HELIX: High Energy Light Isotope eXperiment <u>Noah Green</u>, Gregory Tarlè, Michael Schubnell *University of Michigan* June 12, 2017

Introduction

- HELIX is a balloon-borne superconducting magnet spectrometer that will perform high mass resolution measurements of various light cosmic ray isotopes.
- Collaboration includes veterans from many previous balloon flights including HEAT and CREST
- Motivated by recent measurements from AMS and PAMELA to explain positron excess.

The Positron Problem

- Increase in positron fraction (e⁺/(e⁺+e⁻)). Hints from HEAT. Seen by PAMELA and AMS. Much higher than what is
 expected using standard propagation models. Peaks/plateaus around 300 GeV.
- Possible explanations: dark matter annihilation? Pulsar wind nebulae?
- Still possible to explain using secondary production (see M. Kruskal, S. P. Ahlen, and G. Tarle. *Astrophys. J.*, 818(1):70, 2016.)
 - Similarity b/w proton and positron spectral indices suggests secondary origin
- . What is needed?
 - Knowledge of the primary proton spectrum in the ISM
 - Path length between primary proton source and Earth as a function of energy. Can be calculated using antiproton flux.
 - Confinement time of light secondary cosmic rays -> HELIX
- Confinement time from Be
 - Be-10 has half-life of 1.39 Myr. Same time scale as confinement time.
 - Almost exclusively secondary. Produced via spallation in ISM.

HELIX Goals

- Two stage experiment:
 - Stage 1: Focus on obtaining Be isotope ratio to constrain \cap propagation models. Measure up to energies of ~3 GeV/n.
 - Stage 2: Improve energy range up to ~10 GeV/n. Extend 0 measurements of a variety of light isotope ratios.
- Precision measurement
 - Need mass resolution of < 2.5% \cap
 - Achieved through RICH, DCT and ToF instruments Ο

International School of Space Science

HELIX Instrument

- Design
 - Geometric factor = $0.1 \text{ m}^2 \text{sr}$
 - Max Detectable Rigidity = 800 GV
- Time of Flight
 - 1.5 cm fast plastic scintillator
 - Goal: < 50 psec for Z > 3
- Drift Chamber Tracker
 - Multi-wire drift chamber w/ CO₂ gas
 - Goal: ~65 um for Z > 3 spatial resolution
- 1 T Superconducting Magnet
 - Reused from HEAT
 - 260 liter cryostat for hold time > 7 days
- Ring Imaging Cherenkov Detector
 - 200 Hamamatsu SiPM array deciding on model
 - n ~ 1.15 aerogel radiator being manufactured
 - Goal: 0.04% for Z > 3 velocity resolution

Summary

- A difficult measurement
 - Mass resolution requires precise characterization of aerogel
 - Atmospheric effects
 - Payload, power, and magnetic field considerations
- Allow calculations of positron secondary production.
- Two stage experiment
 - Stage 1 in prototyping and design phase. To be deployed end of 2019
 - Stage 2 to include upgrades to RICH, DCT.
 Would like to increase hold time with secondary dewar.

CREST flight path from McMurdo. HELIX to take similar trajectory.