

Tracking Systems for Geodesy

Paolo Tortora University of Bologna, Forlì

Course on Planetary Interiors, Gran Sasso Space Institute – GSSI, 16 September 2016

Introduction

- Tracking of vehicles in deep space is accomplished through a variety of radiometric techniques
- Basic radiometric observables (i.e., measurements) are the amplitude and phase of an electromagnetic wave which creates a radio link between the spacecraft and the Earth.
- There exist essentially three fundamental radiometric data types:
 - Range (related to signals' time of travel)
 - Range rate or Doppler (related to line-of-sight velocity)
 - VLBI Very Long Base Interferometry, which provides differential ranging (related to angular coordinates)

The Navigation Process

S/C Radio Tracking

A ramp signal is sent to the S/C

The S/C receiver locks on and tracks the uplink carrier via a PLL The PLL produces a reference signal coherent with the uplink carrier The reference signal is used to demodulate the downlink signal

Radio Frequencies

Reference frequencies:

	Uplink	Downlink	
S – band	2110 - 2120 MHz	2290 -2300 MHz	
X – band	7145 - 7190 MHz	8400 – 8450 MHz	
Ka – band	34200 - 34700 MHz	31800 – 32300 MHz	

Shorter wavelenght reduce the effects of the charged particels due to ionosphere and solar plasma

Uplink and Downlink frequencies are phase coherent

Uplink	Downlink		
S – band	240/221	880/221	3344/221
X – band	240/749	880/749	3344/749
Ka – band	240/3599	880/3599	3344/3599

Radio Tracking Types

3-way link: Uplink and Downlink, using two G/S Used for TT&C (and navigation, lower accuracy)

Observables

- Ranging (range)
- Doppler (range rate)
- DDOR VLBI (angular position)

Ranging observables

a dynamical observable, not a static one!

Ranging observables

S/C range data is a measure of the **RTLT** of a ranging signal generated at a ground station

For a one-way signal transmit time t_g

$$\rho = t_g c$$

For a two-way signal t_1 transmission time t_2 receiving time at the S/C t_3 receiving time at the GS

$$\rho = \frac{1}{2} (t_3 - t_1) c$$

Doppler observables

Doppler data provide information on S/C radial velocity

$$f(t) = f_{REF}(t) - f_R(t) + C$$

 $f_{\rm REF} = M_{\rm S/C} f_{\rm T}$

$$f_R = M_{S/C} \left(1 - \frac{\dot{\rho}}{c} \right) f_T$$

Accuracy (@1000 s int. time): ~ 3µm/s in radial velocity at Ka-band

16/09/2016

Doppler observables

The measurement of Doppler data and the knowledge of the Earth's motion for different passes provides declination δ and right ascension α of the S/C

VLBI observables

VLBI techniques

2 different station receive broadband microwave radiation emitted by extragalactic radiosources (Quasars)

Geodesy

Determines the Baseline and defines the Earth Orientation Parameters (EOP)

Astrometry

Determines declination δ and right ascension α of a celestial body

DDOR observables

- ΔDOR : Delta Differential One-way Ranging
- DOR : difference between the times of arrival at two ground stations (max 21 ms)
 - Calibrated effects: on board oscillator frequency offset, dry troposphere
 - Uncalibrated effects:
 - Clock-offset between the stations (main effect), ESA DSA clock offset max 6 μs
 - Instrumentation noises: phase ripple
 - Residual media effects
- ΔDOR requires:
 - Max angular separation: 15°
 - Signals are recorded in the same bandwidth
- ΔDOR: evaluation of the angular position of a / probe in the S/C-baseline plane

DDOR observables

S/C signal

- Telemetry harmonics and DOR tones
- ESA: TM subcarrier harmonics (262 Khz)
- Fs=50kHz; 8bit

QUASAR signal

- White noise completely embedded in the receiver noise (0.5 Jy = 0.5·10⁻²⁶ W/m²Hz)
- Fs=2MHz; 2bit

• Accuracy:

- Spanned bandwidth: 10 MHz
- Signals SNR
- Integration time

16/09/2016

Orbit Determination Process

16/09/2016

Doppler residuals (1/3)

Tracking Systems for Geodesy

Doppler residuals (2/3)

16/09/2016

Tracking Systems for Geodesy

Transmission Media

Noise sources:

- Solar plasma
- Ionosphere
- Troposphere

For missions in the ecliptic plane the S/C is nearly occulted by the Sun (as seen from the Earth)

Impact Parameter

16/09/2016

Tracking Systems for Geodesy

25/50

16/09/2016

Transmission Media

- Solar plasma
- Ionosphere
- Troposphere

Non - dispersive effect Depends upon P, T and RH

Tropospheric Path Delay Calibration

- Two components:
 - DRY (2.2 m, molecules in hydrostatic equilibrium)
 - WET (20 cm, water vapor)
- The **DRY** component fluctuates slowly through the day and <u>can be calibrated</u> <u>to sub-mm level by models</u> based on surface weather data (Saastamoinen)
- The WET component has a negligible Range contribution but is relevant in the <u>Range-Rate error budget</u> (turbulence e inhomogeneous), <u>not possible to</u> <u>model precisely</u>

The Path Delay (PD) scales with satellite's elevation upon the tracking site: the Zenithal value (ZWD, ZHD, ZTD) is scaled to the *slant* direction with a **mapping function** F = f(elev) (effect magnification up to 4-5 times)

Tropo Delay Calibration Techniques

• Statistical (Seasonal) models

- Weather data is guessed using regressions on statistical weather datasets
- Calibration effectiveness not adequate to modern radio science requirements

• Surface weather measurements models

- Path delay is retrieved by a mathematical relation to surface pressure, temperature and water vapor pressure
- DRY component calibrated completely, wet component up to 5-6 cm precision
- Weather station required at tracking site

GNSS-based delay estimation:

- Exploits non-dispersive nature: deep-space X- and Ka-bands are affected as GNSS L-band carriers
- Precise GPS satellites orbits and receivers positions provided by IGS
- Tropospheric path delay is estimated using traditional point position algorithms used for satellite navigation
- Geodetic GNSS receiver required at tracking site

Microwave Radiometers (MWR)

- They measure the brightness temperature of the sky and reconstruct the absorption spectra of substances in the sky (O₂, H₂, N, H₂O)
- Wet path delay is retrieved from the absorption spectrum by an inverse mathematical approach
- Wet delay and Doppler shift removal >90%MWR instrument required at tracking site, simultaneous operation with deep-space antenna

Microwave Radiometers

A MWR/WVR measures the atmosphere brightness temperature, collected in the probe tracking direction using its pointing system.

Thanks to dedicated retrieval algorithms, the atmosphere attenuation and the **ZWD** (Zenith Wet Delay), due to the water vapor content of the atmosphere, can be measured.

Ground Segments

- NASA Deep Space Network
- ESA ESTRACK
- EVN European VLBI Network
- Jaxa Usuda Deep Space Center
- ISRO Deep Space Network

Ground Segments

Beam WaveGuide antenna

- All the front-end equipment are placed in a large basement under the structure
- The signal is guided via a system of flat and curved reflector
- Multiple feed system, without performance degradation
- Small additional loss caused by the spillover of the beam

NASA DSN

Three complex

- C10 Goldstone, CA (USA)
- C40 Canberra (AUS)
- C60 Madrid (E)

Each complex consists of ultrasensitive receiving systems and large parabolic dish antennas: 26 m antenna 70 m antenna 34 m High Efficiency antenna 34 m Beam Waveguide antenna

Remotely operated from a Signal Processing Center at each complex

About 120° longitude

NASA DSN

Functions and activities

- Telemetry
- S/C commands
- Radiometric tracking
- VLBI
- Radio science
- Monitor and control
- Science

NASA DSN - Goldstone

C10 – Goldstone complex Antennas:

- One 70 m
- One 34 m HEF
- Three 34 m BWG
- One 34 m HSB
- One 26 m

NASA DSN - Canberra

C40 – Canberra complex Antennas:

- One 70 m
- One 34 m HEF
- One 34 m BWG
- One 26 m

NASA DSN - Madrid

C60 – Madrid complex Antennas:

- One 70 m
- One 34 m HEF
- Two 34 m BWG
- One 26 m

ESTRACK

ESTRACK - Perth

New Norcia, Perth (AUS)

Inaugurated in Apr 2003

First DSS of ESA

35 m diameter parabolic antenna

ESTRACK - Cebreros

Cebreros, Avila (E)

Inaugurated in Sep 2005

35 m diameter parabolic antenna

Ka band receiver

Maximum pointing error 6 mdeg

ESTRACK - Malargue

Malargue (Ar)

Inaugurated in Dec 2012

35 m diameter parabolic antenna

Ka band transmitter and receiver

Maximum pointing error 6 mdeg

European VLBI Network

The European VLBI Network (EVN) is an interferometric array of radio telescopes spread throughout Europe and beyond which conduct unique, high resolution, radio astronomical observations of cosmic radio sources

European VLBI Network

16/09/2016

European VLBI Network

Effelsberg (D)

100 m radiotelescope

Operative frequencies: 0.800 to 96 GHz

Usuda Deep Space Center

- 64 m diameter parabolic antenna
- S-band and X-band system
- Tracking, command and telemetry
- Located about 1450 m AGL

ISRO DSN

Placed at Byalalu village, about 40 km from Bangalore

One 18 m antenna operative One 32 m antenna One 11 m antenna

S-band and X band system to control Indian probe to the moon and to mars

The System is augmented with a station in Bearslake, Russia and APL/JPL, USA

Conclusions

- Gravity field measurements are powerful tools to constrain the radial interior structure of the planets and satellites, providing information on the internal dynamics and evolution;
- The observable quantities used by gravity science experiments are obtained by means of spacecraft tracking at microwave frequencies from a ground antenna;
- The main observable for gravity, the range-rate is obtained by measuring the Doppler shift of a radio carrier sent by a ground antenna to the spacecraft and coherently retransmitted back to Earth, with uncertainties as low as ~3µm/s @1000s int. time;
- The availability of state-of-the-art **Orbit Determination Codes**, and space and ground instrumentation to **calibrate for media noises** proves crucial to achieve challenging gravity science objectives.