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The Earth’s ionosphere is an environmental issue!

forming also an essential part of telecommunication and
navigation systems; either as a medium within which they operate
— use the ionosphere to function, or as a part of the degradation
process - would function a lot better in its absence.
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@ Faciites Couar 8 The ionosphere in space and time:
as a complex dynamic plasma medium, highly variable

in space and time that exhibits climatology and weather

features at all latitudes, longitudes and altitudes.
5c=0420UT | Sc=1103UT

7 March 2012 | 8 March 2012
250 = -Arenositto

275

===Chilton —Pruhonice ====\\arsaw

Ebro Rome
7 - 13 March|2012 —==NicoSsia = Dourhes
225
Sc = 0915 UT
200 12 March 2012
175

\
125 | ! ,_ A

100 *f
.
75 +——— ,, "
50 ‘ l | /
4 }\
25 g1 7 ' =

NmF2 (10% el/m3)

0 T T T T T T
00:00 00:00 00:00 00:00 00:00 00:00 00:00
time (UT, hours)
Plot of the NmF2 diurnal variations over a few mid-latitude ionosonde stations during
7-13 March 2012 storm.
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The ionosphere in time:

00:05 02:05 04:05 06:05 08:056

10:05 12:05 14:05

time (UT)

Plot of the vTEC diurnal variations over a mid-latitude ground-based GPS receiver at HERS, UK
during absolute solar minimum in December 2008 when Ri=0.8.
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lonospheric

vertical sounding uses basic radar tecniques to detect
electron density of ionospheric plasma as a function of
the height by scanning the trasmitting frequency from 1
to 20 MHz and measuring the time delay of any echoes.

Guglielmo Marconi, the Nobel prize
in 1909 for contribution to the
development of wireless telegraphy,
realizing on 12th December 1901.

Edward V. Appleton, the Nobel Prize
in 1947 for describing the vertical
structure of the Earth’s ionosphere by
the systematic experiments and
theoretical studies.
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the following ionospheric characteristics can be found:
the critical frequencies, minimum virtual heights and
propagation factors of the E, F1 and F2 layers.

Tucuman (lat: -26.9, lon: 294.6) - DATE: 2010 09 05 - TIME (UT): 12:20 |

— — — ——— e ———— ———————eer————e -

foF2
- @)
oF1
foEd

The maximum electron density N,, corresponds to the maximum reflected incidence
frequency called the critical frequency fo

Ny = 1.24 1010 fo2
where N,, and fo are expressed in el/m3 and in MHz, respectively.




@ Factities Connar Y The CCIR (International Radio Consultative

Committee), currently ITU (International

Telecommunication Union) Atlas, 1967.
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An example of ITU hourly maps of MUF(0) and MUF(4000) in MHz.



@ ocience S Techology Global lonospheric Radio
Observatory (GIRO):
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With Real-Time and retrospective HF lonospheric Radio Sounding data from Lowell
DIDBase (http://giro.uml.edu/).
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lonospheric COST271 Action:
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Prompt lonospheric Database

(http://www.ukssdc.ac.uk/wdccl/ionosondes/cost_help.html).



http://www.ukssdc.ac.uk/wdcc1/ionosondes/cost_help.html

)

Science & Technology
Facilities Council

D ate: 16/03/2015
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These ionosonde data are absolutely essential for
monitoring the Earth’s ionospheric plasma in real-
time and understanding of the ionospheric storms.

Date: 17/03/2M5

19 19
15 15

foF2 foF2

(MHz) (MHz)
10 10 .
: 'W“‘/ F . jlf \‘_g
0 | 1l LU 0 | ] Il 11 |

] 10 15 20
Time(LT]

Dst (Provisional)

5 10 15 20
TimefLIT]

Date: 18/03/2M5

] 10 15 20
Time(LT]

5 10 15 20
Tirne{UT]




@ Science & Technology
Facilities Council

NmF2 (10**10el/m**3)
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for Chilton (358.67 ° E, 51.70° N) ionosonde station.
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Milestone Papers and Review Articles:

AUTOR

COMMENT

Martyn, Proc R.
Soc. London, 1953

First comprehensive analysis of =100 storms
at midlatitudes with ionosonde data.

Sato, J.Geomagn,
geoelectr.,1957

First set of global morphology for storms
with ionosonde data.

Matsushita, JGR,
1959

First to assess storm effects versus the strength of the
geomagnetic storm with ionosonde data.

Matura, Space Sci.
Rev., 1972

Second major review article on ionospheric storms.

Prolss, Handbook
of Atmos.
Electrodyn., 1995

Third major review article on ionospheric storms.
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Milestone Papers and Review Articles:

AUTOR COMMENT

Obayashi, 1964 First true review article on ionospheric storms for both E and
F layers and TEC effects.

Mendillo, Nature, Second major review article on ionospheric storms with TEC
1971 data.

Mendillo and An atlas of the ionospheric storms with TEC data.

Klobuchar, Tech.

Rep., 1974

Jakowski, in Modern | Major review article on TEC monitoring.
lonospheric Science,
1996

Mendillo, Rev. Of Major review article on ionospheric storms with TEC data.
Geophys., 2006




@ Science & Technology Negative ionospheric storm’s phases
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are more pronounced in summer:
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Science & Technology Positive ionospheric storm’s phases
aciuties Coundcl . .
are more pronounced in winter:
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| 4 - 8 April 2010 HERS (0.2 E, 50.9 N)

SEC=02826 UT l

— O WTEC

measured WTEC values

monthily WTEC mediamn

The positive phase with double peaks
followed by a prolonged negative phsse:

K

tirme (UT, 1LO rmim)

SSC=0826 UT l

g4 -8 April 2010

| x

\

T T
0:05 S:05 1&:05 0:05 S:05 1&6:05 0:05 S:05 1&:05 0:05 S:05 1&6::05 0:05

S8:05 16:05

—Mw.

w“u

0:00 0: 00

2 0:00
tirme (LT, hcrursli

L

125

100

75

[
=]
A index

Dst index (nT)

-Z0
-0
-LO0
~L1O



@ Science & Technology .
it cond NmF2/VTEC correlation:
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Daily values of AVvTEC and A NmF2 at mid-latitude HERS GPS and Chilton
lonosonde stations during 4 — 8 April 2010 storm.
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Common features in
NmF2/VTEC response:

(1) For the typical storm events, the amplitude level of the NmF2/VTEC
variations tend to increase (positive phase) during the first 24 hours

of the geomagnetic storm, and then decrease below its quiet time reference
level (negative phase) with recovery in one or two days later;

(2) During a negative phase of the NmF2/VTEC variations the perturbation
amplitudes of NmF2/VTEC show a remarkable reduction in summer
compared to in winter;

(3) NmF2/VTEC positive phase is often at low and mid-latitudes in the
daytime;

(4) NmF2/VTEC negative phase is often at high latitudes and around the
geomagnetic equator in the daytime;

(5) There is a north-south asymmetry in the positive response as the
northern hemispheric response appeared to be more pronounced.

HOWEVER ...
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circumstances and prior storm ionospheric condition
necessary for these phases to occur.
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cilities Council Ap=21 active geomagnetic level

Ap=37, 42 minor storms
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9-12 March 2011 and 4-7 August 2011 storms.



@ Faciites Counal 2 Common couses in
NmF2/VTEC response:

(1) It is long-established that at mid-latitudes thermospheric winds and
electromagnetic fields are the main drivers of ionospheric storms
producing electron density changes beyond a climatological level;

(2)The origin of negative phase has been attributed to changes in the
neutral gas composition of the upper atmosphere. It results from
enhanced ionospheric chemical loss driven by the storm induced
modifications to thermospheric circulations. As the relaxation time
of the thermosphere is not quick thus the longevity of most negative
phase storm effects;

(3) Positive phase is considered to be caused by upward transport of
lonospheric electron density but the question of two main drivers,
that are thermospheric winds and electromagnetic fields, dominate
role is under consideration . Results suggest that thermospheric
heating and resulting circulation need to be critically examined to
guantify the actual Joule heating enhancement and test whether it
Is sufficient to overwhelm the prevailing winds.
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Mechanisms contributing to the positive
phase of ionospheric storms at

middle latitudes:

NEUTRAL WIND
COMPOSITION CIRCULATION
EQUATORWARD POLAR
TADs
POSITIVE  |— | WINDS FIELD
IONOSPHERIC -
STORM ™| EASTWARD EXTERNAL MAGNETO—
EL. FIELD SPHERE
NORTHWARD DYNAMO WIND
EL. FIELD CIRCULATION
TADs

Prolss, G.W. (2006) lonospheric F-region Storms: Unsolved Problems. In Characterising
the lonosphere (pp. 10-1 — 10-20). Meeting Proceedings RTO-MP-IST-056, Paper 10.
Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp.
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Modeling and Nowcasting
lonospheric Storms:

* Since ionospheric and geomagnetic storms have very different
drivers, the ionospheric storm onset is not necessarily correlated
with the geomagnetic storm main phase;

 Massive movements of ionization during geomagnetic storms
followed by global changes in thermospheric winds and chemistry
leading to a complex behaviour from the initial to the recovery
phases indicate that the disturbed ionosphere is even more
complex than results presented here suggest;

* This raises the first questions about the persistence and
consequently predictability of ionosphric storms. The second
aspect of predictability is the problem of forecasting the disturbed
geomagnetic field.
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oClies e STORM TIME EMPIRICAL
IONOSPHERIC CORRECTION MODEL:

* |t is the first empirical model of the response of the ionosphere to
a geomagnetic storm that has demonstrated a consistent and
measurable improvement over climatology.

- Based solely on an analysis of an extensive database of
lonosonde observations, but the algorithms and data sorting
procedure has been guided by numerical simulations from a
coupled thermosphere ionosphere model.

*The intensity of the storm is characterized by a new index derived
from filtering the previous 33 hours of ap.

*The first characterization of STORM has been designed to adjust
the F-region peak critical frequency (foF2) as function of
geomagnetic latitude, season, and intensity of the storm.

E.A.Araujo-Pradere, T.J.Fuller-Rowell,andM.V.Codrescu,STORM: An

empirical storm-time ionospheric correction model, RADIO SCIENCE, VOL. 37,
DOI 10.1029/2001RS002467, 2002
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STORM MODEL:

(this vahe reprssents the adjustrrent needed to the cimelological mean due to geomagnetic activity)
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@ B o 1o8Y Validation of the STORM
response in IRI2000:

CHILTON (51.6, 358.7) 14 ROME (41.8,12.5)
GMLat: 49.9 GMLat: 42,3

o+ ¢ 9 ¥ o 9P
0 24 48 72 96 120 i 24 48 7e O 120

Data and output of the IRI95 and IRI2000 models at two different locations for
the 23 - 27 May 2000 storm. The dashed shaded line shows IRI95, the solid line
Is the observation, and the solid shaded line shows IR12000.

Araujo-Pradere, E. A., T. J. Fuller-Rowell, and D. Bilitza, Validation of the STORM
response in IRI2000, J. Geophys. Res., 108(A3), 1120, doi:10.1029/2002JA009720,
2003.
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STIF (Short-Term lonospheric Forecasting)
24- hours ahead:
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Typical STIF foF2and MUF(3000)F2 results and measurements at the St Petersburg (59.9° N, 30.7°E)
lonosonde station during quiet geomagnetic conditions.
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@ rectiies ol STIF (Short-Term lonospheric Forecasting)
24- hours ahead:
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Typical STIF foF2and MUF(3000)F2 results and measurements at the St Petersburg (59.9° N, 30.7°E)
lonosonde station during disturbed geomagnetic conditions.



@ s A lonospheric forecasting
over a storm period by NN:
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@ PR Corel lonospheric forecasting
over a month by NN:
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Measured and 1-hour ahead forecast foF2 values at Poitiers (46.6° N, 0.3° E)
lonosonde station in February 1986.

Zolesi, B., Cander, LjR, lonospheric Prediction and Forecasting, Springer-Verlag, Berlin Heidelberg, 2014.



CONCLUSSIONS (1):

* The ionosphere's response to geomagnetic storms has been studied
since the earliest days of terrestrial space physics. lonospheric storms
were discovered more than 85 years ago (Hafstad and Tuve, Proc. Inst.
Radio Eng., 17, 1513-1522, 1929);

* In terms of temporal coverage, the largest data sets used have been
from the global network of ground-based ionosonde measurements.
Nowadays this is the case with TEC data,;

* Most previous studies examined the behaviour of the F-region’'s
maximum electron density contrasting the difference seen between
storms that occur during solar maximum/minimum years and between;

* The overall results show consistency in characteristic patterns of
an ionospheric storm: a short positive phase that occurs during the
daytime hours on the first day of a storm, with a prolonged negative
phase on subsequent days. Statistical differences occur in the
overall magnitudes and longevities of storm patterns;
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* Short-timescale dynamical mechanisms driving the storms
(electrodynamical and thermospheric) dominate the positive phase,
while longer-timescale composition changes the negative phase;

CONCLUSSIONS (2):

NEEDED WORK: Modelling of multiday ionospheric storm time
behaviour. In particular:

1. Duration and magnitude of the negative and/or positive phase
versus latitude, local time, season, and phase of solar cycle as
well as between different solar cycles;

2. Temporal relationships between characteristics of the
geomagnetic storm and the development of the ionospheric
storm in real-time;

3. Differences in NmF2 and TEC ability to characterize the overall
lonosphere during storms, although the physical causes for their
storm time variations are the same;

AND SO ON... AD INFINITUM



