

- Thales Alenia Space in worldwide Radar Missions
- Radar functionalities and performances
- Thales Alenia Space in MARS (and Planets) Exploration
 - ~ CASSINI (Saturn/Titan)
 - MARSIS sounder on Mars Express Mission (Mars)
 - SHARAD sounder on Mars Reconassaince Orbiter (Mars)
 - EXOMARS Radar Doppler on EXOMARS 2016 and 2018(Mars)
 - RIME Sounder on JUICE Mission (Jupiter Icy Moons)
 - VISAR on VERITAS Mission (Venus)

Thales Alenia Space in worldwide Radar Missions

35+ years success record

2002: **ENVISAT** 1st ESA SAR RA 2nd Gener MW Radiometer

2005: MRO 2nd sounder (with JPL)

2007-2010 COSMO-SkvMed FM-1...FM-4 1st HR SAR

2014 and 2016 Copernicus Sentinel 1A/1B

2016 -2018 COSMO SG

2018 -2020 Sentinel-1C/1D

2017 -2019 SARah

1991 1994 1995 1997 2000 2002 2003 2005 2007 - 2010 2013 2014 2015 2016

1994: April SRL-1 / October SRL-2 1st European X-SAR

1st inteferometric SAR

1st sounder (with JPL)

2007: RADARSAT-2 Canadian Space Agency

2007-2008 : SARLup HR SAR Electronics

2013: Kompsat-5

2018 EXOMARS **RDA**

Radars

Radar:

Microwave sensor conceived for providing capabilities of: detection, ranging and tracking of targets

Radars

- The basic radar concept involves the transmission of a train of narrow, rectangular pulses which modulates a sine wave carrier
- The echo signal returned by the target is acquired by the radar and evaluated to retrieve the desired information

SYSTEM parameters

⇒ Backscattering coefficient (time, space, frequency and polarization related)

- ⇒ Point target localisation

SENSOR measurements

⇒ Amplitude

- ⇒ Time Delay, Direction of arrival
- ⇒ Doppler frequency shift

Radars: detection

Detection is the capability to indicate the presence of a target of interest

- The radar transmits a pulse and, if a target is present, this target reflects an echo of the signal towards the radar itself
- Noise corrupts the signal received by the radar, thus the detection problem is based on stochastic principles
 - SNR, probability of detection, probability of false alarm, etc.

Radars: range measurement

7

Ro: Time delay 2Ro/c

 ΔR : Time delay $2\Delta R/c$

Thales Alenia

Radars: range measurement

8

For a long pulse, two targets are no more detectable since the echoes are not separable in the time domain ⇒ range resolution

Maximum range resolution ⇔ Minimum measurable range delay

Range Resolution = $c\tau/2$

Thales Alenia

9

- Range Resolution and engineering aspects:
 - Metrical range resolution should require very short pulses (nanoseconds)
 - ► To keep an acceptable signal to noise ratio the peak transmitted power would require a very complex and expensive transmitter
 - ► The use of coded pulses can solve the problem
- Linear Frequency Modulated pulses ("chirps") and "matched filter" allow:
 - very good range resolution (depending on the pulse bandwidths)
 - ► feasible and cost effective transmitters, thanks to the possibility of transmitting long pulses (microseconds)

Radars: range measurement

- - ightharpoonup pulsewidth = τ ; bandwidth = B; carrier frequency = f_o
- The received echo is compressed by a "matched filter" that maximise the SNR, concentrating the energy in the mainlobe
- At the output form the matched filter, the compressed pulse length is τ_p =1/B with a resolution gain equal to τ / τ_p
- The mateched filter maximises the detection probability of the target as well

Thales Alenia

Radars: range measurement

- Train of pulses to improve detection capability (SNR)
- A train of pulses involves a maximum non ambiguous range (R_{max})
- R_{max} constrained by the pulse repetition interval (PRI) or frequency (PRF)

Thales Alenia

Radars: velocity measurement

12

- The radial component of the velocity of a target with reference to the radar antenna (v) can be measured by observing the so-called Doppler frequency shift (Δf) of the received echo signals
- The frequency difference ∆f between the transmitted signal and the received echo is given by:

$$f_{Dopp} = \pm \frac{2v}{\lambda}$$

Imaging Radar:

► A particular type of radar conceived in order to capture microwave images (maps of the reflectivity function of the observed scene)

- Microwave sensors are "active" systems, as they do not exploit external sources of radiation, thus they provide day-andnight observation capability
- Operating in the microwave frequency band, their performance are weatherindependent

ThalesAlenia

range profile

(scene response integrated in the azimuth beam-width of the antenna)

20/06/2016

Ref.:

20/06/2016

Ref.:

An array of radars, or a radar embarked on a moving platform (a satellite?!), to capture a microwave image

20/06/2016

Thales Alenia

Satellite La ϑ_{i} Н Range Azimuth Swath (SW)

Geometrical parameters:

- ▶ V satellite velocity
- ► L_a, W_a antenna dimensions
- ► H satellite altitude
- ► R₀ slant range (center swath)
- $\triangleright \vartheta_n$ off-nadir angle
- $\triangleright \theta_i$ incidence angle
- ▶ λ wavelength
- $\triangleright \beta_a = \lambda / L_a$ azimuth beamwidth
- $\beta_r = \lambda / W_a \cos(\theta)$ elevation beamwidth

- The maximum length of the image in the range coordinate ("swath") depends on the antenna elevation beam-width and is constrained by the PRI
 - ▶ The received echo shall not overlap with the transmitted pulse

Ref.:

Mathematical Model: Impulse Response Function (IRF) **Image**

21

Image results from superposition of reflectivity relevant to each cell of the image

Each contribution is weighted through the sensor IRF

Image quality is specified by IRF

CASSINI MISSION the first step in ASI/NASA &TASI/JPL cooperation

- Cassini Mission is a co-operative mission between NASA, ESA and ASI to study the physical structure and chemical composition of Saturn as well as all its moons.
- The program started in early nineties and the "Italian Flight Hardware" has been delivered to NASA/JPL in 1996.
- The spacecraft of Cassini Mission has been launched towards Saturn on October 1997.

Planetary Exploration ---- CASSINI RADA & HG ANTENNA

October 26t

postgraduate opportunities

n Surface

CASSINI Multimode Radar

Hi-Res SAR

Altitude 1000-1500 km, Resolution 380 (azim.) x 600 (range) m

Low-Res SAR

Altitude 1500-4000 km, Resolution 600 x 2500 m

Hi-Res Altimetry

Altitude 4000-9000 km, Footprint few tens of km, Vertical resolution 35 m

Low-Res Altimetry (Scatterometry)

Altitude 9000-22500 km, Footprint hundreds of km, Vertical resolution 1415 m

Radiometer

Altitude 1000-100000 km, 1-sec 1- σ noise = 0.025 K, Half power beamwidth 0.35 deg

Cassini Radar Architecture

Radio Frequency Electronics Subsystem (RFES)

- The Radio Frequency Electronics Subsystem (RFES) has three principal functions:
 - ► Transmission of high-power frequency-modulated and unmodulated pulses
 - Reception of both reflected energy from the target and passive radiometric data
 - ► Routing of calibration signals.
- The RFES electronics units are individually enclosed and are mounted to the RFES housing wall opposite the wall that mounts to the spacecraft.

High Gain Antenna (HGA)

The Antenna

Dichroic Subreflector

Antenna	Band	Freq. (MHz)	Function	Mode	Polarisation
HGA	S	2040 ± 5	Probe Relay	R	LHCP
поа	S	2098 ± 5	Probe Relay	R	RHCP
HGA	S	2298 ± 5	Radio Science	T	RHCP
HGA	X	7175 ± 25	Telecom.	R	Dual Circular
HGA	X	8425 ± 25	Telecom.	T	Dual Circular
HGA	Ku	13776.5 ± 100	Radar-SAR	T & R	Linear
IIC A	Ka	32028 ± 100	Radio Science	T	Dual Circular
HGA	Ka	34316 ± 100		R	Dual Circular
LGA1	X	7175 ± 25	Telecom.	R	Dual Circular
LUAI	X	8425 ± 25	Telecom.	T	Dual Circular

X-Ku-Ka Feed & Ku-Band Array

Ku-Band WR62 I/F

HGA Development and Testing

Planetary Exploration ---- MARSIS/SHARAD

46 VERO

mars_express.mpeg

MARSIS & SHARAD Description

Sounders key constraints and challenges

- Low mass HF foldable antenna
- Antenna matching network
- Transmitter efficiency
- Control of signal quality
- On Board Processing
- Testing tools capable to simulate the «unknown scenario»

MARSIS Background

- MARS EXPRESS is the European contribution to the Mars exploration program and is headed by ESA.
- It has been launched in June 2003.
- One of the seven instruments on Board Mars Express is <u>MARSIS</u> (Mars Advanced Radar for Subsurface and Ionosphere Sounding)
- The radar MARSIS is a co-operative project funded by NASA and ASI whose technical leadership is co-shared between Thales Alenia Space Italia and JPL.
- Thales Alenia Space is the design authority for the Digital Control and Processing Subsystem (DES) of the radar and retains the coordination of AIV/AIT activities of the overall instrument that has been integrated in ThalesAlenia Space Rome plant.
- ThalesAlenia Space has the responsibility of the In-flight instrument commissioning and of the End to End Instrument Operations
- In this frame ThalesAlenia Space designed, developed and realized the MARSIS Operation Center (MOC).
 ThalesAlen

MARSIS: Instrument Description

JPL/Univ of IOWA

ANT = Antenna

RFS = Radio Frequency Subsystem

Thales Alenia Space

DES = Digital Electronic Subsystem

ESS = Energy Storage Subsystem

	SUBSURFACE	IONOSPHERIC
TX Signal:	Chirp	Sweep of CW Signals
Bandwidth:	1 MHz	Na
Center Frequency:	1.8, 3, 4, 5 MHz	From 0.1 to 5.5 MHz
Pulsewidth:	250μs (baseline)	91.43µs
PRF	130 Hz	130 Hz
Received Echoes per PRI	Up to Four	80

MARSIS Design Key Issues

- Very large fractional bandwidth of the treated signals
 - ▶ 1 MHz of BW w.r.t. 1.8 MHz (worst case)
- On Board Processing (performed in real time by DES)
 - Range Compression (Matched Filter using 512 points FFT/IFFT)
 - Real time lonospheric correction (estimation of plasma frequency and reference function pre-distortion)
 - Doppler processing & Multilook (up to 5 filters)

ThalesAlenia Space contribution to MRO: SHARAD

SHARAD

OBDH

Power

DES

RX

Spacecraft

RDS

- ALS (now TAS-I) was the prime contractor of the SHARAD Instrument.
- It had the responsibility of the Inflight instrument commissioning and of the end-to-end instrument operations
 - In this scope it designed, developed and realized the SHARAD Operation Center (SHOC).

Antenna Efficiency: >	10%		
Centre Frequency: 2	0 MHz		
Radiated Peak Power: 10	0 W		
➣ Pulse Length: 88	5 us		
➣ Pulse Bandwidth: 10	0 MHz		
Pulse Repetition Frequency: 70 (3)	00 Hz, 670Hz, 775 Hz 350, 335, 387.6 Hz)		
the state of the s	alternate PRF added to cope with orbital extreme during extended phase (including topography margin)		
Receive window:	35 us		
~ A/D Resolution: 8	bits		
Downloaded sample bits 8	(default), 6, 4		
∼ A/D frequency: 26	6.67 MHz		
	0.16Mbit/s (@ 700 Hz) 2.32 (@ 775 Hz)		

Recent developments: EXOMARS Radar Doppler

- The EXOMARS Radar Doppler (RDA) will support the Entry Descent and Landing Demonstration Module during the landing phase on the Mars surface in 2016/2020 Missions
- It is designed and manufactured by Thales Alenia Space Italia (TAS-I) under the responsibility of the European Space Agency (ESA).
- The design of the RDA is driven by challenging constraints on mass, volume, power consumption and specific operational and environment requirements related to the Mars landing conditions.

RDA Architecture And Functional Description

- The Architecture design has been driven by the System level needs @ GNC level, where at least three different acquisition geometries have been requested, this to ensure a position reconstruction.
- The proposed solution has included four independent measurements, to guarantee at least three measurements and to ensure an higher accuracy considering every time a beam pointed toward nadir.
- Access to each single beam happens in time-division iteratively. According to a fixed refresh rate (20 Hz) a new measurement of range and of velocity values along one beam are provided to EDM GNC.
- The measurement is independent from the previous and is conducted using a dedicated antenna, with a whole refresh time on each antenna of 200 ms (time between two measurement on the same antenna.)

Radar Doppler Operational reqs >> Performances&Budget

Operational Requirement	Value
Altitude envelope	10m < H < 6500 m (2500 m ⁽¹⁾)
Velocity envelope	0 m/s < V (vertical) < 115 m/s (90 m/s ⁽¹⁾)
Acceleration	ax < 9.3 m/s2; ay, az < 2.65 m/s2
Jerk	jx < 93 m/s3; jy, jz < 26.5 m/s3
Off-nadir angle range	\pm 45 $^{\circ}$ (vehicle pointing variation)

⁽¹⁾ Range in which the performances are requested

Design Parameters	Value
Carrier Frequency	F0 = 35.76 GHz
Antenna Beams	4 (2)
TX Peak Power	1 W
TX BW	200 MHz
Pulse width	20 ÷2560 ns
PRI	10 ÷ 240 usec
RX signal BW	50 MHz
Antenna Directivity	>34 dB
Antenna sidelobe level	<-35 dB
Antenna beam aperture	< 3 deg

	Qualified Performances ⁽³⁾	Value
	Measure Refresh rate	20 Hz (50ms)
	Velocity measurement accuracy	\pm 0,2m/s + 0,05% of the current velocity
*	Altitude measurement accuracy	\pm 0,4m + 0,05% of the current altitude
	Dynamic Range	-95 dBm – 0 dBm

Budget	Value
Mass	10 kg ⁽⁴⁾
Volume	Ø680 mm x 120mm
PW consumption	55W (unregulated bus 22V-36V)

 $^{^{(3)}}$ The performances are achieved by each single antenna's measure $^{(4)}$ In case a single measure is needed the mass can be reduced to 6-7 Kg (no need for beam switch assembly)

^{(2) 4} beams are implemented for the actual application which ask for 4 independent measures.

Approaching and Landing Radar

- The Approaching and Landing Radar (ALR) is a Pulsed CW in Ka Band (35,76 GHz)
- It provides highly accurate navigation data (range and velocity) to Guidance and Navigation Control systems, in landing and/or approaching missions.

Keywords

- Highly accurate nav data
- Low Mass and Compact Envelope.
- Low Power Consumption
- The *multi mission applicability*, thanks to the wide receiver dynamic range.

Ka band electronics

Ka band antennas

► ESA/JUICE: RIME, Radar for Ice Moon Exploration

→RIME is a radar sounder (originally referred to as Ice Penetrating) optimized for the penetration of the Galilean icy moons, **Ganymede**, **Europa** and **Callisto**, up to a depth of 9 km. RIME is a key instrument for achieving ground-breaking science on the geology and the geophysics of **Jupiter moons**.

On-going development

RIME: Instrument Description

Near Future

- ► NASA/Veritas: VISAR, Radar for Venus Exploration
 - → VISAR is a X band interferometer SAR used to map the Venus terrain. VISAR generates a global high-resolution Digital Elevation Model, SAR images with up to 15 m resolution, and surface deformation measurements with 2 mm precision.

VISAR Mission overview and TASI involvement

VERITAS mission is currently in the PHASE A and our involvement is within the VISAR Instrument.

INSTITUTION	RESPONSIBILITY
Jet Propulsion Laboratory (JPL) Suzanne Smrekar, PI Dave Lehman, PM Kirk Breitenbach, PSE	Science leadership; project and payload management: systems engi- neering; mission assurance; VISAR; mission operations; education and communications
LOCKNEED MARTIN	Spacecraft management, design, assembly, integration, test, and verifi- cation, and launch operations; support mission operations
Italian Space Agency (ASI)	VISAR RF electronics; Ka-/X-band transponders
German Aerospace Center (DLR)	VEM; support VISAR data processing algorithms definition in Phase A

The VISAR is an X band interferometer SAR used to map the Venus terrain with an higher resolution wrt the current data available.
ThalesAlenian

VISAR: Instrument Description

Parameter	Value
Centre frequency:	7,9 GHz
Nominal Bandwidths:	20 MHz
PRF	programmable, max DC = 27%
Pulsewidth	programmable, up to 35 usec

TAS-I is participating to Phase A as an UniRoma industrial partner

Backup Slides

SAR Acquisition Geometry

The area illuminated on ground by the SAR is given by the intersection of the antenna beam with the ground surface (**footprint**):

- The side view allows to observe the Range footprint extension
- The top view allows to observe the **Azimuth** footprint extension:

PRF and azimuth beamwidth

- ► The relative **SAR-target velocity** induces the Doppler effect.
- ► The maximum variation of the Doppler frequency over the antenna footprint defines the **Doppler bandwidth** of the system.
- ► The SAR is a pulsed system, which samples the Doppler bandwidth at PRF.
- ► The sampling frequency (PRF = 1/PRI) shall be selected according to Nyquist.
- ▶ With no loss of generality, it can be assumed that the relative SAR-center scene velocity is zero; therefore, the maximum Doppler frequency is defined at the edges of the azimuth footprint.
- ► The relationship between PRF and Doppler bandwidth (i.e. azimuth beamwidth) is established by:

 \rightarrow PRF \geq B_{dopp}

SAR Acquisition Geometry

The antenna footprint of the SAR illuminates a "strip" on ground as the satellite moves along its trajectory.

- The strip extension along the azimuth coordinate is defined by:
 - → SAR acquisition time
 - → Satellite velocity
- The strip extension along the range coordinate (swath) is related to:
 - → Satellite Altitude
 - → Off-nadir angle
 - → Elevation beamwidth
 - → Pulse Repetition Interval (1/PRF)

Swath width

- The instantaneous swath is constrained to the Pulse Repetition Interval duration (PRI = 1/PRF).
- The received echo shall not overlap with the transmitted pulse.

Image Performance: acquisition techniques

Stripmap:

is the mode used to achieve medium resolution and wide swath using a single beam acquisition

Scansar:

▶ in this mode the antenna beam is scanned in the elevation plane in order to cover a wider swath dimension than the one achievable with a single beam at the expense of the achievable resolution

Enhanced Spotlight:

► is the mode defined for the acquisition of spot images with a very high resolution

SAR Performance parameters

- The first level of interest in the Synthetic Aperture Radar design is referred to the:
 - Spatial resolution (azimuth and range)
 - ► Image size
- The evaluation of the SAR performances is obtained through the several "quality parameters":
 - ► Spatial Resolution
 - ► Integrated side lobe level (Integrated Side Lobe Ratio ISLR)
 - ► Side lobe level (Peak Side Lobe Ratio PSLR)
 - ► Ambiguity to Signal Ratio (ASR)
 - Radiometric accuracy
 - Noise Equivalent σ° (NEσ°)
 - ▶ Dynamic
- The backward activity is to convert the quality parameters to the SAR technical parameters useful for the instrument requirements definition.

Quality Parameters: Azimuth Resolution

- In "classical" radar the azimuth resolution is related to the azimuth beamwidth: the narrower the beam-width the better the azimuth resolution.
- Very long antennas shall guarantee a narrow beam and a good resolution (e.g. @ 800km altitude, in L-band an antenna of 20 km shall guarantee 10m spatial resolution). Physical antenna lengths around kilometers are unfeasible.
- The Azimuth resolution has a direct impact on the dimensioning of:
 - → antenna length
 - → Pulse repetition frequency (PRF)
 - → Swath width

it is not necessary for the long antenna to be physical, a "synthetic" one shall work as well

SAR is capable to synthesize very long equivalent antennas allowing azimuth resolution of fraction of meters.
ThalesAler

Quality Parameters: Azimuth Resolution

- The synthetic antenna has the same length of the beam extension on ground.
- In other words the azimuth resolution is proportional to the look angle.
- In STRIPMAP the look angle (θ) coincides with the azimuth antenna beamwidth (φ).
- The wider the look angle the better the azimuth resolution:

$$R_{az} = \lambda / (2\theta) = L_a / 2$$

√ θ = look angle

✓ L_a = antenna length

Quality Parameters: Azimuth Resolution

- The antenna dimension cannot be reduced indefinitely to wide the beam-width, due to the maximum PRF available to sample the Dopple bandwidth.
- The azimuth resolution is driven by the look angle:

$$R_{az} = \lambda/(2\theta)$$

the azimuth resolution can be improved by re-pointing the antenna on the useful spot (SPOTLIGHT)

SPOTLIGHT: high resolution over a limited imaged area.

Quality Parameters: Range resolution

Range resolution

The Range resolution has a direct impact on the transmitted pulse characteristics and depends on the incidence angle.

Quality Parameters: PSLR

- The Peak Side Lobe Ratio (PSLR) defines the capability to detect two close targets with different intensities.
- The point target would be seen:
 - ► In an ideal system, as a single bright point

In a real system as a bright point rounded by smaller points with decreasing intensity (side lobes).

- The evaluation of the PSLR is performed on the Impulse Response Function, both in azimuth and range direction.
- A very bright target has side lobes whose intensity may mask a weak target in the surrounding.

Quality Parameters: PSLR

- Example of PSLR of -13dB (left) and -20 dB (right), on a ship target.
- The side lobe reduction is achieved by non-linear filtering, the loss in resolution is reduced by 25% with respect to standard processing.

Ref.:

