

The radial evolution of a magnetic cloud

Solar Orbiter summer school, L'Aquila 22/09/2014

Simon Good Supervisor: Robert J. Forsyth

Presentation outline

- 1. My PhD topic
- 2. The November 2011 event
- 3. Magnetic field and plasma data
- 4. Overlapped magnetic field data
- 5. Key findings
- 6. Summary

My PhD topic

- CMEs are discrete, large scale eruptions of magnetic field and plasma from the Sun
- → How do CMEs evolve during propagation?
- → How do CME-solar wind interactions affect CME kinematics, dynamics and morphology?

Zurbuchen and Richardson (2005)

The November 2011 event

November 2011 event - in situ data

Overlapped B-field data

- Very good
 correlation
 between B-field
 magnitude, B_T
 and B_N
 component
- Weaker correlation in the B_R component
- Approximately self-similar radial expansion

Key findings

	MESSENGER	STEREO-B
Distance of s/c from Sun, AU	0.44	1.09
Sheath arrival time	2011 Nov 4 15:09 UT	2011 Nov 6 05:09 UT
Flux rope arrival time	2011 Nov 5 00:43 UT	2011 Nov 6 22:56 UT
Flux rope end time	2011 Nov 5 17:05 UT	2011 Nov 8 17:49 UT
Leading edge speed, km/s	~ 700	618
Trailing edge speed, km/s	~ 450	440
Rope handedness (force-free)	-1 (left handed)	-1 (left handed)
Impact parameter (force-free)	0.02	0.01
Rope axis orientation (force-free)	$\theta_R = 26^\circ, \phi_R = 84^\circ$	$\theta_R = -4^\circ, \phi_R = 117^\circ$
Axis B-field strength, nT (force-free)	46.0	8.8
S = v _{Bmax} · t, AU	0.22	0.56
Flux rope cylinder diameter, AU	0.22	0.50
Magnetic flux, nT AU ²	1.69	1.69

Summary

- Magnetic clouds are a magnetically structured and coherent subset of CMEs observed in situ
- I have shown an example of a magnetic cloud observed at two radially aligned spacecraft, at different heliocentric distances; such radial observation allows the purely radial evolution of the cloud to be ascertained
- There is evidence to suggest that the magnetic cloud expanded, rotated and conserved its magnetic flux
- I am currently analysing a number of other such radially observed CMEs and hope to draw some general conclusions from this wider analysis

Flux ropes; flux rope model

$$\nabla^2 B = -\alpha^2 B \longrightarrow \begin{array}{c} B_A = B_0 J_0(\alpha R) \\ B_T = H B_0 J_1(\alpha R) \\ B_R = 0 \end{array}$$

- Set of nested, helical field lines wound around a central axis
- Common space plasma structures
- Can we estimate global parameters (e.g., axis orientation) from a single spacecraft crossing?

