

Electron and Proton Separation Study Using the Top and Bottom Counting Detectors of ISS-CREAM Experiment

June 13th, 2017

Sinchul Kang, H.J. Kim, H. Park, J.M. Park, H.J. Hyun, Y.S. Hwang, H.B. Jeon Kyungpook National University (T/BCD group)

ISS-CREAM Experiment

- ISS-CREAM (Cosmic Ray Energetics And Mass on the International Space Station)
 - It will be launched in August, 2017
 - It measures the energy spectral features from ~10¹¹ eV to > 10¹⁵ and composition that might be related to the supernova acceleration limit
 - It provides keys to understand the origin, acceleration and propagation of cosmic

ISS-CREAM Experiment

ISS-CREAM Instrument

- Silicon Charge Detector (SCD)
 - It provides precise charge measurements
- Sampling Calorimeter (CAL)
 - It determines energy of the cosmic rays and provides tracking and event trigger
- Top and Bottom Counting Detectors (TCD/BCD)
 - It provides shower profiles for electron and hadron separation
- Boronated Scintillator Detector (BSD)
 - It provides additional electron/hadron discrimination using thermal neutrons produced by the calorimeter

Top and Bottom Counting Detector

♦ Goals

- e/p separation for electron and gamma-ray physics
- Provide a redundant trigger in addition to the CAL trigger
- Provide a low energy electron trigger

♦ Instrument

- Plastic scintillator coupled with 2-dimensional photodiode arrays
- $500 \times 500 \times 5 \text{ mm}^3$ and $600 \times 600 \times 10 \text{ mm}^3$ plastic scintillator for TCD and BCD, respectively
- 23 mm × 23 mm × 650 μm photodiode

Method

 Electron and proton make different shower shapes (Electromagnetic vs. Hadronic showers)

e/p Separation Study

Cut criteria for e/p separation

♦ TCD

- 20 × 20 photodiodes + 5 mm plastic scintillator
- Shower + back scattering
- Cut methods
 - Number of hits
 - **RMS (ATIC analysis method)** RMS² = Σ Energy _ TCD_i × { $(x_i - x_c)^2 + (y_i - y_c)^2$ } x_i, y_i : coordinates of a sensor in the TCD

♦ BCD

- 20 × 20 photodiodes + 10 mm plastic scintillator
- Transverse + Longitudinal shower
- Cut methods
 - Number of hits
 - f-factor = RMS² × Energy in BCD/Energy in CAL (similar to ATIC's)

 x_c, y_c : coordinates of the center of the energy calculated Energy _ TCD_i : Energy deposited in the sensor i

- CAL trigger & 2MIP trigger
- High Energy Bin
- Hit distribution in the TCD/BCD
- Shower width distribution in the TCD/BCD

e/p Separation Study

Result of e/p separation study

Electron Ene

n Energy [GeV]	Selected electron (Total electron) [Number of events]	Selected proton (Total proton) [Number of events]	Electron efficiency [%]	Proton rejection power	Incident angle [degree]	Accepted electron [number of events]	Selected proton [number of events]	Electron efficiency [%]	Proton rejection power
150 300	29,129 (51,555) 9,253 (12,961)	7,318 (2.92 × 10 ⁷)	56.5 ± 0.2 71.4 ± 0.4	$(2.25 \pm 0.03) \times 10^{3}$ $(1.96 \pm 0.06) \times 10^{4}$					
					0 5517	5517	6	55.2 ± 0.5	$(9.19 \pm 3.75) \times 10^2$
									10
600	1,226 (2,293)	702 (2.92 × 10 ⁷)	53.5 ± 1.0	(2.22 ± 0.12) × 10 ⁴	15	5822	9	58.2 ± 0.5	$(0.47 \pm 2.10) \times 10^2$
					30	6188	8	61.9 ± 0.5	$(7.74 \pm 2.73) \times 10^2$
1,200	205 (510)	5 (2.92 × 10 ⁷)	40.2 ± 0.8	(2.35 ± 1.07) × 10 ⁶	45	6422	7	64.2 ± 0.5	$(9.17 \pm 3.47) \times 10^2$
2,500	24 (62)	20 (2.92 × 10 ⁷)	39.9 ± 0.8	(5.65 ± 1.86) × 10 ⁵	60	4306	4	43.1 ± 0.5	$(1.08 \pm 0.54) \times 10^3$

Total events of proton and electron is 10⁴

Thank you for your attention!