Measurement of Cosmic Rays using Radio Emission Signals at the Pierre Auger Observatory

Christian Glaser

L'Aquila 2014

DFG Deutsche Forschungsgemeinschaft SPONSORED BY THE

Federal Ministry of Education and Research

Ultra High Energy Cosmic Rays

L'Aquila 2014

glaser@physik.rwth-aachen.de

- most of the energy spectrum can be described by a simple power law
- open questions:
 - where do they come from?
 - how are they accelerated?
 - is cut-off at highest energies due to GZK effect?
- key observable: particle type
 - radio detection: potential to combine good mass resolution with high duty cycle

Radio Emission from Extensive Air Showers

- 1st order: geomagnetic radiation
 - electrons/positrons deflected in Earth magnetic field B
 - polarized into direction of Lorentz force
 - scales with angle α between shower axis and B

- 2nd order: charge excess / Askaryan effect
 - time varying net charge excess
 - electrons from air nucleus are knocked out
 - positrons annihilate in shower front
 - radially polarised towards shower axis

Pierre Auger Observatory

- Mendoza, Argentina
- world's largest cosmic ray detector (~3000 km²)
- 27 fluorescence telescopes
- 1600 water Cherencov detectors
- low energy extension

La Pazo Bolivia

Christian Glaser glaser@physik.rwth-aachen.de

Pierre Auger Observatory

- hybrid UHECR detector
 - fluorescence detector (FD)
 - surface detector (SD)
- independent measurement of UHECR
 - cross calibration
 - unique opportunity to calibrate radio detector

Auger Engineering Radio Array (AERA)

LPDA

- world's largest radio detector:
 - 124 radio stations covering 6 km²
 - Stage 1: data taking since April 2011
 - Stage 2: deployed April May 2013
- log periodic dipole (LPDA) and Butterfly antennas
- frequency range: 30 80 MHz
- external and self-trigger

Christian Glaser glaser@physik.rwth-aachen.de

Auger Engineering Radio Array (AERA)

Butterfly

- world's largest radio detector:
 - 124 radio stations covering 6 km²
 - Stage 1: data taking since April 2011
 - Stage 2: deployed April May 2013
- log periodic dipole (LPDA) and Butterfly antennas
- frequency range: 30 80 MHz
- external and self-trigger

Christian Glaser glaser@physik.rwth-aachen.de

Reconstruction of Electric Field

- voltage measured in two polarisations (east-west, north-south)
- arrival direction can be reconstructed via timing differences in multiple antenna stations
- with arrival direction and known antenna characteristics the three-dimensional electric field is reconstructed
 - signal dispersion due to antenna and electronics is corrected for

Christian Glaser glaser@physik.rwth-aachen.de

Signal Strength and Polarisation

- total signal strength determined from Hilbert envelope
- direction of 3-dim. electric field is determined in FWHM
- $|\vec{E}| = \max$. of hilbert envelope

Christian Glaser glaser@physik.rwth-aachen.de

Measurement of Radio Emission Processes

- radio emission processes have different polarization signature
 - measurement of polarization is ideal tool to disentangle emission processes
- assume presence of geo-magnetic and radial component
- relative strength of radial wrt. geomagnetic component:

•
$$a = \frac{|E_{\rm r}|}{|E_{\rm g}|/\sin\alpha}$$

Measurement of Radio Emission Processes

- radio emission processes have different polarization signature
 - measurement of polarization is ideal tool to disentangle emission processes
- assume presence of geo-magnetic and radial component
- relative strength of radial wrt. geomagnetic component:

$$a = \frac{|E_{\rm r}|}{|E_{\rm g}|/\sin\alpha}$$

Reconstruction of Core Position using Polarization

- polarization gives estimator for core position
- fit core position using polarization by maximising Likelihood $\mathcal{L} = \prod P(\beta_i)$

Reconstruction of Core Position using Polarization

- test method using air shower simulations (CoREAS)
- data set:

Christian Glaser glaser@physik.rwth-aachen.de

Energy Reconstruction

correct signal amplitude for incoming direction:

 $\rightarrow |\sin \alpha \cdot \vec{e}_L + a \cdot \vec{e}_{CE}|$

- radio signal measured at discrete positions
- use exponential function to interpolate between data points

Christian Glaser glaser@physik.rwth-aachen.de

Energy Calibration

Christian Glaser glaser@physik.rwth-aachen.de

Sensitivity to Primary Cosmic Ray Mass

theory predicts good sensitivity to Xmax (shower maximum, observable of mass)

T.Huege et al., Astropart. Phys., 2008. 30 Phys. Rev. D, 2012, 85, 071101 1300 5 $\theta = 60^{\circ}, 10^{18} \text{ to } 10^{20} \text{ eV}$ LOPES 1200 mean muon pseudorapidity 4.5 1100 1000 $RMS = 15.9 \, g \, cm^{-2}$ 900 3.5 Result of line fit: 800 $y = offset + x \cdot slope$ function iron 3 red. χ^2 1.37 proton \times 700 offset 4.86 ± 0.12 damma - 0.117 ± 0.017 km slope steeper fit 2.5 600 -2 0 2 6 8 10 12 14 15 20 35 5 10 25 30 40 LOPES lateral slope [1/km] $A_{175 m} / A_{725 m}$ at 32 to 64 MHz

Xmax observable

experimental proof of principle

Christian Glaser glaser@physik.rwth-aachen.de

Xmax [g cm⁻²]

theoretical prediction

L'Aquila 2014

16

Sensitivity to Primary Cosmic Ray Mass

- different "radio" observables under investigation:
 - LDF slope
 - frequency content of radio pulse
 - form of wavefront of radio signal

Summary

- Pierre Auger Observatory
 - world's largest detector for cosmic rays
 - well calibrated environment for development of future detector technologies
- Auger Engineering Radio Array
 - feasibility for a large scale radio cosmic ray detector under investigation
 - reconstruction of 3-dim. electric field vector at each radio station
 - primary and secondary emission process determined:
 - 1st. geomagnetic emission
 - 2nd. charge excess emission
 - polarization of radio signal is estimator of the core position
 - energy of primary particles is reconstructed at 28% accuracy (incl. surface detector resolution)
 - primary cosmic ray mass sensitivity is under investigation

