Consorzio Interuniversitario per la Fisica Spaziale I MIO VOLEE CERCAR II MIO VOLEE CERCAR OF Space Science L'AQUILA - ITALY

Spectrometers for GCRs: past&future

E.Vannuccini

Outline

Magnetic spectrometers for GCR physics

- Principle of operation
- Experiments based on magnetic spectrometers
 - The past
 - The present \rightarrow latest scientific results
 - The (near & far) future
- Conclusions

Lorentz force

Force exerted on a charged particle moving in an magnetic field

$$\vec{F} = q \ \vec{v} \wedge \vec{B}$$

- $\blacktriangleright \vec{F} \parallel \vec{v}$
 - Curved trajectory @ constant velocity
 - Opposite direction depending on the charge sign
- If uniform \vec{B} and $\vec{v} \perp \vec{B}$
 - Uniform circular motion
 - ▶ Radius of curvature (gyroradius):

$$r_g = \frac{p}{|q|B} = \frac{R}{Bc} \longrightarrow r_g[m] = 3.3 \cdot \frac{|R|[GV]}{B[T]}$$

Magnetic rigidity

$$R = \frac{pc}{|q|} = \frac{pc}{Ze} \longrightarrow R[GV] = \frac{p[GeV/c]}{Z}$$

Charged particle motion in a magnetic field described by the magnetic rigidity

q

Magnetic spectrometer

Tracking system placed inside a magnetic field

- Trajectory reconstructed by interpolating
 N position measurements
- If uniform \vec{B} and $\vec{v} \perp \vec{B}$
 - Curvature $k \equiv 1/r_g$
 - Sagitta $s \sim k \frac{L^2}{8}$
 - ► Large N ⇒ p.d.f. of k ~ gaussian
 - Magnetic deflection

$$|\eta| = \frac{1}{R} \longrightarrow \eta = \frac{k}{Bc}$$

A magnetic spectrometer measures the particle **deflection**

Deflection error

 $(\delta\eta)^2 \approx (\delta\eta_{res})^2 + (\delta\eta_{ms})^2$

- If uniform \vec{B} and $\vec{v} \perp \vec{B}$
- For a large number N of uniformly spaced measurements along the trajectory in a uniform medium:

$$\delta\eta_{res} = \frac{\sigma}{L^2} \sqrt{\frac{720}{N+4}} \cdot \frac{1}{Bc}$$
$$\delta\eta_{ms} \approx \frac{0.016 \, (GV)}{LR\beta} \sqrt{\frac{L}{X_0}} \cdot \frac{1}{Bc}$$

 $\sigma = spatial resolution$ L[m] = track length $X_0[m] = medium radiation length$

A good spectrometer must be thin and have good tracking resolution

Magnetic spectrometers for GCR study

Rigidity error increasing for increasing rigidity

Magnetic spectrometers provide:

- Most precise energy measurement over a wide energy range
- Unique possibility to measure the sign of the electric charge
 - Antimatter !!

Late 1970s

Superconducting magnets in space

- Electromagnet made from coils of superconducting wire
 - Can carry large currents without dissipating energy
 - Large B field
 - Persistent-mode operation
 - Coil must be cooled below critical temperature T_C
 - It consumes cryogenic fluids

1980s

- Extensive R&D in the '80s aiming to optimize **superconducting magnet facility** to be flown as a U.S.-Italy project on Space Station Freedom in the late '90s
 - WiZard experiment dedicated to search for primoridial antimatter

Project canceled!

1990s

- Extensive campaign of daily balloon flights operated by several groups
 - Wizard (MASS, TS, CAPRICE)
 - BESS
 - Others (HEAT, IMAX...)
- Main instrument characteristics
 - Superconducting magnets ($\sim 1T$ field)
 - MWPC & drift chamber tracking systems ($0(100\mu m)$ resolution)
 - MDR ~ $100 \div 300 \, GV$

WiZard

	Matter-Antimatter Superconducting Spectrometer		Tramp-Si	Cosmic AntiPart Exper	icle Ring-Imaging iment		
	MASS89	MASS91	TS93	CAPRICE 94	CAPRICE 97/98		
Location Geo. cut-off (GV)	Canada 0.65	NM 4.5	NM 4.5	Canada 0.5	NM 4.3		
Magnetic field (T)	0.1÷2						
Tracking system Resolution (μm)	MWPC 160		DC 100				
MDR (GV)	120	200			200 30		300
Particle-ID		Time-of-flight (~200 <i>ps</i>)					
	Cherenkov counter (Freon) $(eta\gamma)_{th}{\sim}25$		TRD $(eta\gamma)_{th}{\sim}1000$	RICH (NaF) $(eta\gamma)_{th}{\sim}1.1$	RICH (C ₄ F ₁₀) $(\beta\gamma)_{th}{\sim}19$		
Calorimeter	Brass streamer tubes 7.3 X $_0$ 0.8 λ_0		Si-W 4.1 Χ ₀ 0.2 λ ₀	Si- 7.2 X ₀	-W 0.3 λ ₀		

- Balloon-borne Experiment with a Superconducting Spectrometer
- Focus on low-energy antiprotons and antinuclei search (large acceptance!)

BESS-Polar upgrade

	1993	1994	1995	1997	1998	1999	2000	2001	2002	2004	2007
Location	Canada	>	>>	>	>	>>	>>	US	C.	Ant.	Ant.
Float time (h)	17.5	17	19.5	20.5	22.0	34.5	44.5	1.0	16.5	205	730
Observation time, float (h)	14	15	17.5	18.3	20.0	31.3	32.5	1	11.3	180	588
Observation time, asc./des. (h)						2.8	2.5	12.8	2.3	3.3	3.5
Magnetic field (T)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.8	0.8
MDR (GV)	200	200	200	200	200	200	200	1,400	1,400	240	270
TOF resolution (ps)	300	300	100	75	75	75	75	75	75	160	120
ACC index				1.03	1.02	1.02	1.02	1.02	1.02	1.02	1.03
Antiproton events observed	6	2	43	415	384	668	558	N/A	147	1520	~ 8000
Antiproton's energy (GeV)	<0.5	<0.5	<3.6	<3.6	<3.6	<3.6	<4.2	N/A	<4.2	<4.2	<3.5
Anti-He/He upper limit ($\times 10^{-6}$)	22	4.3	2.4	1.4	1.0	0.8	0.68	N/A	0.65	0.27	0.07

Status at the beginning of 2000s

Two directions for the future:

- High-statistics measurement of \bar{p} @low energy \rightarrow BESS-Polar
- \bar{p} and e^+ measurement @ high energy

The new generation: PAMELA & AMS

Aiming to extend the antiparticle measurements at high energy

- Instruments placed in space
 - GCR path-length @20GeV ~ atmosferic grammage @balloon altitude (~ $5 g/cm^2$)
- Tracking system based on microstrip Si technology
 - Improved tracking capabilities

Micro-strip silicon detectors

Spatial resolution:

- junction side (X): 3 μm @0°, < 4 μm up to 10°
- ohmic side (Y) 8÷13 μm

The PAMELA magnet

Permanent magnet (Nd-Fe-B alloy):

- 0.48 T @ center
- 0.43 T average along the axis
- \rightarrow Geometric factor 20.5 cm²sr

The PAMELA tracking system

- 0.48 T magnetic field @ center
- $\sim 4~\mu m$ resolution on the bending direction
- \sim 44 cm track-length
- \rightarrow MDR up to ~ 1 TV

Mechanical assembly

- aluminum frames
- carbon fibers stiffeners glued laterally to the ladders
- no material above/below the plane
 - 1 plane = $0.3\% X_0 \rightarrow$ reduced multiple scattering
- elastic + rigid gluing

PAMELA detectors

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

The AMS-02 magnet

Superconducting magnet

Permanent magnet

- Both permanent (Nd-Fe-B alloy) and superconducting (Ni-Ti) magnets developed.
- Permanent one chosen, in the perspective of longduration mission (>3 years)
 - 0.15 T @ center
 - Large cavity $1 \text{m} extsf{ imes} imes 1 \text{m}$

The AMS-02 tracking system

- 0.15 T magnetic field @ center
- $\sim 10 \ \mu m$ resolution on the bending direction
- ~ 3 m track-length
- \rightarrow MDR \sim 2 TV

The AMS-02 detectors

Modern spectrometer-based experiments

	BESS-Polar	PAMELA	AMS-02	
Acceptance m ² str 0.3		0.0022	0.3	
Vehicle	Polar LDB	Satellite	Space station	
Flight duration	n 8.5+24.5 days ~ 10 years		> 7 years	
Orbit inclination	-	70.4 ⁰	51.7 ⁰	
MDR (GV)	~270	~1000	~2000	
Tracking system σ (μm) L (m) N	Drift chamber 140 > 0.8 ≤ 52	Si microstrip 3 0.44 ≤ 6	Si microstrip 10 3 ≤ 6	
Magnetic system 〈B〉(T)	Superconducting solenoid 0.8	Permanent 0.43	Permanent 0.15	
Particle identification	ToF Cherenkov	ToF	ToF TRD RICH	
		Imaging calorimeter	Imaging calorimeter	
Main scientific objectives	 Low energy p Antinuclei search 	• \bar{p} and e^+ up to high energy • \bar{p} and e^+ up to high energy • Antinuclei search		

Antiparticle identification @ high-energy (Z=1)

Magnetic spectrometer

Antiparticle identification @ high-energy (Z=1)

Magnetic spectrometer

Calorimeter identification

PAMELA and AMS-02 calorimeters designed to have • High granularity

• Maximal ratio between X_0 and λ_1

PAMELA	AMS-02
W/Si-strip	Pb/Scintillating-fibers
2.4 mm	1 mm
22	18
16.3	17
0.6	0.6
	PAMELA W/Si-strip 2.4 mm 22 16.3 0.6

Identification criteria based on:

- Shower topology
 - Starting point
 - Longitudinal containment
 - Lateral spread
- Non-compensation
 - Energy-rigidity match

electron

hadron

TRD identification

Vannuccini Elena - ISSS 2017

26

Antiproton identification

Selected particles with h-like pattern in the calorimeter

Antiproton identification

Template fitting to subtract "charge confusion" (CC) protons

Antiprotons

Vannuccini Elena - ISSS 2017

Adriani et al. -

PRL 105 (2010) 121101

measurement extending up to 200 GV

First

Largest energy range covered up to then

Antiprotons

Antiprotons

Positron identification

 $\textbf{-1} \leftarrow \textbf{Z} \rightarrow \textbf{+1}$

Fraction of energy along the extrapolated trajectory within 0.3 Moliere radii (sample of pre-selected em-like events)

32

Positron identification

33

Positron fraction

First measurement extending up to 200 GV

Clear evidence for a deviation from pure secondary production

Positron fraction

Electron & positron individual spectra

Electrons & positrons

Measurement of individual spectra confirms the **positron excess**:

Proposed interpretations:

Dark matter

Iepton vs hadron yield must be consistent with \bar{p} observations

Astrophysical processes

- known processes (eg. pulsars)
- large uncertainties on environmental parameters

Antinuclei

Most stringent limit paced so far from BESS-Polar II on anti-He

Antinuclei

Giant space magnet may have trapped antihelium, raising idea of lingering pools of antimatter in the cosmos

By Joshua Sokol | Apr. 19, 2017, 3:45 PM

H&He

First high-statistics and high-precision measurement over three decades in energy

Low energy \rightarrow minimum solar activity ($\phi = 450 \div 550 \text{ GV}$)

High-energy (>30GV) → a complex structure of the spectra emerges...

H&He

- Excellent agreement between PAMELA and AMS-02 results, within 2%
- Significant hardening above
 230 GV for both H and He.
- Consistent with highenergy calorimetric measurements
- Possible explanations:

 Source effect (multipopulation, non-linear DSA)
 Propagation effect

H spectrum

Clear evidence of a spectral hardening above ~200GV

Vannuccini Elena - ISSS 2017

42

Spectrometer systematic uncertainty

- Due to possible residual distortion of the tracking system
- Evaluated from electron/positron data by comparing the spectrometer momentum with the calorimeter energy
- Upper limit set by positron statistics: $\Delta \eta_{sys} \sim 10^{-4} GV^{-1}$
- Dominates the error on H and He fluxes at high energy

H/He vs rigidity

Systematic uncertainties partly cancel out at high energy

- Solar modulation negligible
 → information about IS spectra down to GV region
- Propagation effects small above ~100GV
 - ightarrow information about source spectra
- Different slope for H and He
- No indication of spectral features above 10 GV

H and He isotopes

H and He isotopes

Parameter constraint competitve/complementary to B/C measurement with current instrument precision

Probe different Z/A regime \rightarrow test «universality» of propagation

GCR nuclei identification

- Multiple dE/dx measurements ($\propto Z^2$)
- Large dynamic → element identification up to Ni

Secondary GCRs

B/C provides the strongest constraint to propagation parameters so far

48

The near future

- AMS-02 still in orbit, hopefully until 2024
 - High statistic measurements
 - Antinuclei
 - Anisotropies
 - Flux of nuclei up to Fe
 - ...
- Independent approach to anti-nuclei search → GAPS
 - General Anti-Particle Spectrometer
 - Low energy p
 p measurement and D
 search
 - Detection of the annihilation star

Next generation spectrometers

- Must relay on superconducting magnets
- ALADINO magnetic spectrometer
 - Toroidal superconducting magnet
 - 10 coils wound with high-temperatur (10s°K) superconductor (MgB₂)
 - $\langle B \rangle \sim 0.8$ T average magnetic field
 - Microstrip silicon tracking system
 - 4 layer with O(μm) spatial resolution
 - MDR ~ 20 TV

Expected performances

$PAMELA/AMS02 \rightarrow MDR \sim 1TV$

- Examples of contribution to $e^{\scriptscriptstyle +}$ and \overline{p} CR abundance from DM annihilation

Vannuccini Elena - ISSS 2017

51

Conclusions

- Magnetic spectrometers are powerful tools to study GCRs
 - Precise energy measurement over a wide range
 - Possibility to determine the charge sign \rightarrow antimatter!
- Last generation of spaceborne spectrometers (PAMELA & AMS-02) took advantage of microstrip-Si technology
 - Precise measurements of all GCRs performed up to O(TV) MDR
 - Results challenge the standard paradigm of GCR origin
 - Positron excess
 - Unexpected features in the H and He spectra (and maybe heavier nuclei)
 - Hints of \bar{p} excess at high energy
 - Possible first detection of antinuclei
 - Significant progress in understanding galactic phenomena
- Next generation of spectrometers must rely on developments of hightemperature superconductor technology
 - $\rightarrow O(10 \text{ TV}) \text{ MDR } !!!$