

Response of the Earth's environment to solar radiative forcing

Ingrid Cnossen British Antarctic Survey

Outline

This lecture

- Intro to atmosphere structure and processes
- Absorption of solar radiation
- Atmosphere composition
- Energy balance
- Ionization
- Conductivity
- Low latitude currents

Next lecture

- Effects of variations in solar radiative forcing (examples)
- High-latitude currents
- Coupling to magnetosphere

Vertical structure of the atmosphere

Terrestrial Atmosphere ITM Processes

J. Grebowsky / NASA GSFC

Solar Radiation Spectrum

Absorption of solar radiation

Balance between

- Intensity of incoming solar radiation
- Atmosphere density

Atmospheric absorption cross-sections

From Cnossen et al. (2007)

What happens with absorbed solar energy?

Transformation of radiative energy

Energy Thresholds for Processes

Species	Dissociation	Dissociation	Ionization	Ionization
	(Å)	(eV)	(Å)	(eV)
н			911.75	13.6
Не			504.27	24.58
0			910.44	13.62
O ₂	2423.7	5.11	1027.8	12.06
N ₂	1270.4	9.76	796	15.57
NO	1910	6.49	1340	9.25

From Heubner et al., Astrophys. Space Sci., 195, 1-294, 1992

Neutral atmosphere composition

Absorption of solar radiation within the atmosphere

Image credit: John Emmert/NRL

Energy balance in the atmosphere

Winds in the thermosphere

Radiative energy terms in the middle atmosphere

Sol = solar heating

---- non-LTE

From Fomichev (JASTP, 2009)

Radiative energy terms in the middle atmosphere

IR = infrared cooling CP = chemical heating Sol = solar heating

LTE

From Fomichev (JASTP, 2009)

Middle atmosphere radiative heating and cooling

Thermosphere heating and cooling rates (solar min)

Photochemistry in the upper atmosphere

lonosphere composition

Major species: O_2^+ , NO⁺, and O⁺

Molecular ions dominate < ~150 km; approximate photo-chemical equilibrium

O+ dominant > ~200 km

Conductivity of the ionosphere

$$\sigma_{\parallel} = \frac{N_e e^2}{m_e (\nu_{en\parallel} - \nu_{ei\parallel})}$$

Solar quiet (Sq) current system

Winds drive currents

Summary

- Solar activity affects...
 - Heating and cooling processes throughout the atmosphere
 - Pressure gradients and winds
 - Composition
 - Ionization
 - Conductivity
 - Currents in the ionosphere
- These processes also interact with each other!