

The solar orbiter imager (SoloHI) instrument for the Solar Orbiter mission

Russell A. Howard, Naval Research Laboratory russ.howard@nrl.navy.mil

- What is SoloHI
- Science Objectives
- Instrument Concept
- Unique Science
- Interpreting Heliospheric Images
- Modeling CMEs & Their Propagation
- Observations of the Dust Corona

What Is SoloHI?

- Wide-Field Imager of the Heliosphere From 5 to 45 deg From the Sun.
- Visible Light Observations.
- Simple Telescope: No Mechanisms Other Than One-Shot Door.
- Next-Generation 4Kx4K APS Sensor.

- How and Where Do the Solar Wind Plasma and Magnetic Field Originate in the Corona?
 - What Are the Source Regions of the Solar Wind and Heliospheric Magnetic Field?
 - What Mechanisms Heat and Accelerate the Solar Wind?
 - What Are the Sources of Solar Wind Turbulence and How Does It Evolve?
- How Do Solar Transients Drive Heliospheric Variability?
 - How Do CMEs Evolve Through the Corona and Inner Heliosphere?
 - How Do CMEs Contribute to Solar Magnetic Flux and Helicity Balance?
 - How and Where Do Shocks Form in the Corona?
- How Do Solar Eruptions Produce Energetic Particle Radiation?
 - How and Where Are Energetic Particles Accelerated at the Sun?
- How Does the Solar Dynamo Work and Drive Connections Between the Sun and the Heliosphere?
 - How Are Variations in the Solar Wind Linked to the Sun at All Latitudes?
 - What Is the 3-Dimensional Structure and Extent of Streamers and CMEs?
- Additional SoloHI Goals/Questions
 - What Are the Sources and Properties of Dust in the Inner Heliosphere, and Do Sun-Grazing Comets Contribute to the Dust?

SoloHI Science Requirement Traceability Matrix (1 of 3)

Science Objective	2.1 How and wher	2.2 How do solar transients drive heliospheric variability?							
Science Question#	2.1.1	2.1.2	2.1.3			2.2.1			
Science Question	What are the source regions of the solar wind and heliospheric magnetic field?	What mechanisms heat and accelerate the solar wind?	What are the sources of solar wind turbulence and how H does it evolve?			How do CMEs evolve through the corona and inner heliosphere?			
Science Product ID	2.1.1a	2.1.2a		2.1.3a		2.2.1a			
Derived Science Products	Global maps of H and He flow velocities and He fractions (METIS, SoloHI)	Velocities and mass density of evolving structures (SoloHI, METIS)	Link evolution of C measured in-situ	ev olution of CME properties in the corona to those sured <i>in-situ</i> (SoloHI, METIS)			Link evolution of CME properties in the corona to those measured <i>in-situ</i> (SoloHI, METIS)		
Science Measurements	Images of coronal and heliospheric solar wind structures in visible	Height-time plot and mass measurements of solar wind features	High cadence ima structures in visib	ages of coronal and le	heliospheric	Height-time plo	Height-time plot and mass measurements of CMEs		
Type and Number of Events Captured Over Baseline Science Mission	 Quiescent wind for 3 days Active wind for 3 days Pseudo streamers for 3 days 	 Quiescent wind for 3 days Active wind for 3 days Pseudo streamers for 3 days 	Density power spo 20 Rsun at the 0.2	ectrum centered at 28 a.u. perihelion	7 Rsun, 15 Rsun,		≥2 ICMEs		
Type and Number of Events Captured OverThreshold Science Mission	 Quiescent wind for 3 days Active wind for 3 days 	 Quiescent wind for 3 days Active wind for 3 days 	Density power spe a.u. perihelion	ectrum centered at	7 Rsunat the 0.28	≥ 1 ICME			
Required (R) or Supporting (S) Measurement	S	R	R						
Observation Requirements									
Instrument Distance From Sun (a.u.)	0.28 to 0.36	0.28 to 0.36	0.28 to 0.36			0.28 to 0.36	0.36 to 0.5	0.5 to 0.7	
Spacecraft Solar Latitude	N/A	N/A N/A				N/A			
Image Ty pe	Visible broadband	Visible broadband Visible broadband					Visible broadband		
Scene Radial Coverage	5.5 to 25°	5.5 to 40.5°	5.8 to 7.675°	13.5 to 15.375°	18.5 to 20.375°	5.5 to 44.5°	5.5 to 40.5°	5.5 to 30.5°	
Scene Transverse Coverage	26°	5°	5°	5°	5°	26°			
Image Spatial Resolution	≤ 3.0 arcmin	≤ 2.7 arcmin	≤ 2.3 arcmin	≤ 2.6 arcmin	≤ 2.6 arcmin		≤ 3.0 arcmin		
Photometric Accuracy	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 16	≥16	≥ 16 ª ≥ 12 ^b	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ³ ≥ 5 ⁴	
Cadence	≤ 30 min	≤ 15 min	≤ 10 sec ª ≤ 15 sec ^b	≤1 min	≤2 min	≤ 30 min ^{a, 5b} ≤ 60 min ^{6b}	≤ 40 min ⁵ ≤ 80 min ⁷ ≤ 120 min ⁸	≤ 40 min ⁵ ≤ 80 min ⁹ ≤ 140 min ¹⁰	
Science Observation Period Per Day	24 hrs	24 hrs ≥4 hrs ≥4 hrs ≥4 hrs			24 hrs				
Science Observation Days Per Orbit	≥ 14	≥6	≥ 4	≥4	≥ 4	≥ 14	≥ 12	≥1	
Science Observation Days for Baseline Science Mission	≥ 98	≥42	8 ª, 24 ^b	8 ª, 24 ^b	8 ª, 24 ^b	≥ 98	≥ 92	≥ 16	
Science Observation Daysfor Threshold Science Mission	≥ 14	≥6	2ª, 3 ^b	2 ª, 3 b	2ª, 3 ^b	≥ 14	≥ 14	≥1	

SoloHI Science Requirement Traceability Matrix (2 of 3)

Science Objective		lar transients drive heliospheric variability?								
Science Question #	2.2.2			2.2.3						
Science Question	How do CMEs contribute to solar magnetic flux and helicity balance?		How and where do shocks form in the corona?							
Science Product ID		2.2.2a		2.2.3a 2.2			3b 2.2.3c		2.3c	
Derived Science Products	Map source regions to <i>in-situ</i> properties: magnetic connectivity, polarity and helicity (EUI, METIS, SPICE, SoloHI, SWA, MAG, EPD)			Timing of eruptions and coronal manifestations (EUI, SoloHI)		Location, inte thermal/non-tl distribution of regions (Solol	nsity, hermal erupting HI, RPW)	Position and speed of shocks (SPICE, METIS, SoloHI, RPW, EUI)		
Science Measurements	Height-time plot a	ndmassmeasurem	nents of CMEs	High cadence	e height-time p	lots and mass n	neasurements	of CME fronts		
Type and Number of Events Captured Over Baseline Science Mission		≥2 ICMEs		≥ 2 ICME accompan	s with an lying shock	≥2 (CMEs	≥ 2 ICMEs with an accompanying shock		
Type and Number of Events Captured Over Threshold Science Mission		≥1 ICME			CME	≥1 ICME		≥1 ICME		
Required (R) or Supporting (S) Measurement	S			R		S		R		
Observation Requirements										
Instrument Distance From Sun (a.u.)	0.28 to 0.36	0.36 to 0.5	0.5 to 0.7	0.28 to 0.36	0.36 to 0.5	0.28 to 0.36	0.36 to 0.5	0.28 to 0.36	0.36 to 0.5	
Spacecraft Solar Latitude		N/A								
Image Type	Visible broadband			Visible broadband						
Scene Radial Coverage	5.5 to 44.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	
Scene Transverse Coverage		5°								
Image Spatial Resolution	≤ 3.0 arcmin			≤2.7 arcmin						
Photometric Accuracy	≥ 20 ¹ ≥ 5 ²	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	
Cadence	$ \leq 30 \min^{a, 5b} \leq 40 $ $ \leq 60 \min^{6b} \leq 120 $		≤ 40 min ⁵ ≤ 80 min ⁹ ≤ 140 min ¹⁰	≤ 6 min ^{a, 5b} ≤ 15 min ^{6b}	≤ 6 min ⁵ ≤ 15 min ^{12c} ≤ 18 min ^{11d}	≤6 min ^{a, 5b} ≤15 min ^{6b}	≤ 6 min ⁵ ≤ 15 min ^{12c} ≤ 18 min ^{11d}	≤6 min ^{a, 5b} ≤15 min ^{6b}	≤ 6 min ⁵ ≤ 15 min ^{12c} ≤ 18 min ^{11d}	
Science Observation Period Per Day	24 hrs			24 hrs	≥ 16 hrs	24 hrs	≥ 16 hrs	24 hrs	≥ 16 hrs	
Science Observation Days Per Orbit	≥ 14	≥ 12	≥ 1	≥ 6	≥ 1	≥6	≥ 1	≥6	≥ 1	
Science Observation Days for Baseline Science Mission	≥ 98	≥ 92	≥ 16	≥42	≥ 13	≥ 42	≥ 13	≥42	≥ 13	
Science Observation Daysfor Threshold Science Mission	≥ 14	≥ 14	≥ 1	≥ 6	≥1	≥6	≥ 1	≥ 6	≥ 1	

SoloHI Science Requirement Traceability Matrix (3 of 3)

Science Objective	2.3 How do solar eruptions produce energetic particle radiation that fills the heliosphere?					2.4 How does the solar dynamo work and drive connections between the Sun and the heliosphere?						
Science Question #	2.3.1						2.4	1.1	2.4.2		2.4.3	
Science Question	How and where are energetic particles accelerated at the Sun?					What is the three-dimensional structure and extent of streamers and CMEs? How are variations in the sc wind linked to the Sun at all latitudes?			s in the solar Sun at all	What are the sources and properties of dust in the inner heliosphere, and do Sun-grazing comets contribute to this dust?		
Science Product ID	2.3	.1a	2.3	.1b	2.3	.1c	2.4.G1a 2.4.G2a			2.4.G3a		
Derived Science Products	UV and X-ray imaging of loops, flares, and CMEs (EUI, SPICE, STIX, METIS, SoloHI) Location, timing, and motion of CMEs and shocks (EUI, SoloHI) STIX)			Images of longitudinal extent of CMEs in visible, UV, and hard X- rays (SoloHI, METIS, EUI, SPICE, STIX) METIS, EUI, SPICE, Streamers and CMEs at all latitudes (SoloHI, METIS*) (?		Observe morphology and dynamics of boundaries between streamers and coronal holes (SoloHI, EUI*, METIS*)		Measure F-corona brightness, morphology, and variability as a function of ecliptic latitude (SoloHI)				
Science Measurements	High cadence hei	ght-time plots and	d mass measureme	ents of CME front	S		Images of coronal solar wind structure	and heliopheric res in visible	Images of corona solar wind structu	l and heliospheric res in visible	^C Images of coronal dust in visible	
Type and Number of Events Captured Over Baseline Science Mission	≥ 2 IC	CMEs	≥ 2 ICMEs ≥ 2 ICMEs		 Quiescent, active wind and pseudo streamers for 2 days ≥ 1 CME at each latitudinal extreme 		Quiescent, active wind and pseudo streamers for 2 days at each latitudinal extreme		≥ 1 Sun-grazing comet with a tail			
Type and Number of Events Captured Over Threshold Science Mission	≥ 1 10	CME	≥ 1 10	≥ 1 ICME ≥ 1 ICME		N/A		N/A		N/A		
Required (R) or Supporting (S) Measurement	S	3	R R			R		R		R		
Observation Requirements												
Instrument Distance From Sun (a.u.)	0.28 to 0.36	0.36 to 0.5	0.28 to 0.36	0.36 to 0.5	0.28 to 0.36	0.36 to 0.5	0.36 to 0.50	0.5 to 0.70	0.36 to 0.50	0.5 to 0.70	0.36 to 0.50	0.5 to 0.70
Spacecraft Solar Latitude			N	/A			≥ 15º	≤ -15°	≥ 15º	≤ -15°	≥ 15º	≤ -15°
Image Type			Visible b	roadband			Visible b	roadband	Visible broadband		Visible broadband	
Scene Radial Coverage	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°	5.5 to 40.5°	5.5 to 30.5°
Scene Transverse Coverage				50			2	ô°	26°		26°	
Image Spatial Resolution			≤ 2.7	arcmin			≤ 3.0 arcmin		≤ 3.0 arcmin		≤ 6.0 arcmin	
Photometric Accuracy	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ¹ ≥ 5 ²	≥ 20 ³ ≥ 5 ⁴	≥ 20 ¹ ≥ 5 ²	≥ 20 ³ ≥ 5 ⁴	≥∶	20
Cadence	≤ 30	min	≤ 6 min ^{a, 5b} ≤ 15 min ^{6b}	≤ 6 min ⁵ ≤ 15 min ^{12c} ≤ 18 min ^{11d}	≤ 30 min		≤ 40 min ⁵ ≤ 80 min 7 ≤ 120 min ⁸	≤ 40 min ⁵ ≤ 80 min ⁹ ≤ 140 min ¹⁰	≤ 120 min	≤ 120 min ^{5,9} ≤ 150 min ¹⁰	≤ 120) min
Science Observation Period Per Day	24 hrs	≥ 16 hrs	24 hrs	≥ 16 hrs	24 hrs ≥ 16 hrs		24	hrs	24	hrs	24	hrs
Science Observation Days Per Orbit	≥ 6	≥ 1	≥ 6	≥ 1	≥ 6	≥ 1	≥ 4	≥ 4	≥ 4	≥ 4	≥ 4	≥ 4
Science Observation Days for Baseline Science Mission	≥ 42	≥ 13	≥ 42	≥ 13	≥ 42	≥ 13	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12
Science Observation Days for Threshold Science Mission	≥ 6	≥ 1	≥ 6	≥ 1	≥ 6	≥ 1	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2

* Science data products from other Solar Orbiter instruments will address the science question better, but is not required

- SoloHI Will Image
 - The Solar Wind Structures and Fluctuations Directly.
 - The Solar Wind Environment Around Planets and Other Missions.
 - CME and Shock Propagation and Evolution and Their Connection to the Site of Production of SEPs.
- SoloHI Will Measure Electron Density Turbulence
 - Fast Cadence Readout Mode To Generate Power Spectral Density to Compare to In-Situ Observations of Density and Magnetic Field Spectral Density.
- SoloHI Provides The Links Between the
 - Solar Orbiter Remote Sensing and in-situ Instruments.
 - Solar Orbiter and Solar Probe+ Missions.

$B_{obs} = K + F + E + G + P + S$

Where:

- K = Photospheric Light Thomson Scattered from Free Electrons
- F = Photospheric Light Scattered from Dust
- E = Emission Line from the Plasma usually zero in SoloHI
- G = Galactic and Stellar Emissions useful for calibration
- P = Planets and Comets
- S = Stray light

Thomson Scattering Geometry

An electron scatters photons such that the electric vector lies in a plane perpendicular to the incident photon.

At a constant distance from the source, the intensity at 90° to the observer will be $\frac{1}{2}$ the intensity observed directly on the plane.

Scattering Plane

The intensity of the tangential component:

$$I_t = I_o \frac{N_e \pi \sigma}{2} [(1-u)C + uD]$$

The intensity of the tangential - radial component (pB):

A, B, C, and D are the "Van de Hulst Coefficients" U is the limb darkening coefficient σ is the electron scattering cross section χ is an angle lo is the mean brightness of the solar disk Ne is the electron density

The intensity of the tangential component:

$$I_t = I_o \frac{N_e \pi \sigma}{2} [(1-u)C + uD]$$

The intensity of the tangential - radial component (pB): $I_t - I_r = I_o \frac{N_e \pi \sigma}{2} sin^2 \chi[(1-u)A + uB]$

The only variable is Ne – the volume electron density distribution along the line of sight

The intensity of the tangential component:

$$I_t = I_o \frac{N_e \pi \sigma}{2} [(1-u)C + uD]$$

The intensity of the tangential - radial component (pB): $I_t - I_r = I_o \frac{N_e \pi \sigma}{2} sin^2 \chi[(1-u)A + uB]$

But also I_0 has been assumed to be a constant, but in fact varies as the Total Solar Irradiance.

Scene Brightnesses and Stray Light Requirements

SoloHI Observing FOVs During 0.28 AU Perihelion

- Simulation of a SoloHI Observing Program During 0.28 AU Perihelion Passage Using a STEREO/SECCHI Composite
- Full-Frame (Large Circle), Shock Formation (Rectangular Box), and • Turbulence Subframes (3 Small Boxes)

- Reduction of Stray Light
 - The usual reduction of diffracted light from the Sun
 - The reflected light from the solar array which is directly behind SoloHI
- Low Mass and Power
 - Development of a low mass/power camera
 - Use an APS/CMOS detector rather than CCD detector reduces the mass from ~6 kg to 1 kg
 - Minimizing mass was inconsistent with the high loads that the instrument would experience
- Low electromagnetic emissions
 - To be compatible with the MAG & RPW sensors

- There are 3 types of baffles:
 - Forward Baffles to reject the solar disk illumination
 - Interior Baffles to reject reflections from the solar array bright celestial/heliospheric reflections
 - Peripheral Baffles to reject reflections from spacecraft

Solar Array Panel

SoloHI

- The SL Suppression Concept Is Built Upon the Many Successful White Light Coronagraphs (e.g., SOHO/LASCO) and the Heliospheric Imager (HI) Component of SECCHI on the STEREO Mission.
- Forward Baffles of Heliospheric Imagers achieve 9-10 orders of solar disk rejection by using multiple edges.
- Performance measured for STEREO H1/H2 matches theory.
- SoloHI uses the edge of the SolO Heat Shield as the first baffle

- A significant source of stray light is the diffuse, reflected sunlight from the solar array which is behind the instrument and is reflecting onto the backs (anti-sunward side) of the baffles.
 - The figures to the right show the front and side views of the array and the SoloHI instrument
- To minimize the impact of reflected light from the solar array reaching the entrance aperture, the coatings of each of the baffles are individually specified to either be a reflective or diffuse scatterer.
 - The interior baffles are slanted backward to intercept the reflected light from the solar array, such that the lens does not look at a baffle that is directly illuminated by the solar array

Optical Design

Spot Diagram

	RMS
#	spot
	[mm]
1	0.0213
2	0.0204
3	0.0189
4	0.0196
5	0.0214
6	0.0225

RMS spot diameter in nominal conditions.

Spot Size vs Temperature

Structural Model of Quad-Tiled APS in Flight Package

APS Pixel Design

p-SUBSTRATE

Participation of the second se

Electronics Block Diagram

SoloHI Will Lead to Unique Science

- The Varying Heliocentric Distance Transforms SoloHI From a Remote (at Aphelia) to a Local (at Perihelia) Imager
- SoloHI Is the First Imager to Provide Density Power Spectra at Rates Similar to in-situ Instruments (~1min) but at Multiple Locations at Once
- SoloHI Is the Only Instrument to Image Shocks and Connect the SEP Sources to the in-situ Measurements
- SoloHI Will Provide the First Measurements of the Dust 3D Distribution in the Inner Heliosphere
- SoloHI Only Possibility for Flyby Studies of Sungrazing Comets

Baseline Observing Programs for <u>Perihelion</u> Period

	Perihelion Region							
Observing Program ID	A1.1	A1.2	B1.1	B1.2	B1.3	C1.1	C1.2	
Program Description	Synoptic			Wave Turbulenc	Shock Formation			
Image Type	Full F	rame		Inner FOV Subfra	Radial Swath Subframe			
Radial FOV	[5°, 25°]	[5°, 25°] [25°, 45°] [5.80°, 7.68°] [13.5°, 15.375°]		[18.5°, 20.375°]	[5°, 25°]	[25°, 45°]		
Transverse FOV	40)°		5°		5°		
Binning	2 x	2x2 1x1 2x2			2 x 2	2 >	: 2	
Image Size w/Binning	1024 x 2048	1024 x 2048	192 x 512	96 x 256	96 x 256	1024 x 256	1024 x 256	
Maximum # of Images	4	32	8	12	16	4	32	
in Summed Image								
Compression Type	H-Compress Rice		H-Compress	Rice Rice		H-Compress Rice		
Compressed Image Size (MB)	1.3	3.0	0.06	0.03	0.03	0.16	0.37	
Image Cadence	30.0 min		0.13 min 0.77 min 1.54 min		1.54 min	5.54 min		
Images per Day	48		1872 312 156		260			
Observing Period per Day	24	hrs		4 hrs each	24 hrs			
Observing Days per Orbit	4	ŀ	2				2	

Interpreting Heliospheric Images

Case studies of Streamer Blobs and Corotating Interaction Regions

- The combination of coronal rotation, the solar wind outflow and the optically thin nature of the scattering, makes the interpretation of the heliospheric images challenging.
- We found that the construction of J-Maps facilitate the tracking of features from the sun to earth.
- The middle plot is a track of density blobs moving at 330 km/s and rotating with the solar rotation (.233 rad/day). The top & bottom plots are observations from SECCHI exactly matching those plots.

Example of the utility of J-Maps in Tracking Streamer Blobs

- The figures in the top 2 rows to the right show several streamer blobs, indicated by the white and black arrows.
- It isn't obvious from the images whether they are the same structure.
- The bottom J-Map drawn at a Position Angle of 91° shows the height-time tracks. The white and black arrows point to the two tracks. It is clear that these are two separate structures, which merge (in projection) onto the same track.

A Track of a Co-rotating Interaction Region

 Direct images and corresponding track of a streamer blob being swept up in the compressed region ahead of a high speed stream, forming the CIR

What is a "Streamer"

- In 2004 a very stable high-latitude streamer was observed from SOHO. An analysis (Thernisien & Howard, ApJ 2006) was able to determine the 3D density distribution along the axis (in longitude).
- The two figures on the right are showing the "same" streamer first seen edge-on at the limb and then seen face-on over the pole as the region was transiting behind the sun.
- The edge-on view defined the width of the streamer and used in the faceon view to define the depth.

Position Angle [Deg.]

Synoptic Maps (July, 2004)

Modeling a Coronal Mass Ejection

Wood et al, 2013)

20140922_L'Aquila

20140922_L'Aquila

36

Observations of the Dust Corona (F-Corona)

- SoloHI will observe the near-Sun dust environment i.e. the F-corona from 0.28AU.
- As dust particles get close to the Sun they will evaporate and then not contribute to the scattering. The radial distance of this evaporation depends on the material composition
- A dust free zone at about 4-5 Rsun has been postulated (Russell, 1929), but has never been observed.

Questions:

- What will the background F-Corona look like from SoloHI
- What inferences might we be able to make about the nearsun dust environment.

Even at $\varepsilon = 1^{\circ}$, 90% of the emission isn't achieved until about 0.2-0.3 AU from the sun. At $\varepsilon = 20^{\circ}$ the contribution is almost linear from the sun to 1 AU.

Depth Contribution for SoloHI at Perihelion

K and F corona depth contribution.

Left panel: no dust free zone.

Right panel: onion layer dust free zone starting at 15 R_{sun}.

Onion Layers Dust Free Model, SoloHI FOV, from 0.28 AU

Sublimation Zones For Different Materials

Sphere	Fluffy	Ref.
1.5−4 <i>R</i> ⊙	_	1,2,3
1.9–7 R_{\odot}	2.5–3 R_{\odot}	4,5,6,7,8,9,10
2.9–6 R_{\odot}	_	5,8
$4 R_{\odot}$	$4 R_{\odot}$	9,10
$\leq 5 \ R_{\odot}$	$\leq 2 R_{\odot}$	2,5,7,8,11
$5 R_{\odot}$	$5 R_{\odot}$	12
5.5–6.5 R_{\odot}	5–6.5 R_{\odot}	12
$6 R_{\odot}$	—	8
9–10.5 R_{\odot}	_	3,4,11
$10 R_{\odot}$	9.5−11 <i>R</i> _☉	12
13.5–15.5 R_{\odot}	12–15 R_{\odot}	12
14 R_{\odot}	_	8
11−24.3 <i>R</i> _☉	_	3,4
10–40 R_{\odot}	—	6
1–2.8 AU		2,3,6
	Sphere $1.5-4 R_{\odot}$ $1.9-7 R_{\odot}$ $2.9-6 R_{\odot}$ $4 R_{\odot}$ $\leq 5 R_{\odot}$ $5 R_{\odot}$ $5.5-6.5 R_{\odot}$ $6 R_{\odot}$ $9-10.5 R_{\odot}$ $10 R_{\odot}$ $13.5-15.5 R_{\odot}$ $14 R_{\odot}$ $11-24.3 R_{\odot}$ $10-40 R_{\odot}$ 1-2.8 AU	SphereFluffy $1.5-4 R_{\odot}$ $1.9-7 R_{\odot}$ $2.5-3 R_{\odot}$ $2.9-6 R_{\odot}$ $4 R_{\odot}$ $4 R_{\odot}$ $\leq 5 R_{\odot}$ $\leq 2 R_{\odot}$ $5 R_{\odot}$ $5 R_{\odot}$ $5.5-6.5 R_{\odot}$ $5-6.5 R_{\odot}$ $6 R_{\odot}$ $9-10.5 R_{\odot}$ $10 R_{\odot}$ $9.5-11 R_{\odot}$ $13.5-15.5 R_{\odot}$ $12-15 R_{\odot}$ $14 R_{\odot}$ $11-24.3 R_{\odot}$ $10-40 R_{\odot}$ $1-2.8 AU$

References. — (1) Over (1958); (2) Mukai and Mukai (1973); (3) Lamy (1974b); (4) Lamy (1974a); (5) Mukai and Yamamoto (1979); (6) Mukai and Schwehm (1981); (7) Mann *et al.* (1994); (8) Shestakova and Tambovtseva (1995); (9) Kimura, Ishimoto, and Mukai (1997); (10) Krivov, Kimura, and Mann (1998); (11) Mukai *et al.* (1974); (12) Kimura *et al.* (2002).

Mann et al (2004)

- SoloHI is poised to contribute to the exciting Solar Orbiter science observations and analyses
- We all depend on the next generation(s) of scientists
- With the Solar Orbiter mission joining SOHO, SDO, STEREO, SPP, BEPI-COLUMBO, Messenger and other interplanetary missions, we are in a "golden-age" of solar observations – these observations are necessary to provide the validation of the various models.
- I wish to gratefully acknowledge the contributions of the SoloHI team and the support of NASA.