%22 INTERNATIONAL SCHOOL OF SPACE SCIENCE

" ocreLAers L’Aquila - ITALY

Complexity and Turbulence in Space Plasmas
18-23 September 2017, L’Aquila (Italy)

An Introduction to kinetic plasma theories

Giuseppe Consolini

INAF-Institute for Space Astrophysics and Planetology, Roma, Italy
Email: giuseppe.consolini@iaps.inaf.it

G. Consolini, “Complexity and Turbulence in Space Plasmas”, ISSS, 18-23, 09, 2017 L’Aquila


mailto:giuseppe.consolini@inaf.it

Topics

® Introduction

¢ \Microscopic description: the Klimontovich equation
e [he Liouville equation and the BBGKY hierarchy

e Correlation functions and the BBGKY hierarchy

e he Mean Field Approximation

® [he Free Particle dynamics

¢ [he Vlasov equation

G. Consolini ISSS 2017, L’Aquila



Introduction

In treating several processes occurring in real magnetised space plasmas the
macroscopic description, provided by the magnetohydrodynamic (MHD) (single fluid)
approach could be not sufficient.

Indeed, MHD approach is a continuous media description (a field theory) which loose
the particle nature of plasma media, and which is essentially based on a limited
number of evolution equations for local macroscopic quantities (density, velocity,
temperature,.... ).

These quantities are not representative of the full information contained in the full
particle phase-space distribution function (DF) fs(r, v; 1), being these quantities
essentially related to the first moments of the DF.

M"f, = / " fo (7, U3 1) dPv
e.g.,

Mofs = ng(7,t) = /fS(F,ﬁ;t)dBU les Efs(f)at) — /17fs(77765t>d3v
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Introduction

Thus, in some situations it is necessary to provide a more detailed description, which

IS Is related to the evolution of the full particle DF and contains more information on the
dynamics of plasma media.

This description is provided by kinetic theories, which can be considered as an
Intermediate description between the the formally exact microscopic description of
plasma behaviour and the macroscopic MHD single fluid description.

Exact microscopic description (Klimontovich equation- Liouville equation)

v

Kinetic description (kinetic equations: Vlasov, Landau, Boltzmann, Lenard-Balescu)

v

Multi-fluid description (e.g. two-fluid equations)

v

Single fluid description (MHD approach)
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Microscopic description: Klimontovich equation

Let’s start our description of plasma evolution in terms of an ensemble of individual
particles.

As a first step we can introduce a density function, Ns(r, v; t), in the Boltzmann’s
single-particle phase space, (r, v), for each species s, which provides the exact
number of particles with velocity v at the location r;

s(r,v:t) Zér— (v —V;)

where (R;, Vi) are the Lagrangian coordinates of the particles of the species s and (r, v)
the Eulerian coordinates of the 6d phase space.

N(r,v;t) Zert

We note how this quantity is inherently singular.
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Microscopic description: Klimontovich equation

Now, each particle of the plasma evolves according to the Newton-Lorentz force law,

msVi(t) = g {E™[Ry(t), 8] + Vi(t) x B™[R(t), 1]}

where the superscript m on the fields indicates that these fields are the microscopic
fields acting on single particle.

These microscopic fields result from the superposition of the external fields and the
self-consistent fields generated by the other particles and acting on the considered /-
particle at the time t. Furthermore, they are strongly and rapidly varying fields and obey
the Maxwell equations:

V- -E"(r,t) = i ir,t)
0 3
V-Bm(r,t):O ZQS/dUN I‘Vt)
- O0B™(r,t)
VxE"(rt)=— 5 qu/d?’va (r,v;t)
1 OE™(r,t)
Bm — m
V x B™(r,t) = puod™(r,t) + R
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Microscopic description: Klimontovich equation

Moving from the previous equations we can derive an equation for the time evolution
of the plasma, as described by the DF, by time derivative of the DF itself:

5’5]9\;8 = — ZVZ' - Vo[r — Ri(t)]0[v — V()] — Z

;]; (E™ +V,; x B™) - V,8[r — R;(t)]6[v — V;(1)]

that, exchanging Vi = v (due to delta-function property), reduces

ON, ;
— —Vv.VN, — &
ot M

(E™ +v x B™) -V, N,

or In terms of a conservation law:

D N, :
=2 v VN, + L

— N, = E™ B™).V,N, =0
Dt ot ms( F R -V

This is the Klimontovich equation.
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Microscopic description: Klimontovich equation

Klimontovich equation i1s exact and should be combined with the Maxwell equations
for the microscopic electric, E™, and magnetic, B™, fields.

The equation expresses the conservation of the DF along a particle path:

D
—NS :O
Dt

which is equivalent to say that plasma is incomypressible.

The Klimontovich equations are practically not solvable, being equivalent to solve all
the particle motion. Furthermore, they contain all the information that may be too
much to describe the plasma evolution at the investigated spatial and time scales.

A way to overcome this problem is to average the DF over an ensemble of replicas of
the original system introducing the phase-space averaged (reduced) distribution
function fs

fs(r,v;t) = (Ns(r,v;t))

G. Consolini ISSS 2017, L’Aquila



Istituto di Astrofisica e Planetologia Spaziali

Microscopic description: Klimontovich equation

Thus, the averaged (reduced) distribution function (RDF) fs can also be interpreted as
the number of particle in a certain interval of the phase space, I.e.

fs(r,vit) = N NSA(;V; t)ds2

where AQ = AzAyAzAv, Av,Av,

This operation, which is equivalent to move from a singular function to a continuous
function, has a non-trivial drawback [Ageno, 1995].

{ .
numerable {+ * * . continuos
[ J
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Microscopic description: Vlasov equation

Let us now write exact functions and fields in terms of average ones and fluctuations,
.e.
Ns — fs + 5Ns

E" =E+ /E™ N b= <Em>
=E + where B — (B™)
B =B+ /B™
and
<5N8> —
(0E™) =
(0B™) =

We then can average the Klimontovich equation over the ensemble, getting

Plasma kimetue equatyon

8 S S S
/ —|—V-Vf8—|—q (E+V><B)-vasz—q (6E™ +v x 6B™) - V,0Ng)
at ms mS
// \\
collective ef fects collisional ef fects

large scale
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Microscopic description: Vlasov equation

dfs qs s m m
By +V'st+ms(E+V><B)'vas— ms<(5E + v x 0B™) - V,dNg)
)4 N\

0 Yo

Dt Df, (8f3) ( ot >coll
coll

ot

Dt

The relevance of the collisional effects can be estimated as follows:

ZQ 4
V., ~ n2 62 5 In A
2megmzaug
knT. Ve _ 2In A _— Ofs 0

Vo~ Wpe  3Np Np—oo ﬁ ot ) . —
A

A = 2D ~ Np
bo
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Microscopic description: Vlasov equation

Under the previous |limit the kinetic equation reduces to the well-known Viasov
equation
Dfs Ofs

ds
= > -V fs E B) V,fs=0
Dt . ot TV vy +m8( TVxB)-Vof

This equation has to be coupled with the Maxwell equations for the magnetic and
electric field

V(i) = —p(rit)

V- -B(r;t) =0 qu/d%fsrvt)
0B(r;

V x E(r;t) = — ét,t) qu/d?’vvfs r,v;t)

Viasov-Maxwell equations for non-collisional plasmas
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Microscopic description: Vlasov equation

Let us see some considerations and limits on Viasov equation [Vlasov, 1938].

Dfs dfs qs
Di 0 T g TV oVt

(E4+vxB)-V,fs =0

Viasov equation has the form of a Liouville equation for a set of non-interacting
particles moving under the action of an external macroscopic field.

The effect of interaction enters only in the definition of the self-consistent average
fields, which are determined by the instantaneous value of the RDF, so that it is

particularly important for describing long range interactions (e.g. Coulomb interactions
in fully ionized plasmas).

The Viasov equation implies a non-trivial evolution only for spatially inhomogeneous
systems [Balescu, 2000].

A better definition of Vlasov equation would be that of a

Mean Field Equation
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Liouville equation and BBGKY hierarchy

In the previous discussion we have derived the Klimontovich equation and the
corresponding kinetic equation by adopting a 6d phase space description. This
approach does not allow to correctly appreciate and describe the right-hand collisional
term In terms of collisions and correlations.

A different method can be derived using an approach that moves from a description of
the system evolution in the full particle phase-space: the 6Nd Gibbs phase-space (the

I'- phase space).

Let us consider a system of N interacting particles and indicate the set of dynamic
coordinates (q;, pj) with x..

The system Hamiltonian is thus a function of all the particle dynamic coordinates,

H(ml,ﬂjg, ZHO X —|—ZZV SL’J,ZE;C

1< k=1

where V;; = V(x;,x;) is the interaction potential.
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Liouville equation and BBGKY hierarchy

In statistical mechanics the state of the system is determined by the distribution
function (DF) in the phase space F(xi1,...xn,t) which is defined over the 6Nd phase
space.

It is useful to introduce also a set of reduced distribution functions (RDFs), fs, which
refer to the distribution function for s particles, directly from the DF

For instance, in the case of the single particle DF we can write

fi(xq) :N/d:vg...dmNF(azl,...,xN)

This point can be generalized to the case s < N

N!
(N — s)!

fs(ilfl,...,ﬂfs) — /d$8+1...d$NF(£E1,...,LUN).

RDFs are not independent, indeed if r < s < N, we get

— s)!
fr(x1, .y xy) = Ex—ril /dxrﬂ...dxsfs(xl,...,a:s)
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Liouville equation and BBGKY hierarchy

The validity of this representation in statistical mechanics stands in the thermodynamic
limit (T-lim)

N
T —lim; N — o0, V — o0, V:n:cte

which reflects on the RDFs in the fact that for any s and any configuration of (xs, xa,
...., Xs) the RDF fs tends to a finite limit in the T-lim.

In the case of spatially homogeneous systems the RDFs are characterized by
translational invariance, so that, for instance, we can write for the single-particle RDF
and the two-particle one the following expressions:

fs(gg +a,...,q,+a;py, ooy ps) = fs(Qus - Q53 D15 ooy D)

moment distribution function

/

f1(q, p) = nw(p),

f2(‘ha 923P1>p2) — f2(Q1 — Q2;p17p2)
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Liouville equation and BBGKY hierarchy

Let us now write the equation relative to the evolution of the RDFs.

The evolution equation of the DF is the well-known Liouville equation:

A

O F(q,p;t) = [H(q,p), F'(¢,p)]lp = LF(q,p; 1),

where H is the Hamiltonian operator, [...]Jr the Poisson brackets and I, the Liouville
operator.

Indicating with v; = p/m the velocity of the j-th particle, the Liouville operator can be
written in the following form:

=+ = ZLMZZLM,

where j< n=1

LY = —v;-Vj, Lj, = (ViVjn) - jp

G. Consolini ISSS 2017, L’Aquila



Liouville equation and BBGKY hierarchy
Using the same notation of the Klimontovich equation the Liouville equation takes the

form:

OF N N .
+> Vi VoF+ > V- V,F=0

ot i=0 \—— G=0 ——
/\0 /\/
_Lfi _Ljn
where
’ ds
Vq; t) = E™ i X B™
(1) = 2 B v, < B

This equation is of the form of a convective time derivative, expressing that the
density in the phase space is incompressible

D
FtF(xl’ Ta,....,TN;t) =0
In the case of an external field the Liouville operator will contain an additional term that

can be written as follows:
N N

LF =% L= (V;V])-0,

j=1 j=1
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Liouville equation and BBGKY hierarchy

We can now derive the evolution equations for the RDFs fs

NI
8tfs(sc1,...,x3) — 8t (N— S)' /d$8+1..d£€NF(5131,...,Q?N;t)
N' ( N N )
_ ' r0 T/
— [ dwirdan ;LjF+jz<zlenF g
I~ "= y

which by simple algebra [see Balescu, 2000] leads to the BBGKY hierarchy:

Bogoliubov — Born — Green — Kirkwood — Y von

8tf0 — 07

Orfi(w1) = LY f1(21) + /dmzfzizfQ(xhéUQ),

AL ZLOfS ) 4SS L ) Y [ ey fon (o,
j=1

1< n=1
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Liouville equation and BBGKY hierarchy

By neglecting the trivial equation for the zeroth order function, the BBGKY hierarchy
reduces to the following set of N equations for the RDFs

O¢f1(x1) = f/?fl(ﬂﬁ) T /d$2£’12f2(1’17$2):

2
Or fa (1, w2) = [LY + L] fo(a1, o) +ZZL nJ2(T1, T2 +Z/dx3L;,3f3(901,902,553)7
1< n=1 71=1
(9th L1y ey L ZLOfS Llyeeey L —|—ZZL fs L1y ey L )—|—Z/d$s+1z;78+1f5+1(561,...,$S+1).
1< n=1 j=1

This set of equaﬂons has a hierarchical structure, so that the determination of the s-
particle RDF requires the knowledge of the (s+1)-particle one.

The information contained in the DF F is now smeared on the set of RDFs fs. Anyway,
In several cases the knowledge of the first two RDFs is sufficient.

G. Consolini ISSS 2017, L’Aquila
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Liouville equation and BBGKY hierarchy

The chain/hierarchy of BBGKY equations can also be written as follows:

afs S S
5 +Z (Vq; Vi, [s +Zaij Vo, fs
1=1 J#1
N —s
V

/d3T3+1d3Us+1az'(s+1) 'vvifs—l—l) =0

In the case of single particle RDF we can write:

0 N —1
a]ﬁ +v1 -V, f1+ T/dgrzd?’vzmz'vvlﬁ =0

flzfl(rlavl§t) f2:f2(1‘1,1‘2,V1,V2;t)
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Liouville equation and BBGKY hierarchy

It is possible to introduce a graphical representation (a sort of Feynman diagram) for
the interaction operators that appear in the RDFs equations.

An s-particle RDF can be thought as a set of s parallel horizontal lines, so that, while
the free propagator (propagation operator) LY does not couple any of these lines, the
Interaction operator L’j can be represented as a vertex joining the j and / lines, being
representative of the coupling (interaction) between these two particle lines.

There are essentially two different type of vertex graphs:

Y —vertex X —vertex

,,,,,,,,,,,,,,,,,,,,,,,,,,

G. Consolini ISSS 2017, L’Aquila
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Liouville equation and BBGKY hierarchy

O¢f1(x1) = ff?fl(ml) T /d$2j?32f2($17$2),

SN

2 2
Or fa(w1,m2) = [LY + L8] fo(wr, ma) + ) > L, folwr, wa) + Z/dfcsi},gf:a(zla 2, 13),
j=1

1< n=1

.................................................................. 2
................................................................................. 2
; ) .
................................ 3
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Correlation functions and BBGKY hierarchy

The RDFs of 2 or more particles include correlations among particles.

Consider an s-particle RDF at a fixed time, then if there are no-correlations this could
e written as the product of one-particle RDF, I.e.,

func L Xt H fl xj,
The absence of correlations is analogous to stat/st/ca/ independence.

However, for real systems the presence of interactions generally implies the
occurrence of a certain degree of correlation among the particles, which can extend
up to the largest scales (i.e., at scales larger than the interaction range) as cooperative
effects.

Correlations can be introduced by writing the s-particle RDFs as the sum of two
terms:

N
fs(xla---axs§t) — fgnc(xlv"'?x& )—i_gs L1y eeey & H 33], _|_gs L1yeeey L )
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Correlation functions and BBGKY hierarchy

The quantity g’(xy,..., xs;t) describes the effect of correlations, and can be written as
the sum of terms, obtained by considering all the partitions of the s particles into
disjoint subsets containing at least one particle.

For instance, this cluster representation in the case of 2 and 3 particles RDFs allows to
write the RDFs In the following form,

fa(z1,22) = f1(x1) fi(x2) + g2(71, 22)

fa(x1, z2,23) =f1(x1) f1(z2) fi(z3) + fi(z1)g2(x2, T3)
+ fi(w2)g2(w3, 1) + f1(w3)g2(T1, 72)

+ 93(33175627'7;3)-

Before moving to find an evolution equation for the correlations functions, let us see a
parallel between the above form of the 2 particle RDF and correlated statistical events.

P(z,y) = P(z)P(y) + 0P(z,y)

0P (x,y) P(z,y) N?
(

1
~1=—; =
5P(z,y) = P(z,y) — P(z)P(y) P(z)P(y) P(z)P(y) N2(N—-1) N

G. Consolini ISSS 2017, L’Aquila
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Correlation functions and BBGKY hierarchy

To find the evolution equation for the g’(xs,..., Xst) we can make use of the RDFs

evolution equations and the BBGKY hierarchy. Computation is long and requires to
use the graphs [see Balescu, 2000].

For example, for the two particle correlation function ga(xs, x2), we get,

r

A A

0:92(w1,2) — [LY + L] ga (21, x2) = Lis[f1(z1) fi(w2) + g2(x1, 72)]
+/d5€3{i'13f1(501)92($27$3)+£'23f1(5€2)92(3?17503)

+ (L5 + Lhs) [f1(z3) g2 (21, 32) + g3(21, T2, 73)]}

A y

e ——————— e —————

This equation has to couple to that of the single particle RDF to get the starting point
for the development of the kinetic equations and their approximations

r

A

Oif1(z1) — L(1)f1(331) = /d$2[£32f1(£€1)f1(372) + z’1292($17332)]a

N 4

B

G. Consolini ISSS 2017, L’Aquila
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Correlation functions and BBGKY hierarchy

In terms of graphs the right hand term of the evolution equation of the single particle
RDF can be represented as follows,

r N

O f1(x1) — i(l)fl(xl) = /d@[iizfl(i’?l)fl(@) + i/1292($1»$2)]a

G. Consolini ISSS 2017, L’Aquila
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Osf1(z1) — Lcl)fl(xl) = /d952[f/12f1($1)f1(5’32) + j;/1292(951»5’72)]7

(N y

T ——————— T
By inserting the expressions for the Liouville operators this equation can be written as

N —1

0
a1tV Ve it —— /d3r2d3v2312 Vo, [f1(21) f1(22) + g2(21, 22)] = 0

and introducing the average acceleration
a(qi;t) = nO/d3r2d3v2a12f1(a:2;t)
we get

Ofi+vi- -V fi+a-V,, f1=-n /d3r2d2v2a12 Vo, 92

G. Consolini ISSS 2017, L’Aquila



Mean Field Approximation

In several real situations the full hierarchy of evolution equations for the RDFs and the
correlation functions can be significantly simplified.

Practically, correlation functions of order higher than a certain S and be neglected,
although correlation functions of low order (s < S) can be represented in terms of the
single particle RDF.

This operation will lead to describe the evolution of some systems by a closed
equation for the one particle RDF f1(x1,; t), which is called

“Kinetic Equation”

To obtain the kinetic equations it is generally used a perturbative approach, starting
from a reference state characterized by the absence of any interaction. This
corresponds to do a perturbative expansion in the interaction potential which is
supposed to be small, i.e.,

V() = Ao(r) ——, A << 1, | v(r) = 0(1), Vr

weakly coupled system

G. Consolini ISSS 2017, L’Aquila



Mean Field Approximation

This mean-field approach based on the hypothesis of a weak-coupling is particularly
valid for treating systems like space plasmas (or plasmas in general), which are
characterized by small long range interactions (at scales larger than the Debye length).

This approximation reflects on the Liouville operators and the RDFs and the correlation
functions,

A

LY =0(\%), L., =O0(N).

J
f(il?l;t) — O()\O), g2($1,$2;t) — O()\), gg(Il,mg,ZUg;t) = O()\Q)

Another relevant question deals with the existence of a correlation length I for the
correlation functions gs which is connected with the fact that in several cases the
Interaction potential has a limited range of action:

yardstick length V(ai,d2) = V(r12) Vir)=0 < r>l

~—> ZC — maX(lo,lCQ,lcg,...)
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Free particle dynamics

Let us consider a system of non-interacting particles,
A=0, L), =0

This is an ideal system, which is the starting point for the discussion and modeling of
non-equilibrium description.

The starting equations reduces to the following form:

O f(z1;t) = LY f(21;),
Orga (w1, w25t) = (LY + Ly)ga(w1, w23 1)

Thus, In a free system the equations for RDFs and correlations functions are not
coupled, so that there is no way to generate or destroy correlations.

We can now introduce an operator for free propagation U°1(t)

UY(t) = exp(LYt) = exp(—vy - Vit)

G. Consolini ISSS 2017, L’Aquila



Free particle dynamics

Thus,

flag, vi;t) = U7 () f(ay, v150),
.e.,

flay, vist) = flay — vit, vi;0).
being

exp (%) f(z) = flz+ a)

Here (and in what follows), we adopt a representation in terms of velocity, instead of
moment:

fla,p;t) =m’f(q,v;t)

/ dadpf(q,p;t) = / dqdv f(q,v;t) = N.

Ly — (qz-,Vi), 5’]- — a/an, ajn — 5’3’ — &n

G. Consolini ISSS 2017, L’Aquila
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The Vlasov Equation from BBGKY approach

The Vlasov equation can be obtained from the expansion of the evolution operator up
to the order 1

Thus, writing the evolution equation of the first RDF £+

0uf (1) — L9 f (1) = / dxa| £ f (21) f(@2) + Eipgalar, @),

A(~L'ff) N2 (~ L' go)
Gt )

we obtain at the order A

Viasov Equation

8,f (21;t) = £ f (w1 8) + / dir3 E 0 f (2136)f (02:8)

the Viasov equation which describes the evolution of the single-particle RDF in
absence of correlations.

G. Consolini ISSS 2017, L’Aquila
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The Vlasov Equation from BBGKY approach

Let us now write the in a more clear way the second term in the right-hand:

O0f (x1:8) = LOf (a1;8) + / A £y f (21 6) f(22:1)

v{f, f}=m™" [ dea(ViVia) - Oraf(x1;t) f(22;1)

=m! {Vl /qudV2V12(q1 - q2)f(q2,V2;t)} -O1f(qy, vi;t)

where /

V(1) = / detadvaVin(as — @) f (s vas

Thus, the quantity in the brackets is the average force, so that the Viasov equation
takes the form

0y +v-V)f(a,vit) =m™ [V(V(q;t))] - 0f (q, ;1)

G. Consolini ISSS 2017, L’Aquila
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The Vlasov Equation from BBGKY approach

Vlasov equation has the form of the Liouville equation in the case of non-interacting
particles (no-correlations) moving under the action of an external field.

The external field has to be computed synchronously, so that the equation is inherently
nonlinear.

The Vlasov equation provides a good description for the evolution of spatially
inhomogeneous systems in which the Vlasov mean field (V (q;t)) has an action range
lc larger than the typical density gradient scale In.

That is why Vlasov equation is the starting point for the description of non-collisional
plasmas, where due to the long range action of potential the force acting on the
particles is the result of a collective phenomenon (Np = ).

In presence of on electromagnetic field the Vlasov equation can be written

(0 +v-V)f(a.vit) + —(B+v x B) - 9f(q,vit) = 0

E:EQ+<E> = —V((I)o+<q)>) =0

G. Consolini ISSS 2017, L’Aquila



“;‘ Istituto di Astrofisica e Planetologia Spaziali

As we have widely discussed, Viasov average potential (which appears in the Viasov
eq.) properly describes some of the features of the long range nature of the Coulomb
potential, which is able to describe the collective behavior of plasma systems.

However, Viasov equation is not sufficient to describe the irreversible evolution towards
equilibrium of plasma systems, being the correlation term completely removed.

Indeed, Viasov equation does not satisfy the Boltzmann’s H-Theorem for entropy
production:
ds(t)

>0
dt —

where

s(t) = —kp /dgvln[ngp(v;t)]gp(v;t) +c

How can we describe collision and the evolution in a plasma which has long range
interaction ?
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Now the derivation of a kinetic equation for plasmas including correlations and
collisions requires some that assumptions on the interaction potential have to be
satisfied.

In particular, it is required that interactions and correlations have to be of a finite range.

This point is in principle not satisfied by Coulomb potential which is of infinite range,
and introduces infrared and ultraviolet divergences.

The ultraviolet (short-range) divergence introduced by the pure Coulomb potential can
be overcome by assuming that at short distances a non-Coulombian repulsive
interaction (e.g, of quantomechanical origin) can act, while the infrared (long-range)
divergence can be removed by the role that polarization effects play in plasmas (Debye
screening).

Thus, the effect of collision integral in plasma can be treated by replacing the pure
Coulomb potential, by the Debye-Hlckel potential

,exp(—kpr) 70 (k) e 1

. T2 k? 4 kS

VP(r)=e
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By treating the Coulomb interaction as a weak interaction (i.e., e is a small parameter,
that can be equivalent to a Ath-order), it is possible to derive a modified version of the
Vlasov equation which includes also collision and correlation effects.

The starting point is to consider the evolution equation for the single-particle RDF and
for the correlation function:

O It = 3 [ [ 2 st 1 i) + L5087 i)

(0 — LY — L) g5 (w1, w25 t) =L f (15 t) 1 (wa5 1)
+Z/d$3 {ngﬁ {f?(x“t)gé}v(w%%;t) + ff(wfs;t)ggﬁ(fl,ﬂfz;t)}
Y

L D (@23 0)957 (21, w33 ) + f7 (w5 )g5” (21, 25 1) | |
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Solution of these two coupled equations considering the previous potential and
assuming that the plasma system is homogeneous,

fi(z15t) = np“(vist) = np®(1)

936(371,372;?5) = gSﬁ(ql — q2, V1, Va;t)

leads to the Balescu-Lenard kinetic equation for plasmas

Orp®(vi;t) =8m*ne? Ze% /dgvg/d3kk - O

V( ())‘26<k Vi = va)k - 0% 0% (vis 1) (vas )

Nk

dielectric function - L
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The form of the Balescu-Lenard equation reminds the form of Landau kinetic equation
(weak interaction) where the Coulomb interaction potential has been replaced by an
effective potential (the screened potential).

Plasma is, thus, weakly coupled system where collisions occur via an effective
screened potential, derived exactly by dynamical laws.

The collective effects are contained in the screened potential, which is not, here,

considered to be static (as in Vlasov equation) but conversely is a functional of the
instantaneous plasma state.

Here, collisions involve all the plasma medium.

In spite of the simple final form of Balescu-Lenard equation the nonlinearity contained
Into the equation is extremely difficult to manage.
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