	A	data	
visualization	of	the	extracted	patterns	and	models	is	involved.	
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Machine	Learning	Zoo	
		

A	Zoo	with	well	known	Algorithms.		

Old	wine	in	a	new	bottle	!!!	…	

SN 

Y f 

Binary	Classifier:	
  S N f⎯ →⎯ Z 2
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https://www.wired.com/2008/06/pb-theory/	

…	And	a	New	Vision	!	

Google's	founding	philosophy	is	that	we	
don't	know	why	this	page	is	better	than	
that	one:	If	the	statistics	of	incoming	
links	say	it	is,	that's	good	enough.	
	
No	semantic	or	causal	analysis	is	
required.	That's	why	Google	can	
translate	languages	without	actually	
"knowing"	them	(given	equal	corpus	
data,	Google	can	translate	Klingon	into	
Farsi	as	easily	as	it	can	translate	French	
into	German).	And	why	it	can	match	ads	
to	content	without	any	knowledge	or	
assumptions	about	the	ads	or	the	
content.	
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…	And	a	New	Vision	!	
Speaking	at	the	O'Reilly	Emerging	
Technology	Conference	this	past	March,	
Peter	Norvig,	Google's	research	director,	
offered	an	update	to	George	Box's	maxim:	
"All	models	are	wrong,	and	increasingly	you	
can	succeed	without	them.”	
	
This	is	a	world	where	massive	amounts	of	
data	and	applied	mathematics	replace	every	
other	tool	that	might	be	brought	to	bear.	
Out	with	every	theory	of	human	behavior,	
from	linguistics	to	sociology.	Forget	
taxonomy,	ontology,	and	psychology.	Who	
knows	why	people	do	what	they	do?	The	
point	is	they	do	it,	and	we	can	track	and	
measure	it	with	unprecedented	fidelity.	
With	enough	data,	the	numbers	speak	for	
themselves.	

https://www.wired.com/2008/06/pb-theory/	
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…	And	a	New	Vision	!	

…	
There	is	now	a	better	way.	Petabytes	
allow	us	to	say:	"Correlation	is	
enough."	We	can	stop	looking	for	
models.	We	can	analyze	the	data	
without	hypotheses	about	what	it	
might	show.		
	
We	can	throw	the	numbers	into	the	
biggest	computing	clusters	the	world	
has	ever	seen	and	let	statistical	
algorithms	find	patterns	where	
science	cannot.	
…	
Chris	Anderson	

https://www.wired.com/2008/06/pb-theory/	
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The	new	ideas	and	new	technologies	have	an	extra-academic	origin!	

… And	a	new	Social	Paradigm	of	Research	
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…	And	a	New	Market	!	

Machine	Learning	&	Big	Data	&	Quantum	Computers		
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…	And	a	New	Market	!	
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The	number	of	publications	in	ML	is	growing	exponentially.	

Speaking	at	an	AI	conference,	
Rahimi	charged	that	machine	
learning	algorithms,	in	which	
computers	learn	through	trial	
and	error,	have	become	a	form	
of	"alchemy."	Researchers,	he	
said,	do	not	know	why	some	
algorithms	work	and	others	

don't,	nor	do	they	have	rigorous	
criteria	for	choosing	one	AI	
architecture	over	another.		

Is	it	all	OK	?	
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Social	media	and	networks	
(all	of	us	are	generating	data)	
	

Scientific	instruments	
(collecting	all	sorts	of	data)	
	

Mobile	devices		
(tracking	all	objects	all	the	time)	
	

Sensor	networks	
(measuring	all	kinds	of	data)		

Quantum	Computers	

Data	(Big)	

Knowledge	

Computational	Tools	

Game	Over	?	
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Social	media	and	networks	
(all	of	us	are	generating	data)	
	

Scientific	instruments	
(collecting	all	sorts	of	data)	
	

Mobile	devices		
(tracking	all	objects	all	the	time)	
	

Sensor	networks	
(measuring	all	kinds	of	data)		

Data	(Big)	

Computational	Tools	

Knowledge	!	Computational	Models	

Knowledge		
needs		

to	develop	
Computational		

Models	
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Computational	Models?	
Computational	models	are	mathematical	models	that	are	
simulated	using	computation	to	study	complex	systems.	…		
The	parameters	of	the	mathematical	model	are	adjusted	using	
computer	simulation	to	study	different	possible	outcomes.	
www.nature.com/subjects/computational-models	

This	may	be	a	restrictive	definition	

Knowledge	!	Computational	Model	means:	
	

Knowledge	!	Theory	!	Algorithms.	
We	know	the	relevant	observables	for	describing	a	system	and	their	interaction	laws.	
Computational	models	allow	us	to	solve	system	with	a	large	number	of	degree	of	freedom	and	
complex	dynamic	or	with	non	linear	and/or	non	local	interaction.	Computational	models	are	
used	when	analytical	tools	fail	or	are	unsuitable.	
	
or	
	

Knowledge	!	Heuristic	!	Algorithms.	
No	theory	is	available	and/or	we	are	not	sure	that	the	observables	are	relevant	and/or	the	
system	is	described	by	non-numerical	observables.	We	use	trial	errors	heuristic	approach	to	
define	the	observables	interactions	and	define	some	numerical	algorithms.	Having	a	large	
number	of	degree	of	freedom	and	semantic	different	data	we	are	playing	in	the	field	of	Big	
Data.	Computational	models	help	us	do	define	the	correct	observables	and	the	system	dynamic.	
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Physical	Systems	
	
	
	

Knowledge	!	Primitive	Data	
	
	
	
	

Knowledge	!	Derivative	Data	
	
	

	
Data	

	
	

Computational	Models	
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Knowledge	!	Theory	!	Algorithms.	
We	know	the	relevant	observables	for	
describing	a	system	and	their	interaction	laws.	
Computational	models	allow	us	to	solve	
system	with	a	large	number	of	degree	of	
freedom	and	complex	dynamic	or	with	non	
linear	and/or	non	local	interaction.	
Computational	models	are	used	when	
analytical	tools	fail	or	are	unsuitable.	

Knowledge	!	Heuristic	!	Algorithms.	
No	theory	is	available	and/or	we	are	not	sure	
that	the	observables	are	relevant	and/or	the	
system	is	described	by	non-numerical	
observables.	We	use	trial	errors	heuristic	
approach	to	define	the	observables	
interactions	and	define	some	numerical	
algorithms.	Having	a	large	number	of	degree	of	
freedom	and	semantic	different	data	we	are	
playing	in	the	field	of	Big	Data.	Computational	
models	help	us	do	define	the	correct	
observables	and	the	system	dynamic.	

Keplero	

Brahe	was	a	towering	
figure.	He	ran	a	huge	
research	program	with	a	
castle	like	observatory,	a	
NASA-like	budget,	and	the	
finest	instruments	and	best	
assistants	money	could	
buy.		

Brahe	

http://www.chrisbaldassano.com/
blog/2015/05/11/bigdata/	

Theoretical	
Models	

	
Theory	of	
Measure	
(exp	data)	

	
Instrumental	
Developing	

How	Physics	tamed	(tames)	Big	Data	
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Knowledge	!	Computational	Models	

Computational	Tools	

!	

Computational	Paradigms	

!	

Programming	languages	

Experiment	

Theory	 Simulation	

The	three	pillars	of	
the	Physics		

Physical	Systems	

Knowledge	!	Data	

!	
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Binary	Search	
	

													Spin	Systems	
	
	

Bernoulli	Trials	
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Do	Computational	Models	mean	Algorithms	?	

Algorithm:	
	

An	algorithm	is	a	finite	sequence	of	well-
defined,	computer	implementable	
instructions,	typically	to	solve	a	class	of	
problems	or	to	perform	a	computation.	
Algorithms	are	always	unambiguous	and	
are	used	as	specifications	for	performing	
calculations,	data	processing,	automated	
reasoning,	and	other	tasks.	

Computational	Task:		
Compare	two	words,	S1	e	S2	and	
determine	if	S1	=	S2	or	S1	!=	S2.	

  

Read  S1;  Read  S2;

Evaluate L1 S1( );  Evaluate L2 S2( );
if L1!= L2( )   than

          print "S1  != S2 "( );  
         Exit;
else
          for  i =  1 to L1  

                    if S1 i( )!= S2 i( )( )   than

                              print "S1  != S2 "( );  
                             Exit;
                    endif
          endfor

          print "S1  = S2 "( );
endif
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Who	is	a	Walt	Disney	character	?	

1																		2																						3											4	

5																6																				7															8	
All	over	the	world	the	answer	is	8	in	Italy	it	is	3!	

What	algorithm	did	your	brain	run?	
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Non-algorithmic		
Computation!	

S1	=	COLORE	
		
S2	=	FELICE		

S1	=	Esprimeremo	questo	algoritmo	in	un	linguaggio	un	po’	rigido,	
tenendo	presente	che	questa	descrizione	informale	dell’algoritmo	è	
il	punto	di	partenza	anche	per	il	disegno	di	nuovi	algoritmi.	
	
S2	=	Esprimeremo	questo	algoritmo	in	un	linguaggio	un	po’	rigido,	
tenendo	prasente	che	questa	descrizione	informale	dell’	algoritmo	è	
il	punto	di	partenza	anche	per	il	disegno	di	guovi	algoritmi.		 A	

B	

A) ⇒ S1  ≠  S2( )
B) ⇒ S1  ≠  S2( )

  

A)⇒ S1  ≠  S2( )
B)⇒ S1  = S2( )
Unless	some	typos	

Algorithm	

Brain	
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Computational	Paradigms	
A	look	at	the	past	to	guess	the	future	

Bubble	
Chamber	

as	
Analog	Computer		
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Analog	Computing	
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The	differential	analyser	is	a	mechanical	analogue	
computer	designed	to	solve	differential	equations	by	
integration,	using	wheel-and-disc	mechanisms	to	
perform	the	integration.	It	was	one	of	the	first	
advanced	computing	devices	to	be	used	operationally.	
The	original	machines	could	not	add,	but	then	it	was	
noticed	that	if	the	two	wheels	of	a	rear	differential	
are	turned,	the	drive	shaft	will	compute	the	average	
of	the	left	and	right	wheels	

The	Water	Integrator	was	an	early	analog	
computer	built	in	the	Soviet	Union	in	1936	by	
Vladimir	Lukyanov.	It	functioned	by	careful	
manipulation	of	water	through	a	room	full	of	
interconnected	pipes	and	pumps.	The	water	
level	in	various	chambers	(with	precision	to	
fractions	of	a	millimeter)	represented	stored	
numbers,	and	the	rate	of	flow	between	them	
represented	mathematical	operations.	This	
machine	was	capable	of	solving	
inhomogeneous	differential	equations.	
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Analog	Computers	
1950-1970	

The	Computational	Tasks	are	
defined	by	the	connection	
topology	of	the	elementary	

computing	elements	



Rome	3	February	2021	Gaetano	Salina	

An	introduction	to	machine	learning	methods	in	physics	

Volterra’s	Differential	Equation	

The	Computational	Tasks	
are	defined	by	the	

connection	topology	of	
the	elementary	

computing	elements	
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Analog	Computers	
1950-1970	

Quantum	(Analog	?)	
Computers	2020	

The	Computational	Tasks	are	defined	
by	the	connection	topology	of	the	
elementary	computing	elements	
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Integrate	and	Fire	Neurons	&	Cognitive	Models	
Real	time	

classification	
processes	and	
biologically	
plausible	

Neuromorphic	Hardware:	It	encompasses	any	
electronic	device	which	mimics	the	natural	biological	
structures	of	our	nervous	system.		

The	goal	is	to	impart	
cognitive	abilities	to	a	

machine	by	implementing	
neurons	in	silicon.		

	
Due	to	its	much	better	
energy	efficiency	and	
parallelism	it	is	being	

considered	as	an	alternative	
over	conventional	

computational	architectures		

The	Computational	Tasks	are	defined	
by	the	connection	topology	of	the	
elementary	computing	elements	
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Hopfield	Model	&	Associative	Memory	

Memory	addressable	
by	content.	

The	recall	of	the	
information	is	

triggered	by	a	partial	
knowledge	of	the	

information	

The	Computational	Tasks	are	defined	
by	the	connection	topology	of	the	
elementary	computing	elements	
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Amorphous	Computing	

Communication	network	
topologically	complex	
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Smart	City	as	Amorphous	System					

A	Smart	city	is	an	urban	area	that	uses	different	
types	of	electronic	Internet	of	things	(IoT)	
sensors	to	collect	data	and	then	use	these	data	
to	manage	assets	and	resources	efficiently.		
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Computational	paradigms	and	
topologically	Complex	Systems	
	
Systems	with	a	high	number	of	degrees	of	
freedom:	elementary	processors	are	connected	
by	a	topologically	complex	network	that	
mediates	their	interaction.	
	
	

Collective	and	naturally	parallel	behaviour,	little	
influenced	by	the	detailed	nature	of	the	
temporal	evolution	of	the	single	processor	and	
the	connection	network.	
	
	

Computational	paradigms	not	defined	a	priori	in	
algorithmic	terms.	System	code	is	in	its	
topological	structure.	
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The	idea	according	to	which	reliable	knowledge	
extraction	can	be	obtained	solely	on	the	
grounds	of	our	data	sets	faces	insurmountable	
problems,	even	in	the	most	idealized	and	
controlled	modeling	setting.		

The	role	of	
theoretical		
modeling		
cannot	be	
discounted.	

To	assume	
that	with	

enough	data	
the	numbers	
speak	for	

themselves	is	
simply	false!	

Do	we	really	need	Machine	
Learning	Methods	in	Physics?	
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The	Neural	Networks	Zoo.		
Neural	networks	represent	incredibly	exciting	and	
powerful	techniques	used	to	solve	problems.	
	
While	human-like	deductive	reasoning,	inference,	and	
decision-making	by	a	computer	is	still	a	long	time	away,	
there	have	been	remarkable	gains	in	the	development	of	
computing	paradigms		emulating	the	human	brain.	
	
Structurally	Complex	System	
	
	
	
	
	
	
Slow	clock	
	
	
	
Input-Compute-Output	Structure	

109	–	1010	Neurons	
104	–	105		Sinapses/Neuron	

TN	=	10-3	s	

Stimulus		Sense	!	Transducer	!	Processing	!	Motor	
Neurons	!	Motor	System	!	Spinal	Cord	!	Muscle	
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• 	Soma	(Computing	Element)	

• 	Axon	(Output	Connection)	
• 	Dendrites	(Input	Connections)	

A	difference	in	the	
concentration	of	
sodium	and	potassium	
ions	creates	an	
electrical	potential	
difference	(of	about	
-70	mV)	across	the	cell	

membrane	of	the	soma.	If	the	electric	potential	V,	
due	to	other	neurons,	is	greater	than	the	
membrane	potential,	the	neuron	emits,	for	a	few	
milliseconds,	a	train	of	impulses	along	the	axon.	

• 	Terminal	Buttons	
	(80	%	over	Dentrites	and	20	%	over	soma)	

Excitatory	
Inhibitory	

Neuro	Transmitters	

The	learning	process	is	seen	as	an	alteration	of	the	
chemical-physical	characteristics	of	the	synapses:	
variations	in	the	number	and	/	or	shape	of	the	terminal	
buttons	and	variation	in	the	conductivity	of	the	dendrites	

When	an	axon	of	a	Neuron	A	is	close	to	excite	a	
Neuron	B,	and	repeatedly	and	persistently	takes	part	
in	its	simulation,	certain	processes	of	growth	or	
metabolic	modification	take	place	in	both	cells,	such	
that	the	stimulation	of	Neuron	A	on	Neuron	B	
appears	to	be	increased.		
Hebb	1949	

Neuron	 Synapse	
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• 	Ability	to	classify	and	store	information	
• 	Information	retrieval	and	error	evaluation	
• 	Informations	processing	

	Dynamic	unsupervised	learning!	

A	man	sees	a	lion	and	Runs	away		
in	0.1	second,		i.e.	100	clock	cycles	

You	know,	that	first	love	you	never	get	over	it		
also	following	a	partial	destruction	of	neurons	and	synapses	

• 	Processing	and	storage	as	naturally	parallel	processes	

	
• 	Extreme	plasticity	
• 	Reduced	size	and	weight	
							(d	<	30	cm;	P	<	1.5	Kg)	

• 	Basso	consumo	

							(about	300	g	pasta/day)	

	

The	characteristics	!	
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The	Models:	Hearly	History!	

• 	1943:	Mc	Culloch	e	Pitts.	
						Formal	Neurons	(0,1)	and	Propositional	Calculus	
	

• 	1949:	Hebb.	
					Rule	of	synaptic	dynamics	
	

• 	1958:	Rosemblat.		
				Extension	of	the	formal	Neuron,	Perceptron	
	
• 	1973:	Kohonen	e	Rouhonen.	
				Multiple	Percettron	
	

• 	1974:	Little,	Hopfield,	Amit.	
					Attractors	Neuronal	Networks.		
					A	new	approach	using	methods	of	statistical		
					mechanics:	Dynamical	Complex	Systems	
	

• 	1990:	The	origin	of	NN	Zoo.	

• 	…	

Two	classes	of	Neuronal	Networks	

Feed	Forward	Neural	Networks	(perceptor	like)	
have	a	small	number	of	neurons	and	low	
connectivity	and	are	used	as	computational	
devices	(self-organized	filters)	

Attractor	Neural	Networks	have	a	high	number	
of	neurons	and	high	connectivity	and	are	seen	
as	models	of	cognitive	activity.	ANN	are	
dynamical	complex	systems	and	the	attractors	
are	stable	states		
of	them	dynamic	
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Perceptron	&	Propositional	calculus	

Formal Neuron 

ℜ∈∈

=ℜ∈

=∈

θ;y

N1,2,3,...,i,w

N1,2,3,..., i,s

i1

i

Y

S

•  Nomenclature: 
si  ! pre-synaptic neurons   
y  ! post-synaptic neuron 
wi1  ! synaptic weights 
θ  ! activation threshold 

s1 
s2 
s3 

sN 
wN1 

w31 

w21 

w11 

y 

{ }
{ }i1
i

ww
ss

≡
≡

•  The system has a well defined transfer function f . Given 

 
 

YS ∈∈ yes N

YS f⎯→⎯N

)θ,w,s(y f= SN 

Y 

f 

I have 

)θ,w,s(f



Rome	3	February	2021	Gaetano	Salina	

An	introduction	to	machine	learning	methods	in	physics	

( )

( ) ( )∑Θ=

≡≡

ℜ∈∈

=ℜ∈

=∈

N

i ii

N
2

N
2

2

i

2i

θ-wsθ,w,s

1,0

θ;y

N1,2,3,...,i,w

N1,2,3,..., i,s

f

con

ZSeZ

Z

Z

2N configuration states 

2 configuration states 

           F+ F- SN ( )11 θ,w,sf

2N configuration states 

2 configuration states 

           F+ F- SN ( )22 θ,w,sf

Perceptron	&	Propositional	calculus	
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s2 

s1 
0 1 

0 

1 

  

si ∈Z2 ,i = 1,2
wi ∈ℜ,i = 1,2
y∈Z2;θ ∈ℜ

Z2 ≡ 0,1( ) e S 2 ≡ Z2
2

f s,w,θ( ) =Θ s1w1 + s2w2-θ( )

θ
s2 

y 

w1 s1 

w2 

AND 

F- 

F+ 

s1 s2 y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

0 θww
w θ
w θ

21

2

1

≥>+
>
>

0 θ-ww
0 θ-w
0 θ-w

0θ-

21

1

2

>+
≤
≤

≤

2
3 θ

1ww
AND

AND
2

AND
1

=

==

Perceptron	&	Propositional	calculus:	Binary	logic	AND	
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s2	

s1	
0	 1	

0	

1	

θ
s2	

y	

w1	s1	

w2	

s1 s2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

0 θww
w θ
w θ

21

2

1

≥>+
<
<

0 θ-ww
0 θ-w
0 θ-w

0θ-

21

1

2

>+
>
>

≤

2
1 θ

1ww
OR

OR
2

OR
1

=

==
OR	

F-	

F+	

Perceptron	&	Propositional	calculus:	Binary	logic	OR	

  

si ∈Z2 ,i = 1,2
wi ∈ℜ,i = 1,2
y∈Z2;θ ∈ℜ

Z2 ≡ 0,1( ) e S 2 ≡ Z2
2

f s,w,θ( ) =Θ s1w1 + s2w2-θ( )
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2N configuration states 

2 configuration states 

           F+ F- SN ( )** θ,w,sf

Perceptron	&	Propositional	calculus	
Boolean	functions	space	

Can we define
∀fk ∈ fk{ }, w = w*,θ =θ*{ }→ fk  if defined ?

  

Given S N ≡ Z2
N  as Source Space and Y ≡ Z2   as Target Space.

The number of all possible mappings fk{ };  Z2
N fk⎯ →⎯ Z2  are fk{ } = 22N
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θ
s2 

y 

w1 s1 

w2 

s2 

s1 
0 1 

0 

1 

s1 s2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

XOR 

F- 

F+ F- 

F+ θww
0θw
0θw

0 θ

21

2

1

<+
>>
>>

>

0 θ-ww
0 θ-w
0 θ-w

0θ-

21

1

2

≤+
>
>

≤

? θ?;w?;w XORXOR
2

XOR
1 ===

Perceptron	&	Propositional	calculus:	Binary	logic	XOR	

  

si ∈Z2 ,i = 1,2
wi ∈ℜ,i = 1,2
y∈Z2;θ ∈ℜ

Z2 ≡ 0,1( ) e S 2 ≡ Z2
2

f s,w,θ( ) =Θ s1w1 + s2w2-θ( )
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XOR(s1,s2) = AND(OR(s1,s2),NOT(AND(s1,s2))) 

s2 

s1 

s1 s2 OR /AND AND 

0 0 0 1 0 
0 1 1 1 1 
1 0 1 1 1 
1 1 1 0 0 θAND 

w2
AND 

w1
AND 

θOR 

w2
OR 

w1
OR 

θNOT 

w1
NOT 

θIDE 

w1
IDE 

θAND 

w1
AND 

w2
AND 

y 

4 neurons layers and 
8 synaptic weights 

2
2
2

2
2

2
2

321 ZZZZ fff ⎯→⎯′′⎯→⎯′⎯→⎯

Perceptron	&	Propositional	calculus:	Binary	logic	XOR	
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Where	the	problem	arises	?	

s2	

s1	
0	 1	

0	

1	

XOR	

F-	

F+	 F-	

F+	

s2	

s1	
0	 1	

0	

1	

AND	

F-	

F+	

2
3ss 21 =+

In	the	AND	case	it	is	possible	to	determine	a	line	that	separates	
the	input	space	in	two.	The	same	cannot	be	done	for	the	XOR	!	

Perceptron	&	Propositional	calculus:	Binary	logic	XOR	

A	two-valued	function	f,	defined	in	an	N-
dimensional	space	S,	is	linearly	separable	if	it	is	
possible	to	find	an	N-1	dimensional	hyperplane	
that	separates	the	space	S	into	two	regions	(F+	
and	F-)	where	the	function	takes	values	��0	or	1.	

( )∑Θ= N

i ii θ-wsf
Linearly	

separable	
space	
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XOR(s1,s2)	=		
AND(OR(s1,s2),	
NOT(AND(s1,s2)))	=		
AND(S1,S2)		

s2	

s1	 θAND	

w2
AND	

w1
AND	

θOR	
w2

OR	

w1
OR	

θNOT	
w1

NOT	

θIDE	
w1

IDE	

θAND	

w1
AND	

w2
AND	

y	

S1	

S2	

s2	

s1	
0	 1	

0	

1	

XOR	

F-	

F+	 F-	

F+	

(s1=0,	s2=0)	
(s1=1,	s2=0)	
(s1=0,	s2=1)	

(s1=1,	s2=1)	

S2	

S1	
0	 1	

0	

1	

(s1=0,	s2=0)	
(s1=1,	s2=0)	
(s1=0,	s2=1)	

(s1=1,	s2=1)	

F-	

F+	Non	Linear		
Trasformation	
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Fron	Formal	Neuron	to	Perceptron:	

θ
s2	

y	

w1	s1	

w2	 ℜ∈∈
=ℜ∈
=∈

θ;y
1,2i,w
1,2 i,s

2

i

2i

Z

Z
Formal	Neuron	

Direct	Generalization	

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

MN YS f⎯→⎯

M1,2,3,..., i,θ

M1,2,3,...,jN;1,2,3,...,i,w
M1,2,3,..., i,y
N1,2,3,..., i,s

i

ij

i

i

=ℜ∈

==ℜ∈
=∈
=∈

Y
S

Perceptron	



Rome	3	February	2021	Gaetano	Salina	

An	introduction	to	machine	learning	methods	in	physics	

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

M
2

N
2 ZZ f⎯→⎯

{ } { } { } { }iijii

i

ij

2i

2i

θθ  ;ww  ; yy  ; ss
M1,2,3,..., i,θ

M1,2,3,...,jN;1,2,3,...,i,w
M1,2,3,..., i,y
N1,2,3,..., i,s

≡≡≡≡
=ℜ∈

==ℜ∈
=∈
=∈

Z
Z

Perceptron	

)θ,w,s(y f=

Given	N	e	M		
and	given		
the	transfer		
function	f		

?	
How	is	it	possible	to	
determine	the	synaptic	
weights	in	order	to	achieve	
the	desired	mapping	

Perceptron	Learning	Rule:	
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)θ,w,s(y f=
1s

*w

1y

a
1y

aw

b
1y

bw

awδ bwδ

Iterative Algorithm 

  

1) We choose  wa  random (θ  fixed).

              y1
a = f ( s1,wa ,θ )

2) and we change the synaptic weights

              δwa  =  f (y1
a − y1 )

              w b = wa +δwa

              y1
b = f ( s1,w b,θ )

 . . . .

n)           y1
n = y1 = f ( s1,w*,θ )

Perceptron	&	Propositional	calculus	
Given	N	e	M		
and	given		
the	transfer		
function	f		 ?	

How	is	it	possible	to	
determine	the	synaptic	
weights	in	order	to	achieve	
the	desired	mapping	
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s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	
( )∑=

=ℜ∈

==ℜ∈
=−∈
=−∈

N

j jiji

i

ij

i

i

θ-swy

M1,2,..., i,θ

M1,2,...,jN;1,2,...,i,w
M1,2,..., i},1,1{y
N1,2,..., i},1,1{s

sign

Iterative Algorithm:	

Let:	 ( ) Nµ
*

µµ 2 ... 1,2, µ      s,wyyY ==≡
e,	for	a	given	weights	set	 ( ) Nµ

a
µ 2 ... 1,2, µ      s,wyy ==

( )
}

y,Y,sfwδ       
{ else }

0wδ       
{ )y(Y if

µµµ

µµ

=

=
≡ 1ε          sYYy1εδw µ

k
µ
i

µ

M

j

µ
j

µ
jki, <<⎟⎟⎠

⎞
⎜⎜⎝

⎛
−= ∑ ∑

( ) 1ε          sysYεδw
µ

µ
k

µ
i

µ
k

µ
iki, <<−= ∑

Perceptron	Learning	Rule	

Perceptron	Learning	Rule:	
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s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

( )∑=

=ℜ∈

==ℜ∈
=−∈
=−∈

N

j jiji

i

ij

i

i

θ-swy

M1,2,..., i,θ

M1,2,...,jN;1,2,...,i,w
M1,2,..., i},1,1{y
N1,2,..., i},1,1{s

sign

( ) sysYεδw
µ

µ
k

µ
i

µ
k

µ
iki, ∑ −=

Perceptron	Learning	Rule	

More	
Layers		

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

=ℜ∈

=ℜ∈

==ℜ∈

==ℜ∈

=−∈
=−∈
=−∈

L

j
2
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N

j
1
ij

1
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2
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1
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θ-vwy

θ-swv

M1,2,..., i,θ

L1,2,..., i,θ

M1,2,...,jL;1,2,...,i,w

L1,2,...,jN;1,2,...,i,w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v
N1,2,..., i},1,1{s

sign

sign

( )∑∑ −=
µ i

2µ
i

µ
i Yy

2
1D

Minimization	

Multiple Perceptron Perceptron 
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)θ,w,s(Y f=
1s

*w

1Y

a
1y

aw

b
1y

bw

awδ bwδ

( ) { }( )ij
µ i

2µ
i

µ
i wDYy

2
1D ⇒−= ∑∑

Define the Cost Function D 

{ }( ) { } { } 0wD
*
ijij ww

ij ⎯⎯⎯ →⎯ →

and let be: 

The point 
  

 {wij
* } ! D({wij

* } ) = 0  
 

is a global minima of the Cost Function 
D, and can be determinated with the 
Gradient Rule.  
    
 

Given	N	e	M		
and	given		
the	transfer		
function	f		

Perceptron	&	Propositional	calculus	

( )∑ ′−=
µ

µ
j

µ
i

µ
i

µ
iij syyYεδw

Gradient	Learning	Rule	
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Multiple	Perceptron:	Learning	&	Generalization	

U	

Let	be	U	the	set	of	all	possible	input-output	rules,	some	of	them	
are	compatible	with	a	given	rule	R	
		

			Let	be	A	the	set	used	for	the	learning	(p	examples)	
	

			Let	be	X	the	set	used	for	the	model	validation.	
	

			A	e	X	are	random	choosen	and	are	representative	of	R	
R	

A	

X	
The	Network	“known”	A	and	
knows	nothing	of	X	and	R	
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U	

All	possible	generalizations	compatible	with	A	are	valid	!	

Count	Them?	

A	

G1	

G2	

G3	

N	Input	Neurons	

2N	input	patterns	

22N	possible	functions	

P	distinct	examples	in	A	

Multiple	Perceptron:	Learning	&	Generalization	

22N-p	different	generalizations	compatible	with	A		
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Example:	 S1S2 f 
00,01,10,11 0,0,0,0 

00,01,10,11 0,0,0,1 

00,01,10,11 0,0,1,0 

00,01,10,11 0,0,1,1 

00,01,10,11 0,1,0,0 

00,01,10,11 0,1,0,1 

00,01,10,11 0,1,1,0 

00,01,10,11 0,1,1,1 

00,01,10,11 1,0,0,0 

00,01,10,11 1,0,0,1 

00,01,10,11 1,0,1,0 

00,01,10,11 1,0,1,1 

00,01,10,11 1,1,0,0 

00,01,10,11 1,1,0,1 

00,01,10,11 1,1,1,0 

00,01,10,11 1,1,1,1 

AND	

XOR	

NAND	

OR	

NXOR	
NOR	

p s1 s2 y 
1 0 0 1 
2 1 1 1 

A)	

A)p1	

A)p2	

22N-p	=	222-2	=	4	

p s1 s2 y 
1 0 0 0 
2 0 1 1 
3 1 0 1 
4 1 1 1 

B)	

22N-p	=	222-4	=	1	

B)p1	

B)p2	

B)p3	

B)p4	

The	information	needed	to	uniquely	fix	
a	rule	on	N	bits	is	2N	bits,	but	
reasonable	rules	are	specified	by	no	
more	than	Nk	bits,	for	small	k	

Multiple	Perceptron:	Learning	&	Generalization	
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Too	many	synaptic	weights	in	a	network	severely	limit	the	generalization	capabilities	

Overfitting:	

Test	Set	 Test	Set	

Multiple	Perceptron:	Learning	&	Generalization	
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Theoretical	Framework:	

The	previous	discussion	suggests	the	possibility	of	a	quantitative	estimate	of	
what	a	network	can	or	cannot	do	according	to	its	architecture	and	the	nature	and	
size	of	the	learning	set.	
	
We	will	focus:	
	

• 	The	average	number	of	alternative	generalizations	of	a	given	learning	set	

• 	The	average	probability	that	a	trained	network	generates	the	correct	
output	for	a	randomly	chosen	input	
	
• 	As	above,	but	in	the	worst	case.	

Multiple	Perceptron:	Learning	&	Generalization	
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Suppose	we	work	with	a	class	of	networks	with	a	fixed	architecture	(number	of	
hidden	layers,	number	of	neurons	for	each	layer,	etc	...)	

ω =	{ωij} 

Weights	Space	 Average	over	all	possible	
Network	

=	
Average	over	Weights	Space	

with	a	given	states	density	ρ(ω)

( )ωρ dωV
ω

0 ∫=
Total	Volume	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	
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w1

Functions	Space	

w2

w3

f1w1 = f1w3

f2w2

f1w

f2w
f3w

For	the	sake	of	simplicity	we	will	use	
binary	scalar	functions	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	

Weights	Space	
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w1

w2

w3f1w

f2w
f3w

( ) ( )

( ) ( ) ( )ωθ ωρ dωV

ωρ dωV

ω
0

)ω(
0

f

f

f

f

∫

∫
=

=

The	total	volume	of	the	region	of	the	space	of	
weights	that	implements	a	particular	function	f	is:	

  

θ f ω( ) = 1   if    fω s( ) = f s( )    ∀ s

0 otherwise                        

⎧
⎨
⎪

⎩⎪

where	

The	ratio	 ( ) ( )
0

0
0 V

VR ff =
is	the	fraction	of	the	space	of	the	weights	that	
implements	the	given	function,	or	is	it	the	
probability	of	having	the	same	function	if	we	
randomly	choose	the	weights	with	density	ρ(ω)	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	

Weights	Space	
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( ) ( )( )∑−=
f

ff 0200 RlnRS

We	define	the	function:	
	
	
	
	
Which	measures	the	functional	diversity	of	architecture.	
Formally	the	function	S0	it	is	an	entropy	associated	with	
the	information	content	of	the	network.	

Bigger	is	S0	more	information	
is	necessary	to	determine	f	

Exemple:	K	possible	functions	with	equal	volume:	

( ) 0S
200 2K  K  lnS    

K
1R =⇒=⇒=f

2S0	represents	a	good	estimate	of	the	number	of	functions	even	when	
the	volume	of	individual	functions	is	not	the	same	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	
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f1w

f2w
f3w

( ) p1,2,...,µ   sY µµ == f

Supervised	learning:	

  

I fω , s µ( ) = 1   if   fω s µ( ) = f s µ( )
0 otherwise                 

⎧
⎨
⎪

⎩⎪

where	

The	weights	in	the	region	Vp	belong	to	the	function	f		plus	regions	
corresponding	to	other	functions	compatible	with	f	on	the	learning	set.	

ωf

( ) ( ) ( )∏∫
=

=
p

1µ

µ
ω

ω
p s,I ωρ dωV ff

Now	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	

Weights	Space	
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f1w

f2w
f3w

ωf
( ) ( )

( )f
f

f
p

1
p1

p V
V

R =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧ =

==

=

∏

∏∫

=

=

                      altrimenti 0
ss se   V

s,IV

s,Iωθ ωρ dωV

µµ11
0

p

1µ

µ11
0

p

1µ

µ
ω

ω

1
p 1

fff
ff

ff f

where	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	 Weights	Space	

Supervised	learning:	define	
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The	corresponding	Entropy:	

it	is	the	measure	of	how	much	it	works	
implementable	are	compatible	with	the	
learning	set.		

f1w

f2w
f3w

ωf

1
ωω

p

N

0S
2p

ff ⇒

⇒
⇒

( ) ( )( )∑−=
f

ff p2pp RlnRS

p1-pp SSS −=Δ
It	represents	the	information	gain	by	adding	
an	additional	pattern	to	the	learning	set.	

Theoretical	Framework:	
Multiple	Perceptron:	Learning	&	Generalization	 Weights	Space	
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Multiple	Perceptron:	

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

==≡−∈

==≡−∈

=−∈
=−∈
=−∈

L

k k
2
jkj

N

i i
1
ikk

2
2
kj

3
1
ik

j

k

i

vwy

swv

M1,2,...,jL;1,2,...,i,)1,1(w

L1,2,...,jN;1,2,...,i,)1,0,1(w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v

N1,2,..., i},1,1{s

f

f

Z
Z

Discrete	weights	!	Finite	weight	space	

!L
23 MLNL

=spM Permutation	of	
the	neurons	of	
the	hidden	layer	

spMf 1,2,...,i   ω ii =⇔

Uniqueness	of	Mapping	

( ) ( ) sp

M

i
M

sp

=== ∑∫
=1ω

0 ωρωρ dωV

Density	ρ(ω)=1	
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s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

==≡−∈

==≡−∈

=−∈
=−∈
=−∈

L

k k
2
jkj

N

i i
1
ikk

2
2
kj

3
1
ik

j

k

i

vwy

swv

M1,2,...,jL;1,2,...,i,)1,1(w

L1,2,...,jN;1,2,...,i,)1,0,1(w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v

N1,2,..., i},1,1{s

f

f

Z
Z

System	Entropy	

( )

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

=

=

!L
23 ln S

lnS 

1R

MLNL

20

20

0

sp

sp
i

M
M

f

Steerling:	x!	=	(2px)-1/2xxe-x	

( )!Lln-ML3lnNL S 220 +=

( ) ⎟
⎠
⎞⎜

⎝
⎛+=
e
LlnLπL2ln!Lln 222

⎟
⎠
⎞⎜

⎝
⎛+=
e
LlnL-ML3lnNL S 220

Multiple	Perceptron:	
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The	amount	of	information	needed	to	set	a	
rule	f	is	then:	

⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛+=
e
Lln-M3lnNL S 220

( )11 sY f=

Supervised	learning:	first	pattern	

( ) ( ) ( ) ( )∑∏∫
==

==
spM

i
fff

1

1
ω

p

1µ

µ
ω

ω
1 s,Is,I ωρ dωV

( ) ( ) ( )∑
=

=
sp

k

M

i
f

k ff
1

1
ω1 s,IωθV

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

==≡−∈

==≡−∈

=−∈
=−∈
=−∈

L

k k
2
jkj

N

i i
1
ikk

2
2
kj

3
1
ik

j

k

i

vwy

swv

M1,2,...,jL;1,2,...,i,)1,1(w

L1,2,...,jN;1,2,...,i,)1,0,1(w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v

N1,2,..., i},1,1{s

f

f

Z
Z

Multiple	Perceptron:	
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Supervised	learning:	first	pattern	

( ) ( )
( )f
f

f
k

k

p

p
1 V

V
R =

( ) ( )( )∑−=
kf

kk ff 1211 RlnRS

It	is	hard	determine	S1!	We	must	determine	the	
fraction	f	k	of	functions	that	have	the	imposed	
condition	in	common.	
	

Reasoning	in	a	probabilistic	way	!		
	

I	have	M	output	neurons	and	a	probability	equal	to	
½	of	a	correct	answer.	The	change	in	entropy	is:	

M
2
1lnMS 21 =−=

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

==≡−∈

==≡−∈

=−∈
=−∈
=−∈

L

k k
2
jkj

N

i i
1
ikk

2
2
kj

3
1
ik

j

k

i

vwy

swv

M1,2,...,jL;1,2,...,i,)1,1(w

L1,2,...,jN;1,2,...,i,)1,0,1(w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v

N1,2,..., i},1,1{s

f

f

Z
Z

Multiple	Perceptron:	
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Supervised	learning:	p	patterns	

pMSp =

The	number	of	patterns	required	to	set	the	rule	f	is	

0p
SS * =

p* = L
M

 Nln2 3+M-ln2
L
e

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
< 2N

Purely	statistical	discourse:	it	is	said	that	a	given	set	
of	p*	stimuli	fixes	the	rule	f.	The	argument	is	valid	
by	averaging	evor	a	set	of	n	sets	of	p*	stimuli.	

s1	
s2	
s3	

sN	

y1	
y2	
y3	

yM	

v1	
v2	
v3	

vL	

( )
( )∑
∑

=

=

==≡−∈

==≡−∈

=−∈
=−∈
=−∈

L

k k
2
jkj

N

i i
1
ikk

2
2
kj

3
1
ik

j

k

i

vwy

swv

M1,2,...,jL;1,2,...,i,)1,1(w

L1,2,...,jN;1,2,...,i,)1,0,1(w

M1,2,..., i},1,1{y
L1,2,..., i},1,1{v

N1,2,..., i},1,1{s

f

f

Z
Z

Multiple	Perceptron:	



Rome	3	February	2021	Gaetano	Salina	

An	introduction	to	machine	learning	methods	in	physics	

Some	Conclusions	?	

Learning	Machine	is	a	powerful	and	effective	technique.		
	
But	keep	in	mind	that	a	partial	knowledge	of	the	data	can	
induce	significant	systematics	in	their	analysis.		
	
A	cross-check	with	other	analysis	techniques,	if	it	is	
possible,	can	be	useful	for	understanding.		
	

Good	luck	!	
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More	Slides.	Forecasting	in	light	of	Big	Data			
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Big	Data:	
		

Is	it		
really	a	
scientific		

revolution	?	
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Big	data	spans	radically	diverse	domains.	This,	together	with	its	sodality	with	machine	learning,	has	
recently	been	fuelling	an	all-encompassing	enthusiasm,	which	is	loosely	rooted	on	a	twofold	
presupposition.	First,	the	idea	that	big	data	will	lead	to	much	better	forecasts.	Second,	it	will	do	so	
across	the	board,	from	scientific	discovery	to	medical,	financial,	commercial	and	political	
applications.		
	

The	main	lesson	can	be	put	as	follows:	as	anticipated	nearly	a	century	ago	by	Richardson	and	von	
Neumann,	a	clever	and	context-dependent	trade-off	between	modeling	and	quantitative	analysis	
stands	out	as	the	best	strategy	for	meaningful	prediction.		
	

Whilst	Anderson’s	argument	fails	to	stand	methodological	scrutiny,	as	the	present	paper	recalls,	its	
key	message	–big	data	enthusiasm–	has	clearly	percolated	society	at	large.	This	may	lead	to	very	
serious	social	and	ethical	shortcomings.	For	the	combination	of	statistical	methods	and	machine	
learning	techniques	for	predictive	analytics	is	currently	finding	cavalier	application	in	a	number	of	
very	sensitive	intelligence	and	policing	activities.		
	

In	particular	we	ask	whether	using	our	knowledge	of	the	past	states	of	a	system	–	and	without	the	
use	of	models	for	the	evolution	equation	–	meaningful	predictions	about	the	future	are	possible.	Our	
answer	is	negative	to	the	extent	that	rather	severe	difficulties	are	immediately	found,	even	in	a	very	
abstract	and	simplified	situation.	As	we	shall	point	out	the	most	difficult	challenge	to	this	view	is	
understanding	of	the	“proper	level”	of	abstraction	of	the	system.	We	will	see	there	that	the	key	to	
understanding	the	“proper	level”	of	abstraction	lies	with	identifying	the	“relevant	variables”	and	the	
effective	equations	which	rule	their	time	evolution.		

FORECASTING	IN	LIGHT	OF	BIG	DATA		
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According	to	a	vaguely	
defined	yet	rather	commonly	
held	view	big	data	may	lead	
to	dispense	with	theory,	
modeling	or	even	
hypothesizing.	
	

All	of	this	would	be	
encompassed,	across	
domains,	by	smart	enough	
machine	learning	algorithms	
operating	on	large	enough	
data	sets.		
	

We	are	interested	in	
forecasts	such	that	future	
states	of	a	systems	are	
predicted	solely	on	the	basis	
of	known	past	states.		

FORECASTING	IN	LIGHT	OF	BIG	DATA	
An	extreme	inductivist	approach	to	forecasting	using	Big	Data			

Two	hypotheses	are	needed	to	give	an	affirmative	answer:		
•  Similar	premises	lead	to	similar	conclusions	(Analogy);	
•  Systems	which	exhibit	a	certain	behavior,	will	continue	doing	

so	(Determinism	).		
	

In	more	formal	terms,	given	the	series		{x1	,	...,	xM	},	where	
xj	is	the	vector	describing	the	state	at	time	j∆t,	we	look	in	
the	past	for	an	analogous	state,	that	is	a	vector	xk	with	k	<	
M	“near	enough”	(i.e.	|xk	−	xM|	<	ε,	being	ε	the	desired	
degree	of	accuracy).		
Once	we	find	such	a	vector,	we	“predict”	the	future	at	
times	M	+	n	>	M	by	simply	assuming	for	xM+n	the	state	xk+n.	
It	all	seems	quite	easy,	but	it	is	not	at	all	obvious	that	an	
analog	can	be	found.		

…	

{x1,x2,																																																			...,	xM	}	

xk		
xM		

|xk	−	xM|	<	ε			!			xM+1	≈	xk+1	

xM+1		xk+1		
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FORECASTING	IN	LIGHT	OF	BIG	DATA	
An	extreme	inductivist	approach	to	forecasting	using	Big	Data			

	
	
	

Poincare’	recurrence	theorem	
	

After	a	suitable	time,	a	deterministic	system	
with	a	bounded	phase	space	returns	to	a	
state	near	to	its	initial	condition.		

	

Thus	an	analog	surely	exists.	How	long	do	we	
have	to	go	back	to	find	it?	
	

Kac	who	proved	a	Lemma	to	the	effect	that	
the	average	return	time	in	a	region	A	is	
proportional	to	the	inverse	of	the	probability	
P(A)	that	the	system	is	in	A.	
	
	
	
Consider	a	system	of	dimension	D.	The	
probability	P(A)	of	being	in	A	is	
	

	

	
	
	

	
	
	

xk		 ε	
xM		

|xk	−	xM|	<	ε	

Time	Evolution		

The	return	time	is	so	large	that	in	practice	a	
recurrence	is	never	observed.		
So	the	required	analog,	whose	existence	is	
guaranteed	in	theory,	sometimes	cannot	be	
expected	to	be	found	in	practice,	even	if	
complete	and	precise	information	about	the	
system.		

TR ∝ 1
P A( )

A	

  
P A( )∝ε D ! TR = O ε −D( )

D ≈10
ε ≈ 0.01

TR =O 1020( )
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In	many	sciences	and	in	engineering,	an	ever	increasing	gap	between	theory	and	experiment	can	be	
observed.	This	gap	tends	to	widen	particularly	in	the	presence	of	complex	features	in	natural	systems	
science.		
	

In	socio-economical	systems	the	gap	between	data	and	our	scientific	ability	to	actually	understanding	
them	is	typically	enormous.	Surely	the	availability	of	huge	amounts	of	data,	sophisticated	methods	for	
its	retrieval	and	unprecedented	computational	power	available	for	its	analysis	will	undoubtedly	help	
moving	science	and	technology	forward.		
	

But	in	spite	of	a	persistent	emphasis	on	a	fourth	paradigm	(beyond	the	traditional	ones,	i.e.	
experiment,	theory	and	computation)	based	only	on	data,	there	is	as	yet	no	evidence	data	alone	can	
bring	about	scientifically	meaningful	advance.		
	

To	the	contrary,	as	nicely	illustrated	by	Crutchfield,	up	to	now	it	seems	that	the	unique	way	to	
understand	some	non	trivial	scientific	or	technological	problem,	is	following	the	traditional	approach	
based	on	a	clever	combination	of	data,	theory	(and/or	computations),	intuition	and	wise	use	of	
previous	knowledge.	Similar	conclusions	have	been	reached	in	the	computational	biosciences.	
	
P.	V.	Coveney	et	al.	point	out	very	clearly	not	only	the	methodological	shortcomings	(and	
ineffectiveness)	of	relying	on	data	alone,	but	also	unfold	the	implications	of	methodologically	
unwarranted	big	data	enthusiasm	for	the	allocation	of	research	funds	to	healthcare	related	projects:	“A	
substantial	portion	of	funding	used	to	gather	and	process	data	should	be	diverted	towards	efforts	to	
discern	the	laws	of	biology”.		

FORECASTING	IN	LIGHT	OF	BIG	DATA	
An	extreme	inductivist	approach	to	forecasting	using	Big	Data			
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Big	data	undoubtedly	constitute	a	great	opportunity	for	scientific	and	technological	advance,	with	a	
potential	for	considerable	socio-economic	impact.	To	make	the	most	of	it,	however,	the	ensuing	
developments	at	the	interface	of	statistics,	machine	learning	and	artificial	intelligence,	must	be	
coupled	with	adequate	methodological	foundations.	Not	least	because	of	the	serious	ethical,	legal	
and	more	generally	societal	consequence	of	the	possible	misuses	of	this	technology.		
	
This	note	contributed	to	elucidating	the	terms	of	this	problem	by	focusing	on	the	potential	for	big	
data	to	reshape	our	current	understanding	of	forecasting.	To	this	end	we	pointed	out,	in	a	very	
elementary	setting,	some	serious	problems	that	the	naive	inductivist	approach	to	forecast	must	
face:	the	idea	according	to	which	reliable	predictions	can	be	obtained	solely	on	the	grounds	of	our	
knowledge	of	the	past	faces	insurmountable	problems	–	even	in	the	most	idealized	and	controlled	
modeling	setting.		
	
We	therefore	conclude	that	the	big	data	revolution	is	by	all	means	a	welcome	
one	for	the	new	opportunities	it	opens.		
However	the	role	of	modeling	cannot	be	discounted.	

FORECASTING	IN	LIGHT	OF	BIG	DATA	
An	extreme	inductivist	approach	to	forecasting	using	Big	Data			


