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More detailed cascade picture: central role of
higher order correlations/higher order statistics

possible 1/f _
k time~domain nonuniform
cascade dissipation

energy
containing

intermittency
corrections!

Energy spectrum E(k)

S'OVr\]/ & t Faster =
neoneren more Coherent I
more nonGaussia =

>

Log(wavenumber)

Cascade: progressively enhances nonGaussian character
Generation of coherent structures and patchy correlations
Coherent structures are sites of enhanced dissipation

for inverse cascade/quasi-invariant case, 1/f noise low frequency
Irregularity in time, and build up of long wavelegnth fluctuations



VanDyke, An Album of
Fluid Motion

Mean flow and fluctuations

 In turbulence there can be great differences
between mean state and fluctuating state

« Example: Flow around sphere at R = 15,000

Mean flow Instantaneous flow
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Visualizing Solar wind turbulence !

Using heliospheric imagers (e.g., Stereo) and recent
developments in image processing permits us to see solar
wind, CMEs and solar wind turbulence

STEREG-A Combined: 2008-12-12T01:00:00
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Large scales, turbulence and kinetic scales

Solar wind at 1 AU: length scales and models

cascade

Solar wind
expansion

Dispersion, dissipation,
turbulence
___—-"""‘

CMEs, streams
Large structures

c7:\: ) p——
GAP - |

MHD description

Entropy production

Kinetic plasma description
Innomogeneous Quasi- Kinetic effects
boundary driven AL EICEE 1 i ,
nonlinear intermittency
® .
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Unresolved turbulence is modeled dynamically




Coronal/interplanetary dynamical models (MHD) with
turbulence modeling

Single fluid

e Isothermal or polytropic with y 2>

1
* Ad hoc heat function
* no cross helicity effect
* WKB waves

e strongheat conduction (acing on

all species)

Consistent modeling of
production/mixing terms

Polytropic y =5/3 EOS

Strong heat conduction on electrons
only

no ad hoc heat function

Optimized von Karman MHD
dissipation

Analytical improvements in transport

modeling

Improved understanding of
nonconserved

guantities (e.g., residual ene

SOON! >

nonWKB transport of fluctuations
Cross helicity effect
vonKarman-MHD heating- proton fluid,

Separate proton/multifliuid enegy equations

no heat conduction on protons
physical modeling of the Reynolds stresses

Partial list of advances

Heinemann& OlbertJGR (1980)

Tuet al JGR (1984); Tu JGR (1988)

Hollweg, JGR, 1986; Hollweg & Johnson (1988
Velli et al. GAFD (1991); Velli AA (1993)
Matthaeus et al JGR (1994); Zank et al JGR
(1996);;

Matthaeus et al, PRL(1999); Smith et al JGR

(2000):

Breech et al, JGR (2008); Isenberget al ApJ

(2010);

Zank et al ApJ (2012)
Verdini et al, SOHO-2006; ApJL, 2010
Cranmer et al, ApJS 2007
Lionelloet al 2014)
Usmanov et al JGR (2000)
Usmanovet al, 2008, 2010, ApJ 2011, 2012
Usmanov et al, 2013; Usmamov et al ApJ (2014

* Properturbulence modeling of Reynolds stresses
* Improved turbulence production by mean (large scale) fields
e Eddy viscosity (velocity & magnetic; alpha effect;
turbulent resistivity, turbulent heat conduction
e  More complete multifluid p/e models
e Turbulence modeling with tuned energy and length

equations

* p/e/ion Heat functions based on kinetic plasma physcs



Self consistent large scale simulation with
turbulence modeling  usmanovetal, ap) 788 43 2014

* 3D MHD large scale modeling in rotating frame (Reynolds averaged)

* Reynolds averaging implies new dynamical terms
> PONDEROMOTIVE FORCE(WAVE PRESSURE)
» DIV (Reynolds stresses)

> “mixing terms” & energy difference

» Turbulentviscosity

» Turbulentresistivity
» TURB. INDUCED ELECTRICFIELD (alpha effect)
» HEAT FUNCTIONS (ion & electron internal energies)
» PRESSURE EFFECTS (convective and compressional)

> Turbulentheat conduction

* Turbulence transport model
» Fluctuation energy
» Cross helicity
» Correlation scale(s)
» vonKarman-Howarth heating ~73/L

* Response of kinetic scale plasma turbulence
» Phenomenology under development
» Intermittency of dissipation (like hydro & MHD)
» Partitioning of dissipated energy among species (protons, electrons, ions, suprathermals...)



Reynolds averaged
equations

* Mass

e  Momentum

*  Magnetic induction
* Proton pressure

* Pickupion pressure
* Electron pressure
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Eddy viscosity approximation (Boussinesq, Smagorinsky, Yoshizawa, Yokoi...)

where vy and v,y are (Kinematic) eddy viscosity coefficients,
Kz = (v? — b?)/2 = opZ?/2 is the residual energy, and &
and M are the strain rates of the mean velocity u and the mean
Alfvén velocity V4 = B(dmp)~V?2, respectively. & and M are
l'R, _ % Kxl— veS+vy M deviatoric (traceless) symmetric tensors given by

0

R = (pv'v' —B'B'/47)

2 2
S= Vu+VuT—§(V~u)I, M = V’VA+VV£—§(V-VA)I,

e = (V' x B (4mp)™1/?
a dynamo parameter - magnetic
B helicity
e, —aB — BV X V4 +9yV xv
B beta effect; turbulent resistivity
v emf due to vorticity



Three equation turbulence transport model closes the system at the

MHD level
Turbulence energy
*  Cross helicity
e  Correlation scale
YA 2 Z%cp—1 aft (e )73
= (v.-V)Z° - IR:Vu+ oD )V+u— I {oe) ?
ot 0 2 A
7o 7a af (c)73
u:—(v-V)(Zgac)—Qemo(Vxu)— °V-u-— f~(oc) ,
ot 2 A
A
— = — (V : V))\ + ,B]c—l_(o'c)z-
ot
- Eddy viscosity, turbulent resistivity, alpha For brevity terms involving large scale
effect, beta and gamma coefficients are magnetic field & VA are omitted here
determined by Z, xand-c-c' but retained in the coronal model;
= All transport coefficients are ~Z), These are small in the outer heliosphere

with O(1) constants determined by
other theories or phenomenologies



Heating due to cascade

e Heating rate (von Karman) is
ZB

Q =(— 1)0‘f+(6c)T

with a constant O(1)
fHo) =1 - H"PP[(L+0)'* (1 —0)"?]/2

The internal energy equations have heat functions
f,Q, for protons

(1 —fp) Q, for electrons

The selection of a value for f,, depends entirely on
kinetic plasma physics



Large scale (global) model with turbulence

modeling

A. Usmanov, M. Goldstein,
B. W. Matthaeus(2014)

Y

Large scale (mean field) model

equations:

- Momentum

- Magnetic field )

- Density -

- internal energies (Te & Tp) =~ | -

- additional species (Pis, -
alphas, etc)

NEW TERMS:
Fluctuation pressure
Reynolds stresses
Random compressions
Turbulent electric field
Turbulent heat conduction
Heat function/dissipation

T

~

Closures:
Eddy viscosity (kinetic &
magnetic)
- Production/mixing terms
/ - Turbulent transport

dissipatio

Transport equations for energy,
cross helicity, correlation scales

turbulence parameters:

heating

9 energy L
Ll A containing TUEEL
£
=
O SR
L | input
>
Sl
Q
c cascade
L
Log(wavenumber)

Plasma kinetic theory:
- branching between e/p
heating
Dissipation mechanism
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Usmanov et al model

R = {pvv - B'B/47)

1 2
—“R=-KzIl - vy S+uyyM
p 3

where vy and vy are (kinematic) eddy viscosity coefficients,
Ki = (0% = b%)/2 = 0722 is the residual energy, and S
and M are the strain rates of the mean velocity u and the mean
Alfvén velocity V4 = B{dmp)~V2, respectively. 8 and M are
deviatoric (fraceless) symmetric tensors given by

) -2
= ViVl Z(Vall, - M= VYW VYL

&y = (VX B')(4mp) 1/
e, =dB— BV x V +7V xv.

- Eddy viscosity, turbulent resistivity,
alpha effect, beta and gamma
coefficients are determined by Z, A
and oc.

- All transportcoefficients are ~ZA
with O(1) constants determined by
other theories or phenomenologies

- Random compressionsand
turbulentheat transportareincluded
in the formalism but not yet
modeled.
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*  Heating rate (von Karman) is

ZS
Q=(- 1)0(f+(0c)7
with a constant O(1)

The internal energy equations
have heat functions

fprQ; for protons

(1 — fp) Q, forelectrons

The selection of a value for f,,
depends entirely on kinetic
plasma physics

For turbulence transport terms at order Va,
see Matthaeuset al, JGR, 1994; Zank et al, ApJ, 2012)



Testing global turbulence
transport models

Need boundary data and constraints from observations
“causality limit” works in our favor
Improved modeling approaches

1 AU data is always important!
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Transport: line
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Fro. 3.—Resulis of Foyager 2 data analysis and predictions of theory using the | AU Omnitape observations as input. Black circles represent the observed
quantities, and the red solid line shows the theoretical prediction. The IMF fluctuation energy (fop), proton temperature (second from top), spacecraft latitude (third
from top), and ratio of wind speed at Fopager to the observed wind speed within the Omnitape (bottom) are shown. The proton temperature predicted from adiabatic
expansion from 1 AU is shown as a dashed line on the T, panel.



Turbulence transport
models (in various
forms) work pretty well

10° e L T [ e e
| ERsE Bdidbetie RERES Smith et al. model |

EG: Here, :;}‘ —— V2 data = Model + Speed |
supplemented by 'Y
empirical Tp-speed - | i ‘
relationat 1 AU, hat T
transport model does TR TS AT AR
a pretty good job 7 L Wy
accounting forW WO ]
Toout — e s s s

0 10 20 30 40 50 60

to 50 AU Distance (AU)

Figure 1. 101-day running boxcar averages of the Voyager
2 temperature (solid line) versus radial distance, the adiabatic
profile (dot-dash line), the Smith et al. [2001] model result
(dashed lme), and a superposition of the Smith et al. [2001]

Richardson & Smith, GRL, 2003 model and a speed-temperature relation (dotted line).



Global
simulation
Including
transport

& turbulence
modeling:

No dipole tilt

Usmanov et al, ApJ, 2014

THE AsTROPHYSICAL JOURNAL, T88:43 (18pp), 2014 June 10 Usmanov, GOLDSTEIN, & MATTHAEUS
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Figure 2. Contour plots of the computed paramelers in the meridional plane from 0.3 to 100 AU for the axisymmetric case of a magnetic dipole on the Sun aligned
with the solar rotation axis: (a) the radial velocity u,, (b} the number density of solar wind protons Nz, (¢) the magnetic field magnitude B, (d) the temperature of solar
wind protons Tz, (e) the temperature of electrons Tk, (f) the turbulence energy ZE, {g) the normalized cross helicity o, (h) the correlation length scale 4, (i) the number
density Ny, and (j) the temperature 17 of pickup protons. The white line in the T's plot (d) depicts the projection of the Voyager 2 trajectory on the meridional plane.
(A color version of this figure is available in the online journal.)



Sample solution; 30° dipole, model computed in three Regions (1-20Rs; 20-45Rs; 45Rs-3AU)
Outer section 0.2AU to 3 AU visualized here
Selected variables shown:
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Global model compared to Ulysses data Global model: effect of improved turbulence
models ( eddy resistivity & eddy viscosity )
0.3-10AU
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Figure 8. Simulated profiles (red) for a source magnetic dipole on the Sun tilted by 10% (with respect to the solar rotation axis) vs. [llysses daily averages of plasma
and magnetic field parameters measured during the first fast latitude transit of Ulysses in 19941995, The parameters shown are: the radial velocity &, (a), the number U smanov et d I, A pJ ) 2 0 14

density of solar protons Ns (b) and their temperature Tz (), the radial B, (d) and azimuthal By (¢) magnetic field, and the electron temperature Tz (f). Tivo estimates,
“Tlarge” and "7 small” of the proton temperature measured by Ulysses are shown by blue solid and dotted lines, respectively.
(A color version of this figure is available in the online journal)



Global simulation
with dipole tilt and
turbulence modeling

THE ASTROPHYSICAL JOURNAL, T88:43 (18pp), 2014 June 10 Usmanov, GOLDSTEIN, & MATTHAEUS
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Figure 11. Contour plots in the mendional plane ¢ = (75 from (0.3 to 20 AU {a—) and from 20 to 100 AU (k-t) of the mean-flow and turbulence parameters for
Camington Rotation 2123. The white lines in (a—j) depici the heliospheric neniral sheet (B, = 0). The white line 1n the plot (n) shows the projection of the Voyager 2
trajectory on the mendional plane,



THE GOAL.:
Multi-scale Modeling of Turbulence in Global Simulation with
sub-grid MHD and sub-grid kinetic modules

. Techniques: |
| TeChmques' PIC-based Phenomenology .
: LES/SGS Filtering of Vlasov-Maxwell |

! Large > Sub-grid > Sub-grid :
| MHD — MHD _J . A" kinetic |

Parameterization of turbulence = Tp=Tp(P{cascade rate, anisotropy, ..

* Accurate description of large scale
| P{Cascade rate, anisotropy, ...} Te=Te(P{cascade rate, anisotropy, .. })l



Cutting edge questions: can

structure formation
Intermittency
phenomenology of kinetic physics

be built into turbulence modeling??

A topic of ongoing and future work...
These effects are going to be difficult!

See Miesch et a, SSR 2015



Some types of intermittency and potential effects on solar
prediction

(1) Large scale/low frequency intermittency
- variability of sources
- Inverse cascade (space) <> 1/f noise (time)
- Effects of dynamics on the “slow manifold”
- Dynamo reversals, rare events (big flares?)

(2) Inertial range intermittency
- “scaling” range
- reflects loss of self similarity at smaller scales
- KRSH
— This is a lot of what you see and measure

(1) Dissipation rage intermittency
- vortex or current sheets or other dissipation structures
- usually breaks self similarity because there are characteristic physical scales
— Controls local reconnection rates and local dissipation/heating;
small scale “events”



Inner boundary conditions

Largest scale
structures
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Very low frequency/very large scale intermittency

e 1/f noise:
— Gives “unstable” statistics — bursts and level-changes
— Long time tails on time correlations
— Generic mechanisms for its production (Montroll & Schlesinger, 1980)
— Often connected with inverse cascade, quasi-invariants,
— highly nonlocal interactions (opposite of Kolmogorov’s assumption!)

 Dynamo generates 1/f noise (experiments: Ponty et al, 2004

e connected to statistics of reversals (bmitruk et al, 2014)
— 1/k = 1/f inferred from LOS photospheric magnetic field
— 1/f signature in lower corona
— 1/f signatures observed in density and magnetic field in solar wind
at 1 AU (M+G, 1986; Ruzmaiken, 1988; Matthaeus et al, 2007; Bemporad et al, 2008)



An example from 3D MHD with strong mean magnetic field

(Dmitruk & WHM, 2007)

- nearly in condensed state

- energy shifts at times scales
of 100s to 1000s Tnl

- characteristic Tnl~ 1

- Where do these timescales
come from ?
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Numerical experiments on Eulerian frequency spectra

. . o
MHD Turbulence with mean field: onset of 1/f o
noise due to “quasi-invariant” z
107
107
0.2 D.JOI 0.10 1.:)0 IUJ.OD
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a Fouriermode M o
. E‘ 0.0 E‘ 0.0} 0 o
In time, from A 5 £
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1/f: 1AU, MDI and UVCS — high/low latitude comparisons
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1/f noise and 10 . .

=5 10
10°

f 00, Hy>0 4
reversals in spherical '} N

— CK95 ]
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= Run for 1000s of Tnl
- See ramdon reversals
of the dipole moment

- 1/f noise with rotation
and or magnetic helicity

Dmitruk et al, PRE 2014

1072 i 107 10 10 10

f {1,/ Myr) At (Myr)

With rotation/helicity = Waiting times for reversals scale like geophysical data!



Heliospheric effects associated with flux tube
structure/boundaries/coherent structures/current sheets

Heating: proton Temp elevated at & near O
coherent magnetic structures o A e’ Osman et al,
- enhanced dissipation & kinetic ApJ 2011)
activity o 5
Dropouts: sudden, energy- dependent
changes in observed SEP flux e Mazur et al, 2000
- field lines & particles temporarily " ‘ | (a) geff a||sot 2003
. . | ) uffolo et al, :
trapped in in flux tubes, bounded ” MI \I | Tooprakai et al, 2007:
by coherent magnetic structures " ® Seripienlert et a, 2011
[ 1{« F—M(C) Kittinaradorn et al, ApJ
o ¢ - 2009
Moss  chromospheric brightness pattern 3 Aoy

—> energize particles by nanoflares
In corona; connectivity down to Kittinaradorn et al, ApJ 2009
chromosphere structured by flux tubes

7 10°

v PUI>0 ! .

2t | .. Tessein et al,
+ Shocks E ‘% Ap‘J, 2013
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SEPs: enhanced fluxes of suprathermal
particles at & near observed coherent
structures in SW

—> transport? reacceleration?
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Strength of electric current density in shear-driven kinetic
plasma (PIC) simulation (see Karimabadi et al, PoP 2013)

181C

Thinnest sheets seen are comparable to electron inertial length. Sheets are clustered

At about the ion inertial length = heirarchy of coherent, dissipative structures at kinetic scales




Issues relating to reconnection,
plasmoids and topology



Multiple islands in RZ: secondary islands form at

convective timescales

FIG. 5. Closeup contours of magnetic field lines showing bubbles for the
4" = 1000 run, Small bubbles appear at the far left of the upper current
sheet region at t = 2.0 and at # = 4.4. A small bubble has appeared along the
lower sheet at 4.4 and has grown by ¢ = 4.9.

IV. DISCUSSION: TURBULENT RECONNECTION

The magnetic irregularities formed in the reconnection
zone because of electric field fluctuations change the field
topology and form multiple X points. The nonsteadiness of

See also: Alfvenic ”"plasmoid instability”,
and Richtmeyer-Meshkov instability of shocks

RECONNECTION ZONE

OUTFLOW OUTFLOW
X-POINT
A W ] I 1 1
1 T 1 fT 1
ﬂ INFLOW
IRREGULAR
OUTFLOW
TURBULENT
MAGNETIC
FLUCTUATIONS

IRREGULAR INFLOW

~=TURBULENT RECONNECTION =
ZONE

TIPLE
NETIC X-POINTS
BUBBLE

77

FIG. 6. Sketches of the surface of vector potential in the area around the
reconnection zone, suggesting the effects of turbulence. (a} A smooth recon-
nection zone. The central X point is a saddle point of vector potential—a
steep maximum across the neutral sheet and a shallow minimum along it. (b}
Adding fluctuations produces irregularities in the surface, which are trans-
ported towards the reconnection zone by the nonsteady flow pattern. (c) The
topology of the magnetic field is modified in complicated ways by the turbu-
lence. Reconnection proceeds rapidly because of multiple X points and
magnetic bubbles in the reconnection zone.
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Reynolds
number
effect
expected!

Matthaeus & Lamkin, PoF, 1985



Profileration of Xpoints in MHD: spatial picture and space-time evolution

e Asmall region of a 16Kx16K Fourier spectral simulation with threefold
oversampling of Kolmogorov scale, analyzed on 32Kx32K grid; Rm = 50000, total of
5649 X-points at peak time

6.2pm

Another region
at two times

3.4 35 36
t=0.32

Wan et al, PoP, 2013

Magnetic field lines, electric current density, and X points



Plasmoid scaling propertiesin 2D MHD

Number of Xpoints/flux tubes

— Vs Rm (at peak dissipation)

Can be understood in terms of

basic cascade physics

vs time
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Many reconnection sites form in shear-driven kinetic plasma with
initially uniform magnetic field

(Top) whole field; (Bottom) zoom of
two sub-regions.

Total of 278 X-points identified;

Red circles (6) strongest reconnection
sites (> 0.1 in Alfven unit)

Pink diamonds (66) strong
reconnection rates (0.05t0 0.1 in
Alfven unit),

Grey boxes (63) moderate
reconnection sites (0.025 to 0.05 in
Alfven unit),

Black “X” (143) other weaker sites s
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Reconnection in 3D

* Very complex structures are possible

Priest
& Pontin,
PoP 2009

3D Hall MHD: two examples (Dmitruk & Matthaeus(2006)

e Weakly 3D Reduced MHD affords a useful direction

»  Slowly varying in z-direction

> “nanoflare” problem

»  Driven by low-frequency boundary motions,
appropriate for solar flux tubes driven by
low-frequency photospheric stirring of the
magnetic footpoints (Parker 1972; Einaudi et
al. 1996, Rappazzo & \#lli 2010).




View of currents in boundary driven
weakly 3D Reduced MHD

Wan et al, ApJ 2014

Figure 1. Two renderings of the 3D electric current density at £ ~ 3014, when the simulation has attained a statistically steady state. Left: 3D translucent shading of
the current density. Right: iso-surfaces of electric current density at a near-peak value. In both plots color contours of the current density are shown in selected cross
sectional 2D planes. The legend indicates corresponding numerical values. Only 1716 of the simulation box (0.25 x 0.25 x 10) is shown.



X-point-current peak distances & Wan et al, Ap) 2014
LOCAL reconnection rates

See also Zhdankin et al, 2013

Distribution of distance from
Xpoint-to- nearest current sheet

10}

f ‘ Outside CS
10% |nside ™
f CS

PDF

10'L

108k

.?"/lﬂ

0.4 TRt T T T T T T T T T
: Average reconnection ]
0.3 rate vs. above distance 1

A [
|_|j<0.2j

<

01}

10T 100 100 108

Figure 12. Top: PDF of the distance (») from X-points to the closest current sheet
(region with | | = 6 jims), normalized by the Kolmogorov dissipation scale £,.
Bottom: conditional average of electric field at the X-points, conditioned on

0 0 2 0 4 O 6 0 8 1 the distance from the X-point to the closest current sheet. Grid length, Ax, is
. . . . indicated in both panels by vertical dashed lines.

Separation of Xpoints and current sheets is an important reason for
bursty/nonsteady reconnection in 3D! Need to define reconnection locally!



Test particles in RMHD

Stage 1 — parallel acceleration dominates, highly associated with current sheets

Stage 2, larger gyroradii, perpendicular acceleration dominates;
resonant (as in betatron);
associated with electric field inhomogenities,
and therefore more loosely with current structures



Coupling of structures
to particles



Particles are energized anisotropically!

3D MHD/test particles with strong B,:  distributions at short times < crossing time of Lc

150 T

T 150
protons
i 0 i 0-
h -150 =75 = ?vﬂ] 75 150 B -150 =15 = E)VO] 75 15C
: : : - perp plane
Trajectories and current structures B, direction
100 100~ . ™
Ei 0 E: 0
=50 -_ -5 ?
N R e e B
-100 =50 . ?v 5 50 100 -10 -5 . [Ov ] 5 10
electrons o o

Dmitruk et al, 2004



Partitioning of heating between protons and electrons

Average
proton &
electron

heat functions
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Cascade rate, turbulence strength &
proton/electron heating

Evidently, protons absorb a larger fraction of the
cascaded energy when the turbulence is stronger

Dmitruk et al, 2004

Smith et al, ApJL, 2006
Matthaeuset al, ApJ, 2008
Chandranetal, ApJ, 2010
Osman et al, ApJL, 2011
Wu et al, PRL, 2013

Protons
hotter in
fast solar wind

Cranmer et al,
ApJ, 2009
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3D PIC turbulence

e Dissipation is intermittent
in 3D collisionless plasma

3D PIC d
2.5D PIC
2,50 P3D

-------------
T
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1 0.034
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Laie]
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T —
|
1

orlde .
Map of j.E Map of Tp in same plane 2 4

ms

FIG. 6: Conditional average of dissipation D, calculated con-
ditioning on the value of current density, normalized by the
global average dissipation rate < D, >». Also shown are the
same results from two different 2.5D PIC simulations [10] and

Average De binned by “l MHD simulations.
e Increases with |J|

* About the same in 2D & 3D Almost same scaling with current density
as in MHD!!!



3D PIC  Tenetel PR 200 3D+3v hybrid-Vlasov

Roytershteyn et al, 2015
Servidio, Valentini et al,

. JPP 2014
20483 spatial resolution; 1.7 Coherent structures in

trillion particles . .
electric current density  17g3 real space x 513 v-space

26 S. Servidio et al.

(b)

Figure 18. (Colour online) {(a) 3D shaded contour of the current density |j| for a
six-dimensional HVM simulation. As for fluid models, strong current sheets characterize
the turbulent pattern. (b} Reduced spectrum of the total magnetic field as a function of &, d;.
The dashed (gray) line represents a reference for the eye, indicating the Kolmogorov prediction
of turbulence. The case reported is for ¢ = 0.5 and §8/B;, = 1/3.




Summary: Kinetic plasma turbulence

Kinetic cascade
Waves vs turbulence
Heating processes
Intermittency

e Active area of study
to develop a
phenomenology
needed to improve
cross scale modeling



Summary: pathway to cross scale
modeling

Self-consistent MHD Improvements Cross Scale Kinetic Improvements
> MHD subgrid stresses > Alpha effect o _ > Anicotrobi
> Eddy diffusivities >  Production terms > Klnepc subgrid stress nisotropies
> Spatial diffusion » Heat conduction....Etc... > Heating, Te and Tp > Suprathermals, Etc...
Mesoscale Microscale

(kinetic) Model

W

1D + Heating &

Turbulent o 3D Solar Wind
Transport Acceleration in Coronal Model 3D Corona
Holes
» Turbulence distribution » Quantitative physics based » Self consistent coupling of > 3D data driven model w/
in the heliosphere coronal heating model large scales and turbulence consistent turbulence & Kkinetics
» Connection between local > Critical evaluation of turbulence » Extension to kinetic effects enables > Tool for Solar Probe & Solar

turbulence & kinetic signatures driven fast wind models numerous observational connections Orbiter
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Abstract We live in an age in which high-performance computing is transforming the way
we do science. Previously intractable problems are now becoming accessible by means of
increasingly realistic numerical simulations. One of the most enduring and most challenging
of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes
encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still
preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation
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