What are the sources of variation in solar radiation?
- Solar activity

- Orbital variations

Do these changes affect the climate?

Do we understand the processes involved?
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Mean E-S distance:
1.496 * 101 m (= AU)

Max E-S distance:
1.521 * 101 m (= 1.017 AU)

Min E-S distance:
1.471 * 101 m (= 0.983 AU)

Eccenricity = 0.0167

Tilt = 23°27




F = irradiance
Z= zenith angle
d=distance E-S
h=hour angle

Total daily insolation

H=rotation_rate *(local_time-12)
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Figure 8. The Sun observed on 20 March 2000, near the maximum of the most recent solar activity cycle. Left: in visible
light, showing sunspots; Right: in the ultraviolet, revealing areas of intense activity associated with the sunspots®.
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- Proxies for solar irradiance are used for climate-sun
relationship

- |f we could get understanding of how sun’s magnetic
activity is related to solar irradiance, we could

reconstruct past solar irradiance

- Predict solar irradiance - effects on climate
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Figure 10. (a) Daily-averaged total solar irradiance (Wm) from 1978 to present: all measurements made from
satellites. (b) Composite record obtained by inter-calibration of the data from the individual instruments®.




Solar energy absorbed by the Earth = (1 — A)S/4,
where A is the Earth's albedo and S is the total solar irradiance

Smax-Smin = of about 1 W m-2

flux with its cross-sectional area  R?, but
emits long-wave terrestrial radiation over
its entire spherical surface of area 4w R?.

S=1366 Wm-2and A=0.3,
the solar power available to the Earth system = 239 W m-2
with an 11 year SC variation of ~0.17 W m-2, or ~0.07%

Impact at the surface : DTs=I*"DF, I=climate sensitivity 0.5K( W/
m**2)-1 2 DTs=0.07 K
What do Observations show ?
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(@) Observed surface temperature
90N P ISR IR SR ETI NI SR

6ON | Q="

TROPICS

Ll I L\l ' Al Al l Al ' ' L ! Al ' Al Al I Al L I Ll 1 I L) Al
0 30E 60E SO0E 120E 150E 180 150W 120w SOW 60W 30W 0

precipitation
PR -

Meehl et al., Science LRkt a s

808 T
0 30E 60E S0E 120E 150E 180 150W 120w SOW 60W 30W 0

e | () or (mdy)

-1.6 :-cto-.«

Regional responses larger than expected global mean
Feedbacks ? Amplyfing mechanism ?7?




(a) Solar spectral irradiance
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11-yr Solar signal on Ozone

% change in SAGE ozone (Smax—Smin) 1985-2003
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11-yr Solar signal on Temperature

Chnage the temperature = change in the circulation
Gray et al., 2010
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Top-down mechanism, 1.through the stratospheric
ozone — polar route in winter, 2. at equator, all
year (SSI)

Bottom-up mechanism, in the tropics (TSI)

Interaction between GCRs and clouds




+ phase Solar cycle in the UV -

% change in SAGE ozone (Smax—Smin) 1985-2003
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+ phase Solar cycle in the

- Warming of tropical lats -




+ phase Solar cycle in the

- Warming of tropical lats -
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Uncertainty in the SSI, may be important?
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Figure 1] lllustration of photolytic solar cycle ozone response. The solar max-min photolytic ozone response to integrated-UV below 242 nm (left
column) produces ozone. Below 320 nm (middle), O3 photolysis leads to catalytic loss of Oz if the O does not recombine with Oz. The resultant response
(right) is approximately the sum of these®. The far larger SORCE changes at ozone-destroying wavelengths more than compensates for the larger UV

changes at shorter wavelengths, leading to a negative response higher up, whereas SATIRE-S is positive at all altitudes. Pressure levels are illustrative of
Fig. 4. Percentages are the relative solar cycle changes.

SIM on SORCE shows, over the period 2003-2007 (i.e. during
the declining phase of the most recent solar cycle), a much

larger decline in the UV than would be anticipated from current
understanding and an increase in visible



Understanding the role of solar variability in solar activity is
essential to the interpretation of past climate and prediction
of the future.

Solar activity changes might also play a role in regional climate
that we need to understand in the context of informing climate
adaptation efforts.

Knowledge of the solar radiation incident on the Earth is an
essential prerequisite of any quantitative studies of the Sun’s
impact on climate (discrepancies of 4-5 \Wm-2 between current
observations of TSI and estimates of its values back

In time to the period of low activity).

Continuing efforts to obtain measurements of high accuracy
and precision are needed, alongside further effort in
understanding the relationship between activity indicators and
iIrradiance.




SS| measurements are essential, if SORCE were correct we
should revisit our expectations and interpretation of past / future
of solar impact on climate

Top-down, uncontroversial. Not howvere the subsequent impact
at the surface

Bottom-up : uncontroversial the first part, not the feedback via
the circulation

responses In cloudiness to solar-induced changes in
atmospheric ionisation by galactic cosmic rays, requires more
evidence

Climate models, need to include all relevant processes..
However they need correct SSI input data!




Increases in solar activity probably contributed 7-30% of the
global warming apparent over the century leading up to the
1960s, the warming in the latter part of the 20th century is
almost entirely due to the increasing concentrations of
greenhouse gases from human activity

Understanding the physical processes involved in solar-climate
connections is crucial to the interpretation of meteorological
records, and to the prediction of aspects of the future climate.

Prediction in solar activity are difficult. Moreover, it is not
necessarily the case that an Earth with a global net radiation
balance but different radiative components (viz. less absorbed
solar radiation but more “greenhouse” trapping of infrared
radiation) will have the same climate
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