A strategy for the Limadou HEPD event reconstruction

Francesco Maria Follega¹

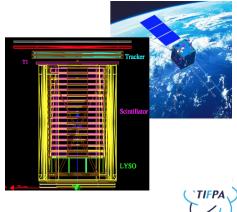
International School of Space Science 2017 - L'Aquila

June 15, 2017

¹francescofollega@unitn.it

Francesco Maria Follega

The Limadou HEPD detector


The Limadou HEPD is the **high energy particle detector** of the CSES and has been designed to maximize the sensitivity in the energy range 3 MeV - 100 MeV for the **electrons** and 30 MeV - 200 MeV for **protons**. The information is provided by several subsystems:

From the top:

- Tracker: two planes of double-sided silicon microstrip (0.3 mm thick);
- Trigger: one plastic scintillator (0.5 cm thick);
- Calo: 16 scintillator planes (1 cm thick) and an array of LYSO crystals.

Around:

• Veto: 5 scintillator planes.

Limadou event reconstruction architecture

Tracker reconstruction of $\frac{dE}{dx}$, θ and PID

The reconstruction of the silicon tracker information provides:

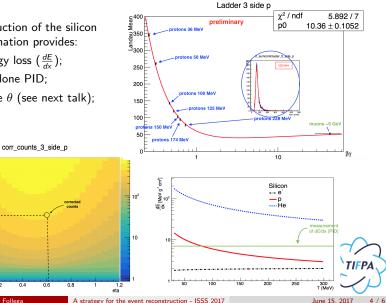
- the energy loss $\left(\frac{dE}{dx}\right)$;
- a standalone PID:

8⁵⁰⁰

stino 400

350

300

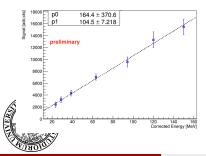

250

200

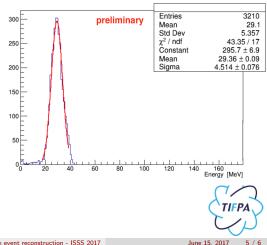
150 100

> 50 -92

• the angle θ (see next talk); each event


Francesco Maria Follega

Calorimeter energy reconstruction


The information reconstructed by the plastic scintillator calorimeter provides:

- an estimation of the energy Ereleased by the particle;
- topological information (i.e penetration of the particle).

each event

Credits: V.Vitale

Francesco Maria Follega

A strategy for the event reconstruction - ISSS 2017

The Limadou HEPD event reconstruction team is working hard in preparation for the launch (16th August). To summarize:

Done:

- opassage from L0 to L1;
- reconstruction
 of dE/dx (preliminary);
- reconstruction of the energy E (preliminary);
- reconstruction of the angle (preliminary).

Under commissioning:

- more and more reliable procedure for E, ^{dE}/_{dx} and θ estimation;
- mixed tracking algorithm between calorimeter and tracker;
- passage from L1 to L2 (almost done).

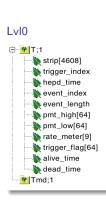
Backup slides

TIFPA

Francesco Maria Follega

A strategy for the event reconstruction - ISSS 2017

June 15, 2017 6 / 6

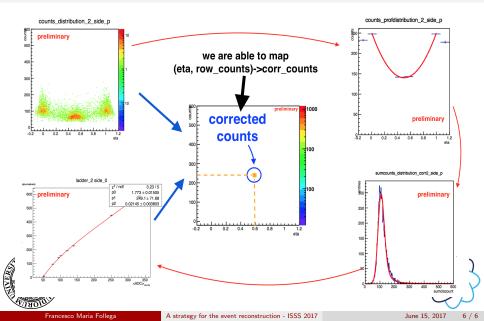

Level0 \rightarrow Level1 - What changes?

At Level0 of data elaboration we have

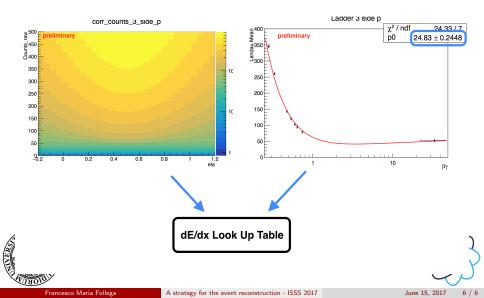
- information on raw count;
- metadata, flags and index.

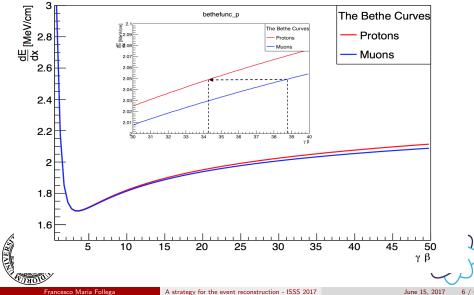
At **Level1** the information is more digested and classified :

- cluster formed by group of activated strips;
- calibrated counts for scintillator;
- S/N ratios for all the subdetectors;
- more metadata and flags.

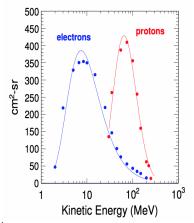


Lvl1




Backup - Tracker $\frac{dE}{dx}$ reconstruction

Backup - Tracker $\frac{dE}{dx}$ LUT


Backup - Muon point

A strategy for the event reconstruction - ISSS 2017

June 15, 2017 6 / 6

Backup - Limadou main characteristics

Parameter	Value
Energy range	Electron: 3-100 MeV
	Proton: 30-200 MeV
Angular resolution	<8°@ 5 MeV
Energy resolution	<10% @ 5 MeV
Particle Identification	>90%
Maximum Omni-directional Flux	10 ⁷ cm ⁻² s ⁻¹ sr ⁻¹ (accepted by trigger before pre-scaling)
Operating temperature	-10 °C - + 35 °C
Mass (including electronics)	< 43 kg
Power Consumption	< 43 W
Scientific Data Bus	RS-422
Data Handling Bus	CAN 2.0
Operation mode	Event by Event
Life span	> 5 Years

