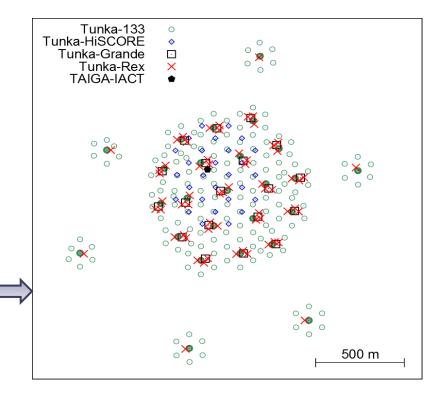

TAIGA - Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

Yuliya Kazarina (for the TAIGA collaboration)

Cosmic Ray Physics in Space L'Aquila, 12.06.17 - 16.06.17

TAIGA

Complex instrument for studying astrophysical processes by means of detecting various components of air-showers in the very-high energy range.


The goals of the observatory are:

- * search for galactic sources of gamma rays with energies higher than 20-30 TeV;
- * gamma-radiation fluxes from the Crab nebula and Tycho SNR;
- * gamma rays from the most bright blazars;
- * search for possible violations of Lorenz-invariance and axion-photon transitions;
- * flux of ultra-high energy primary cosmic rays (energy spectrum and mass composition).

approx. 50 km from Lake Baikal in the Tunka valley

Cosmic ray detectors Tunka-133 air-Cherenkov Tunka Radio Extension (Tunka-Rex) Tunka-Grande scintillators Gamma ray detectors TAIGA-HiSCORE TAIGA-IACT TAIGA-muon

Cosmic ray studies from 100 TeV to several 100's of PeV

Reconstruction resolution: arrival direction ~ 0.1-0.3°, axis position ~ 5-10 m, E_{pr} ~ 15%, X_{max} ~ 28 g/cm²

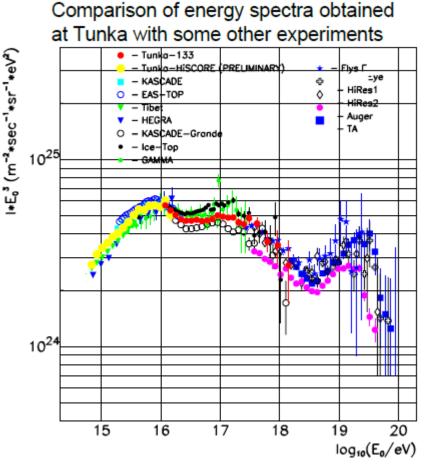
Tunka-133

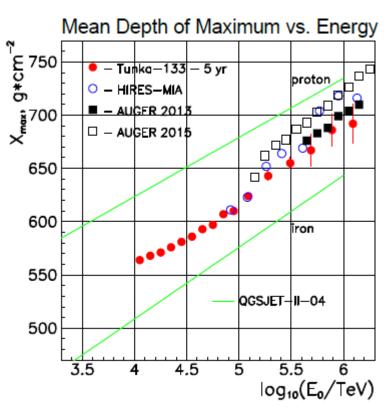
- * 3 km² Cherenkov array
- * 25 clusters, 7 wide-angle optical detectors in each cluster
- * Operated since 2009

Tunka-Grande

- * Particle detector
- * 19 scintillation stations, each of them with surface and underground parts, detecting EAS electrons and muons respectively

Tunka-Rex


- * Radio array (30-80 MHz)
- * 63 antenna stations on 1 km²
- * triggered by Tunka-133 and Tunka-Grande see also talk by D.Kostunin



Combined (γ , μ , e, radio) measurement of air showers

Published in EPJ Web of Conferences 121, 03004 (2016), DOI: 10.1051/epjconf/201612103004

Published in Journal of Physics: Conference Series 718 (2016) 052031 DOI: 10.1088/1742-6596/718/5/052031

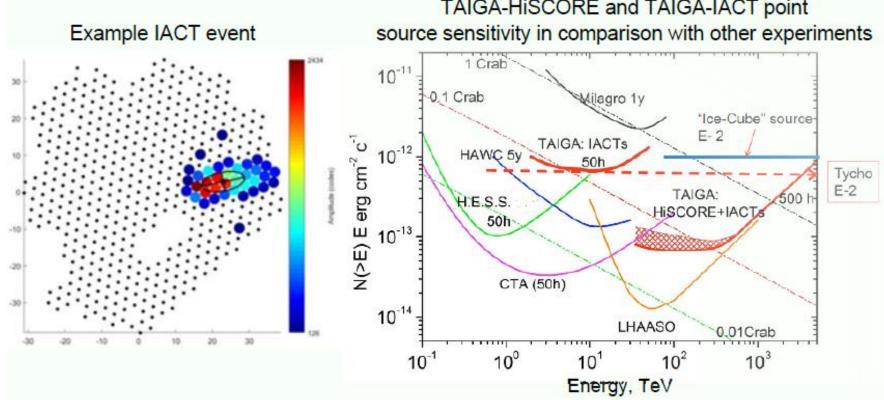
Reconstruction resolution: arrival direction ~ 0.1 $^{\circ}$, axis position ~ 5-6 m, E_{pr} ~ 10-15%, X_{max} ~ 20-25 g/cm²

TAIGA-HiSCORE

- * Non-imaging Cherenkov array
- * will consist of 500 optical detectors on the area 5km² (now 28 detectors on area 0.25km²)
- * FOV ~ 0.6 sr, angular resolution ~ 0.1 $^{\circ}$
- * Good sensitivity to the EAS parameters

TAIGA-IACT

- * Imaging air-Cherenkov telescopes
- * Optical system: Davis-Cotton design reflector and photomultiplier-based camera
- * FOV 9.72x9.72°, angular size 0.36° per pixel
- * will comprise 16 telescopes with spacing of 600-1000 m.
- * Gamma/hadron separation using imaging technique


TAIGA-Muon

- * Underground muon detector (started in autumn 2017)
- * will improve the selection efficiency for better gamma-hadron separation at low energies (10-100 TeV) Combined approach of the imaging and timing techniques:

inter telescope-distance can be significantly increased!

TAIGA-HISCORE and TAIGA-IACT point

6