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Lecture Outline

e Lectures1and?2

1) Derivation of gyrophase-averaged transport
equation
2) Derivation of Axford-Gleeson- Parker transport
equation
» Reference relativistic particle derivation
3) Magnetic correlation tensor
4) Quasi-linear scattering tensor
5) Nonlinear guiding theory (NLGC)
6) Diffusive shock acceleration
)
I

Chapman-Enskog derivation of multi-component
asma/fluid description
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Brief Motivation

* Energetic particles cornerstone of much of
astrophysics and space physics

* Fundamental equation describing transport of
energetic particles first derived in late 1960’s

and has been investigated repeatedly since
then

* Lectures provide background | wish | had
when entering the field ...



Examples

Special: New Learning Series on Genetics, page 70
Complexity—the Science of Surprise | | Your. Inner: Savant /

i~
S
=
&
o
o
2

!
FEBRVARY 2002

QUESTION 5

Where do ultrahigh-energy particles come from?
The most energetic particles that strike us from space, which
include neutrinos as well as gamma-ray photons and various

other bits of subatomic shrapnel, are called cosmic rays. They
bombard Earth all the time; a few are zipping through vou as
you read this article. Cosmic rays are sometimes so energetic,
they must be born in cosmic accelerators fueled by cataclysms

Greatest — foline e
ggering proportions. Scientists suspect some sources: the
U na nswered Big Bang itsgellg, shock waves from supefnovas collapsing into
Qu eStlon S black holes, and matter accelerated as it is sucked into mas-
of sive black holes at the centers of galaxies. Knowing where these
ySICS particles originate and how they attain such colossal energies
will help us understand how these violent objects operate.

Explain the origin of energetic particle power laM{
spectra (e.q., the universal galactic cosmic

ray spectrum).
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Examples

December 13, 2006 event



Halo CME: Dec. 13, 2006: 02:54:04

linear speed: 1774 km/sec;
speed at 20 R: 1573 km/sec;

(from the SOHO/LASCO CME Catalog,
courtesy of the CDAW Data Center,
GSFC).
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ACE observations: Fe ions

ACE/ILEIS Fe, 346 - 348 DOY

ACE/SIS Fe, 346 - 348 DOY
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December 13, 2006
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Figure 3. Event-integrated energetic proton spectra obtaimned with ACE. STEREO. GOES-11 and
SAMPEX for the December 13, 2006 SEP event.
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Figure 8. a) Event-integrated proton spectrum PATH code results are shown by the red line. Figure 7. Iron ion fluxes derived from ACE/ULEIS measurements in a low-energy range of ~ 35
Fluences obtained with ACE. STEREO. GOES-11 and SAMPEX are shown by triangles. b) keV/nuc — 2 MeV/nuc at 1 AU (top panel) and corresponding modeling results with the PATH
Event-integrated iron ion spectrum. PATH code results are shown by the red line. Fluences code (bottom panel). Notice a rise in particle fluxes around the shock arrival time.

derived from ACE measurements are shown by squares.



186 5 Charged Particle Transport in a Collisionless Magnetized Plasma

5.1 Transport Equations for Non-relativistic Particles
Scattered by Plasma Fluctuations

5.1.1 The Focussed Transport Equation

Electromagnetic fluctuations in a flowing medium such as the solar wind act to
scatter particles, in pitch angle, gyrophase, or in energy. Although we do not
explicitly restrict our attention to any particular form of electromagnetic waves
in this subsection, we will implicitly consider particles scattered in pitch angle by
magnetic fluctuations — either Alfvén waves or convected magnetic fluctuations. In
this subsection, we derive a general equation for a gyrotropic distribution function
that describes non-relativistic particles scattering in a flowing medium. Such a
model was developed by Isenberg (1997) based on an approach by Skilling (1971)
to describe the propagation of pickup ions in the solar wind. Although particles
may eventually scatter towards isotropy in the frame of the medium, we not assume
an isotropic distribution in this subsection. Following Isenberg, we begin with
the Boltzmann equation for the distribution function f(x,v,t) of non-relativistic
particles in the inertial frame, 1

f F _f
(§+v-Vf+%vvf_8t)s+S. (G.D

The force term can be quite general, but we restrict our attention to F = ¢/c(E +
v x B) i.e., the inertial frame electromagnetic force acting on a particle of charge
q, mass m, with ¢ the speed of light. In the Boltzmann equation, S is a particle
source term. Of note is that (5.1) has been implicitly separated into mean and
fluctuating parts with the fluctuating components being treated as “scattering”
terms and relegated to the right-hand-side. The scattering term §f/8¢)s acts to
stochastically scatter particles towards isotropy. In later subsections, we explicitly
calculate various forms of the scattering operator. Here, we focus on the left-hand-
side of (5.1).

Let us consider a frame of reference that propagates in the inertial “rest” frame
at a velocity U. Strictly speaking, this new frame comprises both the background
convection velocity and the “average” velocity of the scattering “centers” (Alfvén
waves, for example). Certainly in the supersonic solar wind, the convection velocity
is much larger than the velocity of the background scattering fluctuations and so
the additional velocity of the fluctuations is often neglected. Most importantly, a
velocity transformation U can be identified with the velocity of the background
conducting plasma, in which case the motional electric field E = —U x B/c exactly
cancels the electric field and leaves F = gv x B/c. It is important to recognize that
the scattering term in this frame conserves energy since all macroscopic electric
fields are transformed away. With no electric fields, particles can only scatter in
pitch angle. However, energy is not conserved in the “rest” frame and this has

veronica.belser@uah.edu



5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 187

important consequences, as we discuss later in considering particle acceleration at
shock waves. Let us write

v=c+U<c=v-0,
for which the following transformations hold,

0 d dc; 0 o oU; 0

— _+__ = — = —

ot at  dt d¢; Ot at dc;

0 0 au; 0 d 0

— _—— — = —.
axj an ij 86’,’ aV,‘ 8ci

On applying these frame transformations to the inertial form of the Boltzmann
equation (5.1), we obtain an equation in mixed coordinates for the distribution
function f(x,¢,1),

af f [ [4q aU; aU;
al‘ +(Uz +Cl) axi+|:m(CXB)z - 8t _(Uj +cj)axj]

of _ 8f
8_6,-_ 57 )S. 5.2)

The subscripts refer to vector components and the summation convention holds.

Let us now suppose that the particle gyroradius is much smaller than any
other spatial scales in the system and similarly that their gyroperiod is smaller
than other time scales. Thus, the particle distribution function can be regarded as
nearly gyrotropic, and so f(X,c,t) is essentially independent of gyrophase i.e.,
f(x,¢,t) >~ f(x,c, u,t), where the particle pitch angle ; = cos § = c¢-b/c and the
direction vector b = B/|B| is the unit vector along the large-scale magnetic field.
Since we are assuming gyrotropy of the distribution function, we may average (5.2)
over gyrophase. By gyrophase averaging, we neglect the action of perpendicular
drifts on the distribution function. It is convenient to introduce spherical coordinates
(6 = pitch-angle, ¢ = gyrophase, ¢ = |¢|),

¢y = csinf cos ¢; ¢y =csinfsing; ¢, =ccosf =cu;

¢ ¢ibi
2 2 2 2. z, 1Y, A A N
cC=cpteyten cosf = = p=— c=cyéx+cyéy+c e,

and u = p(x) and ¢ = ¢(x). Consequently, we have the following transformations,

0 d
V=V+Vu— +Vop—:
+ ,uaqu ¢8¢’
dc 9 du d  dp
3¢, 9 9c T dc o dc, 99
;0 b; i d 0 0
()

cac T\ @) aa g
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188 5 Charged Particle Transport in a Collisionless Magnetized Plasma

which yields, on assuming that f(x,c, u,$,t) = f(x,c, u,1),

af af o df aU; aU;
e ) (2L + 2L Qeinciby — — —(U; At
5 + (U, +c)(8x,- + ox; It + | Qsijrci by 5 U; +C’)8xj
Cj 8f bl‘ MCi 8f _ 8f
><(c 8c+(c cz)au)_(gt S (5-3)

where the gyrofrequency 2 = ¢|B|/m has been introduced and ¢ is the Levi-Civita
tensor. We introduce an averaging operator for ¢ such that &;j; = 1/27 fozn Qd¢
and average (5.3) term-by term. Thus, since

(=Y il =uZ (L)@

al o o T ox ax;’

and é, = b, we obtain
af

d
—f =cubi— = ((U; + ¢;)
Bxi Bxi

f

d 0
(@) - i

> = (Ui +cubi) 7—
0x;
Here we used
(€) = c(sinB cos pé, + sinf singé, + cos fé;) = cub,

since (sin¢) = (cos¢) = 0. Use of

<3_“>=<ﬁ>3bf — b,

ax; ¢ B_x,-_'ujax,-’

andb;b; = 1,0r b;0b; /0x; = 0, shows that
Now consider

and the gyrophase averaged term (c;c; /c?) term-by term. We have

2 2 2 2 2
o\ l=—p7. o\ 1—p c\ . aaa
= R T V=) A T A V=
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5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 189

and the cross terms (c;c;/c?) = Oforalli # j,i,j = x,y,z Recalling that
¢,¢, = bb we obtain

ab; 1—p? 1—p? ob;
C<C1Cj> C( M éxéx+ 2/’L ey y +M2bb)

3)([ 8xl

b
(I—bb) + ;ﬂbb] —
axi

ob;
0x;

(51‘}' bib; ) + ,U«zbbi|

2
Ol U LTI et Ui
2 Y Bxi 2 8x,~’

since b;0b; /0x; = 0. Here we used é.é, + é,é, + é,6, = ééx +é,é, +bb =1
oré.é, + é,é, = I —bb, where I is the identity matrix. Consequently, we have

LA\ 1 b o
8x, u 2 0x; Op

On using the results (¢;) = (c;/c) = pb; and (¢;&;) = (1 — u?)/2(8;; — bib;) +
w?b;b; of before, we find

aU; ¢ of i pei\ of
([—a, Ufax,}(caﬁ(?‘?)@»

LY U f af
_(_81 _Ufax,-)( whig +- c b’au)’

ci of i pe ) of
(e (e + (2 -8) 5))

i 1—u?
zaﬁ[c(T"(&j bb)+,u2bb)af

and

0x; 0
+ [Mb,»bj —M(l_z“z (8 — bib;) + u>bib; )] gﬁ]
Finally, the Lorentz force terms yield
.Qe,jk< i€ >bkcz;j; 0;
—Qeijk <CC >bkugj; 0,
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190 5 Charged Particle Transport in a Collisionless Magnetized Plasma

because (c;c;/c?) = Oforalli # j and &;;x = Oifand only if i # j # k. The
final term,

af
Ip

a
= QSijkbibjbkM£ =0,

2 Eijk < >b bk
because &;;x = Oifand only if i # j # k and ), Zj Z/- &ijk = 0.
On using the above gyrophase-averaged results and collecting terms, we obtain
the reduced gyrophase-averaged transport equation

af af 1—3u? v, 1—u?
v i i) o —%  bibj o — V-
8t+(U +c'ub)8x,-+|: 5 bbjaxj > U
/,Lbl 8U, 8U 8f l—pLz
=t b V.- V.-
p (Bl +Ujax] cac+ ) c¢V-b+uv-U
AU 2b; (U af of
—3ubib; — — +U - ). 5.4
L rr (5 + ’3%)}3# <8r > G4

The transport equation (5.4) is also known as the “focussed transport equation”
and this non-relativistic form, derived by Isenberg (1997), differs from the earlier
relativistically correct form derived by Skilling (1971) in that it contains the
convective derivative of U since Skilling assumed that U < c.

le Roux and Webb (2012) present a particularly nice discussion of the meaning
of the terms in the focussed transport equation (5.4). As discussed above, Eq. (5.4)
is in the solar wind flow frame, which is noninertial. Since the plasma flow is
non-uniform and non-stationary, scattered particles undergo velocity or momentum
changes as measured in the flow frame due to pseudoforces associated with the non-
uniform non-stationary nature of the flow. Recall from Chap. 2 that the gradient of
the flow velocity can be expressed as the sum of the flow divergence, the flow shear,
and the flow rotation, i.e.,

aU; 1 9U; - 1(3Ul- au; 20U, ) (BU 8U)

i =3 T3l T 3 ) Talas T
19U;
233 81/ +Gz]+wz/,

where 0;; and w;; denote the shear and rotation tensors of the flow respectively. On
expressing the flow gradient terms in the focussed transport equation (5.4) by the
general representation above, the method of characteristics shows that

1 /dc 19U; —3u? ,ub dU;
"<E> =35 ;! by oy + ) -
1 BU, 11— 3,&2 ,U,b,' dUl
=———+———-bibjo;; — —— 5.5
3 0x; + 2 i% c dt (5-5)
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5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 191

where d U; /dt is the convective derivative, and we recognize that the rotation tensor

is antisymmetric (w;; = —wj;), so that the sum b;b;w;; = 0. Thus, flow rotation
does not contribute to changes in particle speed. Similarly, we find that
8/1, 1-— /,Lz ab, Zbl dUl
— )= — —3ubibjo;j — ———|, 5.6
<az> 2 | Coy, MO0 d (56)

and flow rotation does not contribute to changes in particle pitch-angle either.
Expressions (5.5) and (5.6) describe the gyrophase averaged rate of change of the
particle velocity ¢ and pitch-angle p. If particle velocity or momentum is measured
in a nonuniform nonstationary plasma (noninertial) flow frame, the magnitude of
the particle velocity or momentum will be modified if the flow diverges (V - U),
experiences shear (o), or rotation (w;; ), or accelerates (d U; /dt), while the particle
pitch angle varies in response to flow shear, rotation, or acceleration. It is interesting
to note (recall the telegrapher equation discussion, Chap.2) that the shear and
rotation tensor terms in Eq. (5.5) are multiplied by the term —(3u? — 1)/2, which
is the second-order Legendre polynomial P,(u), whereas the divergence of the
flow, V - U is multiplied by the zeroth-order Legendre polynomial Py = 1, and
the acceleration term d U; /dt by the first-order Legendre polynomial P;(u) = u.
For distributions f that are close to isotropic, this ordering of the terms associated
with the Legendre polynomials gives the order of the importance in terms of energy
change with respect to a physical process.

The flow divergence term V - U in Eq.(5.5) is nothing more than the well
known adiabatic momentum change term in the standard cosmic ray transport
equation that will be discussed below. Evidently, the divergence of the flow has
no effect on the particle pitch angle. Physically, the effect of the divergence of a
collisionless flow on energetic particles is consistent with the notion that particles
are coupled to the flow through their interaction (scattering) with electromagnetic
fields embedded in a highly conductive flow, but when the electromagnetic fields
are neglected the divergence of the flow still affects the particle momentum simply
because momentum is measured in the frame of a nonuniform plasma flow. As we
discuss in more detail below, the rapid (negative) divergence of a flow across a shock
wave leads to a convergence of the flow and the compression of electromagnetic
fields embedded in the flow. As shown explicitly in the formulation of the focused
transport equation, particles respond to the compression of electromagnetic fields
embedded in the flow, and experience adiabatic compression. Notice that all of the
effects due to a nonuniform nonstationary flow frame vanish if particle momentum is
measured in an inertial frame, but if one is interested in what happens to the random
component of the particle velocity at a shock, for example, noninertial effects must
be taken into account.

Most investigations are currently restricted to the 1D version of the focussed
transport equation. If one assumes for example a constant radial flow, such as the
solar wind, with U = UT and a large-scale radial magnetic field pointing away from
the Sun, b = t, then Eq. (5.4) simplifies to

veronica.belser@uah.edu



192 5 Charged Particle Transport in a Collisionless Magnetized Plasma

d d 1—p? 9 1—pu? §
Vv wspo oy Y I U)—= f )6
ot ar r ac r

Exercises

1. By collecting all the terms associated with the gyrophase-averaging of (5.2),
derive the general form of the gyrophase-averaged transport equation (5.4).

2. By assuming a constant radial flow velocity for the solar wind and a radial
interplanetary magnetic field, derive the 1D focussed transport equation (5.7).

3. Assume that the one spatial dimensional gyrotropic distribution function can be
expressed as

flriep) = f-(reo)H(=p) + f1(r.c)H(p),
where H(x) denotes the Heaviside step function and fi refer to anti-

sunward (fy)/sunward (f_) hemispherical distributions. By substituting
f = f-H(—p) + f+ H(w) in the 1D focussed transport equation

af S 1p? o Ug_fz_((_z)f),
n

- —|— U+p
( Vor T e
and integrating over u separately from —1 to 0 and then from O to 1, show that

0f+ ( df+ 22U cof+r ¢
-— U:i:)—————— - f)=Fr - f-

o T\UE) % T 3% TR P =TI
where I' = v(u = 0) gives the rate of scattering across i = 0. Note that the
form of the scattering term is of diffusion in pitch-angle, and this is discussed
below. The term v is the scattering frequency.

5.1.2 The Diffusive Transport Equation

The solution of the general gyrophase-averaged transport equation is a formidable
task for almost any physically interesting system so considerable effort has been
invested in trying to simplify (5.4) by means of several additional assumptions. Let
us assume that the scattering operator can be represented by a diffusion operator in

pitch-angle,
d aof
= — 1—p?) = .
> o (v( M)au)’ 69

where v is a characteristic scattering frequency. The scattering term is discussed
further in more general terms in the following subsections.

8f
(5
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5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 193

The dependence of the gyrophase-averaged particle distribution function f on
the pitch-angle y = cos 0 with u € [—1, 1] suggests a natural expansion in terms of
Legendre polynomials. The orthogonality properties of the complete set of Legendre

polynomials allow us to rewrite the focussed transport equation (5.4)

as an infinite

set of partial differential equations in terms of the polynomial coefficients of the
expansion. To ensure tractability, one typically truncates the infinite set at a low
order, which is a form of closure. Accordingly, we expand the gyrophase-averaged

particle distribution function f as

o0
1
f(x,t,c,n) = Z 5(2n+1)P,,(u)f,,(x, t,c), where f,(x,t,¢) = /
n=0 -
The orthogonality condition is given by
1
0 m+#n
Pp(u) Py(p)dp = § :
f—l 1 M=n

and some useful recurrence relations that will be used below are

(n+ D Pupr(p) = 2n + DuPy(p) —nPy—i(1);

d nn+1)
(1 - Mz)d_Pn(M) = I’an_l(,bL) - nMPiz(M) S [Pn—l(ﬂ)
" 2n +1
d d
d_Pn+1(/'L) —u——Pu(pn) = (n + 1) Py(p);
W du
d d
:u“d_Pn(l’L) - _Pn—l(/'L) = I’an(/L);
w du

d
m [Prt1(p) = Pr—i()] = 2n + 1) P, ().
W

1

1 S Py ()dp.

= Pypi(w)];

We systematically project and expand each of the terms in (5.4) from left to right

using the Legendre polynomial P,, (1) and the expansion for f.
The first (time-derivative) term becomes

1 o0 1
LI Z%(Zn n 1)/ Py Py lr — U
—1

ot ), "ot ot

n=0

ot ’

after using the orthogonality relation. Similarly, the second (convective) term

becomes

af 1 ! fy fm
U—:U -2 1 P,P,du— =U,—.
8)6,' ;)2( n )/;1 Max,- ax,-
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194 5 Charged Particle Transport in a Collisionless Magnetized Plasma

The third term in (5.4) is a little more interesting in that we need to use the first of
the recurrence relations. Thus,

m+1 m af
i_: b P d b m —Pm— ——dpu.
¢ / ’ p=e / [2 1 1} o M

On expanding [, we find

! af U m+1 af U m af
b; P,——du = cb; ——P,1—d b; —— P, 1—d
¢ /_1 H 0x; p=c /_1 2m—+1 + 0x; pte /_1 2m—+1 laxi H

00

1 1 ofy
E n+ / m Pm+1Pnfd
=0 _12m+1 axi

S 1
2n + 1 afn
+Cbi i / m Pm 1P fd .

=0 2 —1 2m + 1 8x1

The first term on the right-hand side contributes only when n = m 4+ 1 and the
second term only when n = m — 1, so yielding

2 3 1 2 0f,

cb/ WPy —fd,u— ch; mtSm Jon1
2 2m+12m+3 0x;

2m —1 2 0fm—

s m m ) fin—1

2 2m+12m—1 0dx;

m+1 afm-‘rl m afm—l
CDj cD; .
2m +1 ox; 2m+1 dx;

The third term can therefore be expressed as

af Cb 8fm+1 8fm—l
C— 1 .
ox; 2m+1 [( +1) 0x; +m 0x;

cpub; —

The fourth term in the focused transport equation (5.4) is

=32, 0U; Of AU LAf U 3 Of

g hibj ey ebibj g s as —ehibj g =

The first term can be rewritten immediately as

bbaU1af 3U; 10,
Ok 29¢ - U %, 2 0
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We need to use the first of the recurrence relations to infer

2p - (0t D +2) [(n+1)2 n’ } P,
" @n4+1)(2n +3) 2n+3  2n—1]2n+1
nn—1) p

Cn—1)2n+1) "

On using this identity for the second term above, we obtain

bbaumaf bb8U3/ op,
1

T P s
;3 2n + 1 f,,

n=0

WU; 3 =2n+13f, ('T n+Dn+2)
= n Pm
—ehibj g Z 2 e / [(2}1 Then 13

(n+1)? n? P, nn-—1)
Pt d
+(2n+3+2n—1 10 T Gn = Dy@an 1y e |

The first integral contributes only when n = m — 2, the second when n = m and
the last when n = m + 2, so yielding

au; 3 af
—chib; —L P, —d
¢ / a-xl [l s 8 K

_ ;3 (m —1)m 0fin_2 (m +1)? m?
N Cbb’a |:(2m+1)(2m—1) dc +(2m+3 o1

% 1 % (m + 2)(1’}1 + 1) 8fm+2}
2m+1 dc 2m+3)2m+1) odc

On assembling the various terms, we obtain for the fourth term of the focused
transport equation,

1-3u2 U Of AU, 13, WU;3  (m—m s
bibj—Lc—L :cbib;—L ~ =" — yhib; —L =
2 T Cae TP 270 T o 2@m+ )2em —1) e
U, 1)2 2 1 -
2m +3 2m—1) 2m+1 dc
Oxi 22m +3)2m+ 1) dc
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The fifth term of (5.4) can be expanded as

20U U A U (m—Dm 3fue

2 Ox; dc - 20x; dc  20x; @m+ 1)2m—1) dc
coU; ((m+1)? m? 1 dfn
20x; \ 2m+3 2m—1/)2m+1 dc

cdlUi (m+2)m+1) 9fmso
2 E)xl 2m+3)2m+ 1) dc

On using the results of expressing the third term in terms of a Legendre polynomial
expansion, we have for the sixth term in (5.4)

DU; 9f =~ DU b 3fm+1 0fm—1
b, : L 1 .
Do Dt2m+1|:( +1) T

The computation of the seventh term in the focused transport equation is also
straightforward. We can immediately express

¢ db; 2af ¢ b = 2n+ 1 /1 , 0P,
——(1- =Y T f | du Pa(1— )2
28x,( ) 209 = 2 Y 1 # P M)au

Use of the second recursion relation above yields

c 0b; c b X 2n+ 1 ! nn+1
f Z fn/ d ¥[Pmpnfl_PmPn+l]»

Eax( b o 20n & 2 2n + 1

so that, since the first summand contributes only for n = m + 1 and the second for
n=m-—1,

¢ ob; af ¢ db; [(m+1)(m+2) m(m—l)f ]
—_— - Jm-1]-

—_—— _2 —
28x,( )au'zaxl 1 T

Consider now the eighth term in (5.4). We have

1aU 22 af  19U; 2n+1 /
-—(1 - - du P,(1—p
o (= mmg s zax[;o 1 P
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The second of the recursion relations yields

apP, nn+1)
p(l — Mz)a_ﬂn = on Tl [Py — L Pyt1]

nmn+1)[ n—-1 n

- P, P,
2n + 1 [2n—1 SR }
nmn+1)[ n+2 n+1
m+1 [2n+3 "7 43"

_n(n+1) n—1 n’(n +1)

T 2n+1 2n—1 "_2+|:(2n+1)(2n—1)
n(n +1)? }P nn+1) n+2

T @2n+ )(2n +3) n+1 2n+3 "%
from which we obtain
1 0U; 2n+1
- du Py (1 — p?
X Z f 1t P( )Ma
n=0
B 18Ui§:2n+1f/ld P nn+1) n—1 »
T = 2 M) Ko T =12
10U; = 2n+1 ! n?(n+1) n(n+1)?
= 5| duP - P
+2ax,n§ 2 f’/_l ° n[(2n+l)(2n—1) (2n+1)(2n+3):| "

19U; 2n+1 nn+1) n+2
Yy du P, — Py
28x’; / "m+1 2n+3 "

The first term contributes only for n = m + 2, the second for n = m, and the third
for n = m — 2, from which we obtain

1—[L2 oU; 3f . 13U; (m+ 1)(m +2)(m + 3)
2 Mox on 29x @m+ Hem+3)
19U; m?(m + 1) m(m + 1)?
2 9x; |:(2m +1H2m—1) @m+1)Q2m+ 3)} Y’
10U; m(m—1)(m —2)

C20x; 2m+ H(2m — 1)f

fm+2

Since

m*(m 4+ 1) m(m + 1)? . m(m + 1)
[(2m +1)C2m—1) @m+ H2m+ 3)] T em-1)2m+3)
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we can express term eight as

1—M2 oU; f  19U; (m + D)(m +2)(m + 3)

2 Pox on 29x Cm+ )em+3) Jm2
10U; m@m + 1) Y
29x; @m—1)2m+3)""
10U; m(m —1)(m —2) £
20x; Cm+ 1)2m—1)
We can utilize these results to express term nine in (5.4) as
1 —p? aU; of oU; (m + 1)(m + 2)(m + 3)
— 3ubib; —L = — b,b i
2 b T T am  Dam ) I

27" 9 2m — D)(2m + 3)
3
2

I

3p.5.9Y1 oU; m(m —1)(m —2)
Cx em + DC2m — 1)

Sn—

The results from evaluating the seventh term yield

b; DU;
— L)

Dt o~ ¢ Dt

af b DU; [ (m + 1)(m + 2) m(m — 1)
Y |: 2m + 1 fm+1 2m + 1 fm 1:|

Finally, let us consider the specific form of the diffusion term in pitch-angle p,
0 1 — - a ! ad 1 — o
K waf / p, 0 u>af du
o 2 3/L _ au 2 Em

2n+1 — u?opr,
= d P— — .
Z / o [ 2 fm}

n=0
The recursion operator
ap,
3,1;: ,:_1_ [Po—1 — uPy]
yields
Vo 1—p2af 21+ 1
P [v—E gy =
[ reg [ o= S
! o 1—u> n
X P,— —— (Py—1 — uPy) | d
/;1 ma,bLI:v P 1_M2(n1 //Ln)] H
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Since v is independent of w, we find

: d Zaf X n+1n
/1P @[ 2 i| X(:) _fn/; (Pn 1— uPy)du.

On using the following relation,

d d n+1 n
— Py —uP) = — | P,y ———P ——P,_
aM(nl why) au(nl 1 n+1 2n+1nl)
_n+1 8( )
_2n+18 nl n+l’

together with the definition
0
E (Pr—1 = Ppy1) = =(2n + 1) Py,
we find
0
= (Ppm1 —uPy) = —(n + ) P,.
au

We therefore have the result that

! 0 28f] 2n+1n !
Py— = - _nn+1/ PmPnd ,
/_1 3#[ 2 Z M )—1 :

and since the integral only contributes for n = m, we have

/1 Pmi [Ul_ﬂzi]duz_vwﬁn_
-1

o 2 0u 2

This completes the evaluation of each of the terms in (5.4).

By gathering the results above together, the complete transformed focused
transport equation (5.4) can now be expressed as an infinite set of partial differential
equations in the coefficients f, of the Legendre polynomials,

Qfm+1 afm—1 AU; 19fm
1 ZiZ
o1 ox; | 2m +1[( T T } bt 2 0c
oU; 3 (m—D)m  dfp— ;3 (m+12  m?
bibj— b;b; —L
i 2 emrnem=n % o 2\ am+3 Tamo1
1 af WU, 3 (m+2)(m+1) fysr  cU; 3y

“om+1 0c C”ax,z(zm+3)(2m+1) 9 20x dc

c aU; (m—1)m Afm—a ¢ AU; (m—|—1)2+ m? 1 dfn
2 dx; 2m+1)(2m—1) dc 20x; \ 2m+3  2m—1) 2m+1 dc

iy f b;
Un g Um , ©
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c Ui (m+2)(m+1) 9fmi2 DU b |:< +])3fm+1 m afm—1i|
2 0x; 2m+3)2m+1) dc Dt 2m+1 ac
cdb; [(m+1)(m+2 m(m
+28x, [( 2m)5-1 )f”’“ 2( +1)f’" 1}
19U; (m + 1)(m + 2)(m + 3) 19U,  m(m+1)
20x;  (2m+ )2m +3) Jurz F Ea_x,-(zm—1)(2m+3)f’"
18U, m(m —1)(m —2) fo ——b bjai(m+ 1)(m+2)(m+3)fm+2
C20x 2m+1)2m—1) ox;  (2m+1)2m+3)
3 aU; m@m + 1) oU; m(m —1)(m —2)
27 j8_xi(2m—1)(2m+3)fm bi fax, (2m—|—1)(2m—1)f -
. DU, 1 2 m(m=1) 1

The infinite set of partial differential equations (5.9) is equivalent to the focused
transport equation (5.4) and therefore as challenging to solve. At each order of
the expansion, i.e., the pde for a Legendre coefficient of particular order, it is
clearly seen that the equation possesses coefficients of a higher order. This is
another expression of the closure problem. Closure is typically affected by simply
truncating the Legendre polynomial expansion at a finite number of coefficients.
This procedure is somewhat arbitrary and one formally needs to establish that the
truncation remains sufficiently close to the full solution. This is typically very
difficult in practice, and so is rarely done. An example of the subtleties that can
arise was discussed in Chap. 2, Sect. 2.8, where an even or an odd truncation of
the Legendre polynomial expansion of a simplified Boltzmann equation yielded
fundamentally different solutions, with the even truncation capturing the non-
propagating characteristic solution and the odd truncation missing that particular
mode.

Let us consider the simplest reduction of the set of equations (5.9) by truncating
the infinite set of equations at some arbitrary order with the hope that this does not
introduce any unphysical character into the reduced model. Typically, truncations
are made at the lowest order possible. For the f approximation (i.e. assume f, =
0V n > 2), we have, on setting m = 0,

8f0 afo ¢ aU; dfy afi afi ob; b; DU;

En Ua—x,‘zax,.ac“bxﬁ—mb—c‘ T2

(5.10)

and on setting m = 1 and neglecting all terms with indices having i > 2, we find

P g B b Ly QU9 DU B0

ot ox; 3 ox; 7 9x; dc J 8 ac Ea_x,W
9 9U; dfi DU b; Bfo 190U U .
10 9c ~ D1 3 dc Sax,f‘ a—xifl = v/
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On rearranging the above expression, we obtain

af1 afi 2 oU; afi 2 aU; afy  10U; 3 U,

—— 4+ U= —=chjbj—L——+ -c——"—+-——f1 — =bib; —=

ot + 0x; SC T 9x; dc 5Cax,~ ac 5 0x; Y 57 dx; Y
b; d DU; b; 9

— _yp— DO DUbi o (5.11)

3 0x; Dt 3 dc’

where the fy Legendre coefficients are expressed as source terms in the evaluation
of the next order Legendre coefficients fi. To solve Eq. (5.11) for f; in terms
of the lower order Legendre coefficient f), we make the further assumption that
the zeroth-order coefficient f; is almost isotropic, implying that f; < fy. The
next assumption that we impose is that v = ¢~ ! is large, i.e., rapid scattering
of the charged particles (which is consistent with the assumption that the particle
distribution is nearly isotropic), so that the term vf; ~ O(fy). Subject to these
assumptions, Eq. (5.11) can then be solved, yielding

cb; 3fy ~ DU, b; dfy
~ Dide , ZUilid)o 5.12
vh 3 v, | Dr 3 c (5-12)

Suppose first that the background flow possesses no large-scale accelerations or
gradients, i.e., Du; /Dt = 0, so that f] can be expressed as a diffusion term,

_cthi f

fl: 3 ax,-'

(5.13)

For the case that DU; /Dt = 0, use of (5.13) in (5.10) yields

8f0 afo c 8U, af() _ 8f1 8b, _ d
ot TV T30 ae — Py T T Ty, i)

_ o
- ax,- (bleJ ij ) ’

where we introduced the diffusion coefficient

c*t

K= —.
3

The diffusion term b; kb is a tensor comprising an isotropic part and an anisotropic

part,

k11 00 0 K12 K13 K11 K12 K13
K= 0kn 0O |+ |«xki2 O k23 | = | k12 k22 k23 |,
0 0 «ks3 K13 ko3 0 K13 K23 K33
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202 5 Charged Particle Transport in a Collisionless Magnetized Plasma

where the elements of the tensor are simply «;; = bk, k; ; = bibjk fori # j and
kij = K ;. Use of the diffusion tensor K allows us to express the convective-diffusive
or advective-diffusive transport equation as

afo
En

9
+U. Vfo——V U= f°

=V-(KVf). (5.14)
Subject to the assumptions imposed in deriving Eq. (5.14), this is the standard
form of the transport equation for non-relativistic charged particles experiencing
scattering in a turbulent magnetized medium. The physical content of the transport
equation (5.14) is interesting when considered term-by-term. The second term
shows that the scattered particles that comprise the distribution fy essentially co-
move with the background flow in which the “scatterers” are embedded. The third
term is an energy change term in response to the divergence of the background flow.
This is seen by considering

W gy _go W _lg 2%

1
it 3 dc a3 E‘O’

where £ = In c. The characteristics for this equation are given by

ﬁ(_ ldc) ——lV-U;

dt cdt 3
% = const
dt v

which yields

t
0~ ) =3 [ V-Udr,
3 J4
from some initial time 7 to a time #. If U is stationary, then the change in particle
velocity is given by
Inc(t) —Inc(ty) _ —lV U
t—1 3
According as V - U is convergent (< 0) or divergent (> 0), particles will gain or
lose speed c in the flow. For example, if the particle distribution function upstream
of a region of a 1D decelerating flow (dU/dx < 0) is a power law f ~ ¢4, then
the spectrum behind the decelerating flow will be shifted uniformly to the “right” in
which each speed In ¢ increased by an amount proportional to the velocity gradient.
Consequently, the energy of the particle distribution function will increase.
The diffusion term contains much of the physics of the magnetic field structure
as well as the scattering properties of the small scale fluctuating field. As a
consequence, the term K contains much more than simply diffusion. The isotropic
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part of the tensor K describes particle diffusion along (parallel) and perpendicular
to the magnetic field. The anisotropic terms are generally thought to describe the
collective drift of particles due to gradients and curvature in the magnetic field B
and magnitude |B|. However, in a sense shown below, the particle response to the
large-scale magnetic field geometry and gradients is present in all the elements of
the tensor K. This can be seen by expressing

fy b, dfo bi . f
i T 1 = ba (ba +ax,KbJax,

2
Py b 0o b i

= kb dx; dx * Pox; ox; ax;  x /gj'

(5.15)

The first term of (5.15) describes the isotropic and the anisotropic diffusive
propagation of charged particles. The coefficients of dfy/dx; in the second and third
terms of (5.15) are evidently velocity terms that are associated with variations in b;,
i.e., these are drift terms associated either with gradients in B, |B|, or large-scale
curvature of B. Note that

%:V b_V. B __B-V|B|’
0x; |B| |B|2

is non-zero only if |B| varies spatially. This term is therefore related to the variation
in pitch-angle that a single particle experiences as it propagates along a magnetic
field that is converging or diverging. Consequently, the term V - b = L~! defines
the so-called focusing length L, and the collective effect of focusing is therefore
embedded in the “diffusion” term of the transport equation (5.14). The terms
0b;/0x; when i # j include the large-scale curvature in B since

db; 1 dB; B, d[B|
8)(,' h |B| 8)(,' |B|2 8x,~ '

The terms 0b; /0x; also describe gradients in the components of B.

If we now include the DU;/Dt convective derivative that was neglected in
the solution of first-order correction f, i.e., (5.12), the transport equation for fo
becomes

afo U'af() aU; cafo_ d (czrb‘b'afo) d (Cfbb DU; 8f0)

o ' 'dxi dx;3dc  ax \ 3 ax; 3777 Drodc

3)(7,‘

Use of the definition k = ¢?7/3 and the diffusion tensor K allows us to express the
transport equation in the presence of large-scale flow gradients and accelerations as

cife | o (K%%%) —V.KVSf). (5.16)
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204 5 Charged Particle Transport in a Collisionless Magnetized Plasma

The convective transport equation (5.14) and its extensions to relativistic charged
particles is one of the most intensively studied equations in space physics and
astrophysics as it is the basis for almost all work on energetic charged particle
transport, ranging from galactic cosmic rays to solar energetic particles.

5.2 Transport Equation for Relativistic Charged Particles

5.2.1 Derivation of the Focussed Transport Equation

Consider now the extension of the previous two sections to include relativistic
charged particles propagating in a non-relativistic background plasma flow with
infinite conductivity.! It is assumed from the outset that the charged particles expe-
rience resonant scattering due to turbulent fluctuations in the background magnetic
field. The fluctuations have typically been assumed to be magnetohydrodynamic
waves, typically Alfvén waves, which tends to ensure that the scattered particles are
trapped by the waves and stream with them. The waves define a frame of reference,
the “wave frame,” which propagates through the inertial or observer’s (rest) frame
and this is the frame in which the scattering is executed. In general, the wave frame
is non-inertial, since, if we assume that the waves propagate at the local Alfvén
speed V4 and they experience convection at the background plasma flow velocity
U, the wave frame velocity, V4 + U may vary with space and time. This frame as
expressed here also assumes that all the waves propagate uniformly in one direction
which may not be appropriate. To avoid these complications, we shall assume that
the background plasma flow speed sufficiently exceeds the Alfvén speed that we can
neglect V4. This is certainly true in the solar wind where V4 ~ 50 km/s compared
to the solar wind radial flow speed of 350700 km/s.
The collisionless Vlasov equation that is valid for both relativistic and non-
relativistic particles may be written as
d _of af | dp; of
ar P = e e
where f(x,p,?) is the distribution function in the rest frame and dp/dt is the force
on the charged relativistic particle. In the wave frame, scattering of the particles does
not change the momentum or energy of the particles, so we need to transform (5.17)
into the wave frame. The transformations that we need are listed in the footnote.?

0, (5.17)

! As noted earlier, the transport equation was derived by Skilling (1971). His treatment is very brief
and the development given here is guided by an excellent set of notes developed originally by Dr’s
G.M. Webb and J.A. le Roux, to whom I am indebted for sharing them with me.

2We summarize the various Lorentz transformations that are needed in the derivation of the
focussed transport equation. A four-vector has three spatial components and one time component,
(x0, X1, X2,X3) = (x9,x%) = x%, where small Roman superscripts denote spatial coordinates
of the four-vector and Greek superscripts denote all four components. The length of a four-
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We need to derive
d
Wf(x/vp/a ') =0,

where the distribution function and the variables correspond to the wave frame. Nev-
ertheless, we will observe the cosmic rays in the rest or observer’s frame, and this
will therefore introduce a set of mixed coordinates as was done above. Exploiting
the Lorentz invariance of the distribution function, f(x,p.7) = f(x,p’.t’), we
have

vector is x%x* = x} 4+ x7 + x} — x2 = x“x% — xZ, and is invariant between coordinate
systems. The contraction of any two four-vectors is invariant between coordinate systems. The
Lorentz transformation matrix (see Jackson 1975, Sect. 11.7) enables one to transform one tensor
to another. When the Lorentz matrix operates on a four-vector, it yields

xy =y (xo—BxY;

, b b 1
x =x“+ﬂ“(ﬁﬂ—§<y—1)—yxo);y=F_UW; B =/,

where the transformation of the four vector is between reference frames in which the primed
variable has velocity U“ relative to the non-primed variable. ¢ denotes the speed of light. The
corresponding inverse Lorentz matrix can of course be used. Typical four vectors are time-space
(ct,x*) = x%, and the energy and momentum of a particle (E/c, p*) = (mc, p*) = ymy(c, V"),
where my is the rest mass of the particle. Since m is constant, y(c,v*) is a four-vector. Defining
the proper time of a particle t of a particle as dt/dt = y allows the four-velocity to be expressed
as dx®/dt. The various transformations that we need are as follows:

U) , (XU)
s =yli-— )
c

v-U

p=p’+m’U[ = (V—1)+y];
v-U , v-U
(1— o )VV =V+U[7()’—1)—V:|§

/. /.
(1+V U)yv:v’—i—U[v U(y—l)—i—y];

c? c?

X/

t=y<t’+

c2

, E-U
E =V(E+U><B)+(1—V)7U;

B-U
U.
2

1
B’=y(B—cf2UXE) +(1=y)
Note that if |U| /¢ < 1,
y = (=0 =14 U/2e),

so that y =~ 1 is valid to the first order in U /c.
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dr

=0.
dt’

d

— f(x,p,t

T fxp.1)
The Lorentz transformation for time between the observer and wave frames yields
to first-order in |U|/c

x-U

~ 4!
t>~t + 2

Consequently, we have

dt ".U .U\ d
:(1+v2):>(1+v )—f(x,p,t):O.
c dt

dt’ c?

We now need to introduce a transformation so that the particle momentum is
measured in the wave frame. This requires that the various partial derivatives in
the Vlasov equation are transformed from the observer’s frame to the wave frame
ie., (x,p,t) = (x,p’, ). This requires the use of the inverse Lorentz transformation
for particle momentum (Footnote), which to first order in |U|/c yields y ~ 1 and

p/ — p _mlU,

where m’ = y'mo and y' = 1/+4/1 —v'?/c? for the relativistic particle in the
observer’s frame. Considering the time derivative yields

d a dp, 9 0 0
= D = S S (')

ot 9t ot dp,  at ot

3 9 U d

= m .
dp; ot ot dp!
The spatial derivative transforms as

d a3 ;9 d LU, 3
= = m — .
dx; ap;

ax;  Ox; B_xiap; T dx;

Finally, instead of the inverse transform, we use p’ = p — mU to obtain

3 9p; 9 d ( v)) 9 d dm 3
Lo (g —mUy) o =6y — U O
i i opi apy  Yap, T apiap)

Introducing the basis vector for spherical coordinates allows us to express

om . 0m
o = €pin
api ! ap

and since

—-1/2 —1/2 1/2
m=ymy = my l—v—2 =mo|1— p2 =m=|(1+ p2 ,
c? m2c? mic?
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we have
dm _ _p_
dp  mc?
We then obtain
d ad vU; 0

W e )
On retaining only terms of O(U/c), we obtain
v .U\ df v .U\ [of oU; of
1 =1 oL
(+cz)8t (+c2)(az marap;)

AT 3]
2 ) ot at dp!

12

Consider now the convective term, (1 +v- U/c2) v;df/dx;. To the first order in
U/c, using the Lorentz transformation for the velocity, and y >~ 1 gives
vV +U
V= ———.
1+Vv-U/c?

This then yields
v-U vi +U; af aU; of af
1 i o2 = (W U)) =—
( + c? ) 1+v-U/c? (f)xi " dx; p]; (v + )Bx,-
aU; of
—m' (V. + U;) —L .
) S

Consider now the momentum change term (1 +v. U/Cz) (dp:/dt)af/op;. We
assume that the momentum change is due to electromagnetic fields only. Thus, we
have the Lorentz force

dp;
d_pt = q (Ei + &ijxv; Bi) .

where g is the particle charge, B the external magnetic field, E the electric field, and
&ijk 1s the Levi-Civita tensor. The first order Lorentz transformation for E is simply

E~E+UxB<+=E~E —-UxB,
which yields

dp; ,
d_pz =q (E] +&jx(vj = Uj)By).
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To address the transformation of the velocity, the Lorentz transformation yields y ~
1 and

at O(U/v), from which we find

dp; , v-U ,
I =q|E +|1- e EijijBk ,
so that

v .U\ dp; of v -U\ _,df
1 —_— = 1 E—
(+ Cz)dtf?pi q(+ 62) "opi

v.U v-U af
1 1= —— ) erjt; Be .
co(107) (1= )iy

The Lorentz transformation for time and its inverse yield

dt’_ 1 v-U\ dt 1_i_v’-U
ar 7 2 ) oar 7 c2 )’

from which we obtain
) v-U v-U)
y (1 - Cz ) (1 + C2 ) B 1’

v-U v-U
(1_ . )(1+ S )=1
in the limit U/c < 1. We may therefore derive

v .U dp,' 8f v .U , ’ V,'U/‘ af
14+ —— ) =L 1 El + eV B | [ 68 — —=L .
( e )dr op; q[( e ) e N ar=ay

Now consider the Lorentz transformation of the magnetic field. To first order, we
have

or

1
B =B- —2U x E,
c
but since E = —U x B, B’ = B + U x (U x B)/c?, this implies that

B’ =B,
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5.2 Transport Equation for Relativistic Charged Particles 209

at this order. This, together with

dp]
d—tl =q (El/ + 8,-jkv/]-B,’c) .

allows us to write
dpl 8f \4 -U ’ ,'Uj af dp{ Vl‘Uj 3f
1 E |8 —— + L6 — —.
( + c? ) dt op; —1 ( ¢z ) op} + dr 'Y ¢z ) dp}

Consider the term ge;;xv'; By (v;U; / c2)of/ dp’;. The first order velocity transforma-
tion yields

vV +U
14V U/eY
so that
/ /Vin 8f _ q ’ /vl‘+Ui 8f
qgijijBkTW = H_v/—wsijkvakl—zUj@
N q 1 af
= Trv v B,y
q 1 of
= o waa VxXB) YU =0,
1+v-U/c?c ap’.

J

after neglecting the U;U;/c* term in the second line. The term q(V/
U/c?)Elv; (U; /cz)af/ap} is O ((U/C)z) and so is neglected. We therefore obtain

dpi 3f ‘U _,  dp;|of
1 E’ LI
() T =l E Ty

where

dpl

o = (Bl + e B).

On combining the results above, we obtain the Vlasov equation in mixed coordi-
nates,

af / \4 ,9f
.V A
( )a +(V+U)-Vf+g  Eigy
—\|m —_ —_— _— = 5 .
ar  ax; ) T Piax; T ar | o)
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210 5 Charged Particle Transport in a Collisionless Magnetized Plasma

with f(x, p, t). However, since the coordinates (X, p’, f) are in the mixed coordinate
system, we need to introduce the transformation f(x,p,?) +— f’(x,p’,t). Recall
that

fx,p.t)d’xd’p = f'(x,p/,t)d*}'d>p,
and that d3x = yd>3x’. Consider the transformation of the volume element in
momentum space. On using p = p’ + m'U, dm’/dp = p/(m’c?), and dp/dp; =
pi/p, we have
d3p = dpxdpydpz

P’ P P’
_ ’ ’ / ’ ’ /
IV B Y p,/ U, p;UJ’ pQUz
- dpxdpydpz (1 + n,:lc2) (1 + m/CZ 1 + mxcz

/. U U2
= dpldp)dp)! (1 + p7) 4o (—)

m’ c2

v-U
~ rgr g
~ dp,dp,dp, (1 + o ) .
Thus, we have the transformation

S, p' 1)

TSR VY

which to first order in U/c, y ~ 1 yields

', p' 1)

Trv-ojey =~/ P

fxp,1) =

On setting f(x,p,t) = f”(x,p’,t) in (5.18), we have the final form of the
transformed equation,

V/-U 8f” V/-U af//
1 -~ / v /
(+ 62)8t+(V+U) R
U U U ar a
_ [ B U, — r__t F_/ A 0. 519
|:m(31 + jaxj)+pfax_,]3pl{+apl{(zf) (5.19)
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5.2 Transport Equation for Relativistic Charged Particles 211

Fig. 5.1 The coordinates for
a particle gyrating about a
mean magnetic field B
oriented along the z-axis. The
particle momentum is given
by the vector p, the
pitch-angle by 6, and the
gyrophase by ¢. The
directional vector

b=B/|B| =e

€3

€

€

In deriving (5.19), we used
d (dp; 0 8v’j
a—pl{ (E) = a—pl/ (qsijkv_’/ Bé) = qsl‘jka—pl{B];

d
_ N YN A YA
= qe,jkBkepi o (epjv)

/
. . I I . /
= qEijk€ ey, o B,

/ / I
4q€pi (E’Jkepj By) m'y’?

= mz/’z €, - (e:U X B’) =0.

Just as we did in the derivation of the focussed transport equation for non-
relativistic particles, we shall assume that the particle distribution function is nearly
gyrotropic, making f(x,v,t) ~ f(x,v,u,t) where the particle pitch angle is
i = cos 6 as before. For the sake of notational convenience, we henceforth drop
the “prime” on the variables and distribution function. The averaging procedure
proceeds in much the same way as before. For completeness, we provide some of
the details in the derivation although using a slightly more general notation. The
local geometry of a charged particle gyrating about the mean magnetic field B is
illustrated in Fig. 5.1. The coordinates (x1, X3, x3) refer to a magnetic field system
and e3 = b = B/|B|. Since the magnetic field is not assumed to be uniform, the
unit vectors (e, e, e3 = b) are functions of x. As before, i = cos =e, -b.

Recall that the momentum can be expressed in spherical coordinates as

af af 1af 1 af

ap e”% +e9;£ e¢psin9ﬁ
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212 5 Charged Particle Transport in a Collisionless Magnetized Plasma

where

p = p (sin 6 cos ¢e; + sin 0 sin pe, + cos 6b) ;

0
e, = i = sin 0 cos ¢e; + sin O sin e, + cos Ob;

10
ey = -~ _ cos 6 cos ¢e; + cos 8 sin ¢pe; — sin Ob;
p 00
e L dp in ¢e; + cos ge
= — = —sin cos ¢e;.
¢ psinf d¢p ! z

As before, we require the following integrals,

1 2w
(ep) = E/o e,d¢ = cos Ob;
1 2 1. ) 5
(epe,) = 7 epepd¢ = 5 sin” 6 [I—bb] + cos™ 6bb,
0

after using (cos? ¢) = (sin®¢) = 1/2.
Consider the time derivative

of _af | opf
a ot dr du

0 ad 0 a
L) =L

=9 T o o

after using b; 0b; /0t = 0 as before. Evidently, (df/dt) = df/dt. Now,

or Yo o

u 1 (7 of U ob;, 1 (7 of
_ c=—d. S e A e, —d
mce? 2w Jo 4y o+ pe”au ¢

mc? ot 2w J,
pU; Of 1 /2” pU; 0b; 3f 1 /2”
=— id — L iepid

mc? 0t 2w [, ér ¢+mc2 dt o 2w Jo ¢pi€pid9

me2 | ot 2m )y  mc?

P af  pUidb; of [1 ., ,
= WUzsz‘FﬁW@ ESII’I Q(Sij—bibj)—i—cos ebibj

()Y L) (U iy o
¢ I

c ot 2 c c 0dt
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5.2 Transport Equation for Relativistic Charged Particles

On considering the convective term,

or _or o
ax;  Ox; Pl 3 x; 8,u

we derive the gyrophase averaged expression

pi\ of af  paf db; of pdb; of
Ui+—) =) =U+—+ —-—(ep U —
<( + >8xi> 0x; maxi(ep)+ 0x; 8u<p]>+m3xl o
o A 8f 1 ob; df
= (Ui +vub;) o, +3 v(l — )8x, o

On expressing
af _ dpof Lo op df
dpi  opidp  Api dp

af af
=g, t E(emb/’)@

af 3 (pi\ of
=enty i ()

o b (8,», P 3p) af

P p opi) o
af af
= €pi 7 ap /(811 epiepj)ﬁy
we may consider
dUaf dU,~8f< ) dUbJS 8f+ dU; b; af(
—M————(€pj) — M ii m-—
" o, dt ap '’ dt T ou dt p o
. du; df m 2 dU;  of
=gy by TG
We can similarly evaluate
aUl; of 1 U 1 ) aof
—Pk— )= (I =p?)m— + =CBu" = 1)b;b;
< pkM api> p[z( 2 )ax- +2( ) }
aU; aU; 8f
1—u? —3bib; .
"2 ( )[ jaxj} arm

Finally,
i _ 4 af (b i
—(P B)- i  (PxB): [epg + (;—,uep) @] =0,

since (p xB)-b =0and (pxB)-e, =0.
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214 5 Charged Particle Transport in a Collisionless Magnetized Plasma

On combining the results above, we obtain the focussed transport equation or,
equivalently, the Boltzmann equation for a gyrotropic particle distribution,

14 EUPN Y G vy - — v (U Y vy
2 c\ec o

c ¢ dt

dU f um (dU

-(1— PV U+ - (3u — 1)bb : VU} ?ai (%) . (5.20)

The righthand term is the scattering term, due charged particles scattering in pitch-
angle due to the stochastically fluctuating magnetic field. Certainly for parallel
propagation, the scattering fluctuations are typically assumed to be Alfvén waves.
The scattering of charged particles conserves particle energy in the wave frame. In
the transformation from the observer’s frame (the rest frame) to the wave frame,
the macroscopic electric fields are transformed away by the background velocity
U because the plasma is infinitely conductive. Electric fields associated with the
waves disappear in a frame moving with the waves. In the absence of electric
fields, charged particles can only experience scattering in pitch angle. Energy is
not, however, conserved in the observer’s frame.

On assuming that dU/dt = 0 and neglecting terms O(U/c), we recover the
usual form of the focussed transport equation,

1—3u2 1
%+(U+wb)-w+[ M(bb:VU)——(l—uz)V-U}p%
at 2 ap

2
+1 [V b+ uV - U= 3ubb : VU] - af (‘;—J:) . (5.21)

The focussed transport equation (5.21) can be reduced to the convective-diffusive
equation if the distribution function f(x, p, u,t) ~ f(x, p,t) i.e., if the scattering
experienced by the particle is sufficiently strong that the distribution is nearly

isotropic. The analysis of Sect.2 carries over directly with “c” being replaced by
“p”, and the general convective-diffusive transport equation is given by
a 0
Vo ivvr-Pyu¥ _vkvy. (5.22)
ot 3 ap

This is the standard form of the transport equation for relativistic charged particles
experiencing scattering in a non-relativistic turbulent plasma.
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Exercises

1. Derive the following averaging relations:

1 2w
(e,) = Z/o e,d¢ = cos Ob;
1 2 1 )
(epe,) = E/o e e,dd = 5 sin® 6 [I — bb] + cos® 6bb.

2. Complete the derivation of

2

piy 9f 1
(U 2) 32 ) = -t vy 97 4 5001 = 0 b

i

3. Show that
(epjb ) = p( ij —€pi€pj)-

4. Complete the derivation of

ou; of 1 20U 1 E of
< P > p[z(l M)ax,» + 56w = Dbib; o i|3p
IU; BU,} af

+ - (1— 2)[——319,-1;,K 9
J

5.3 The Magnetic Correlation Tensor

As will be discussed in detail below, the magnetic correlation tensor plays a central
role in determining the transport properties of particles experiencing pitch-angle
scattering by turbulent magnetic field fluctuations. A very detailed discussion of
different forms of the magnetic correlation tensor has been presented by Shalchi
(2009).> The general form of the two-point, two-time magnetic correlation tensor
has the form

Rij(r,1,7,,10) = (8B;(r,1),8B; (X', 19)).

where r’ denotes a different spatial location and (-) an ensemble average. It is
convenient to consider the correlation tensor using a Fourier representation

3See also Tautz and Lerche (2011).
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216 5 Charged Particle Transport in a Collisionless Magnetized Plasma

§Bi(r,t) = / 8B;(k, t)e’*"d>k,
from which we find
Rij(r, 1,7, 10) = / d’k / A3k (8B;(k, 1)5B; (K, 19)) ' *rHK' T, (5.23)

As is typically assumed, we suppose that the magnetic turbulence is homogeneous,
so that the correlation function depends only on the separation |r — 1’| between two
points. Then we can express (§B; (k, 1), 8B; (K, 1)) as (§B; (k,1),5B; (K, 1)) §(k +
k'), which allows us to integrate (5.23) as

R = / d*k (8Bi (k, 1), 8B (—k, 10)) e’ ™).
From the definition of the Fourier transform, §B; (—k) = (SB/’f (k) where * denotes
the complex conjugate. This allows us to introduce the usual definition of the
correlation tensor,

Py (k. 1,10) = (8B; (k. 8B (k. 10))

and the correlation tensor Pj;(k,?,%) is expressed in wave number space. The
correlation tensor (5.23) then reduces to

Rij(r.1.x' 1) = / d*kPyj (k.. 19)e™ ).
On setting ) = 0 and r’ = 0, we have
Pij(k,t) = (6B;(k, t)SB}‘(k, 0)),
with
Rij(r,1) = / d3kPj(k, t)e’ ", (5.24)

Although we restrict ourselves to stationary turbulence, we note that the inclusion of
temporal effects in the correlation tensor is typically accomplished by assuming that
the correlation tensor has a separable form in the spatial and temporal components,

Pijk,t) = Pk 0)I"(k,1),

where I'(k,?) is a dynamical correlation function and P;;(k,0) = P;;(k) is the
magnetostatic correlation tensor.
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5.3 The Magnetic Correlation Tensor 217

For completeness, we first consider isotropic turbulence. The general form of an
isotropic rank-2 tensor is*

Pij(k) = A(k)8;; + B(k)kik; + C(k) Zsijkkk~
3

Recall that &;;; is the Levi-Civita or unit alternating tensor and has values &;;; = 0
ifany of i, j, and k are repeated, €;jx = 41 or —1 when i, j, and k are all different
and in cyclic or acyclic order respectively.

Since V- 6B = 0,

> ki8B; (k) =0,
which yields
> (ki8Bik;8BY) = kik; Py = 0.
i,j i,j

If we substitute the general form P;; of an isotropic rank-2 tensor, it therefore
follows immediately that for magnetic turbulence

0= A(k) > kik;8;j + B(k) > _kk; + C(k) > eijikik ki
i.j ij ij.k

= A(k)k* + B(k)k*,

and hence that

A(k)

Bk) = ——5-.

The general form of the magnetic isotropic tensor is therefore

kik;
Py = a0 (8, = S ) + €00 Ve
k

Since

P (k) = (SB,-SB;‘) = (8B6B;)* = (6B;6B)* = P]?ki(k),

4Batchelor (1953)
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218 5 Charged Particle Transport in a Collisionless Magnetized Plasma

we have

* * kkl *
P} = A*(k) (3,»,- - #) +C*(k) Y ejiki
k

Kk \
— A*() (&,- - k—;) —Ct )Y ek
k

kik;
= Pij(k) = A(k) (55_/ - k—zj) + C(k) Zsijkkk,
X

after using €;;x = —e&;jx. We therefore have A(k) = A*(k), i.e., A(k) is real, and
C(k) = —C*(k), implying that C (k) is imaginary. Quite generally, we can express

C(k) = iA(k)%,

to obtain
kik; . ki
Pi; (k) = A(k) [5,, - +iok) Xk:&jk7} , (5.25)

where A(k) and o(k) are real, and o(k) is known as the magnetic helicity.
Appropriate models for A(k) and o (k) must be given.

Let us reconsider now the correlation tensor in the presence of magnetic
turbulence that is axisymmetric with respect to a preferred direction; typically the
z-axis along which the uniform mean magnetic field is assumed to be oriented. In
this case, it can be shown (not done here, see Matthaeus and Smith (1981)) that the
isotropic form of the correlation tensor also holds for axisymmetric turbulence,

kik; . k
Pii(k) = A(ky. k1) [5,,- — k—; +io(ky, k1) Zs,-jkf} .
k

In most applications to cosmic ray or energetic particle transport, the magnetic
helicity term is neglected, as is the parallel component of the turbulent magnetic
field 8 B;. In this case, the correlation tensor reduces to
kik;
Pii(k) = A(ky, k1) [5,-_,- — k—;} , (5.26)
wherei, j = x,yand P;; =0 = P,;.
To complete the correlation tensor for use in a transport equation describing par-

ticle scattering in a turbulent magnetic field, we need to specify both the geometry
of the magnetic turbulence and the spectrum of the magnetic field fluctuations. This
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5.3 The Magnetic Correlation Tensor 219

will allow us to model the function A(ky, k). Three possible geometries, besides
the isotropic case discussed already, are possible in the interplanetary (and possibly
interstellar) environment. The first is the slab model, which is a one-dimensional
model in that the turbulent magnetic field depends only on the z-coordinate

SB[A'lab (I') — SBivlab(Z)’
allowing us to express the function

Aslab(k” kJ_) _ gslab(k )S(kl)

For the slab model, the wave vectors are parallel to the mean magnetic field, i.e.,
k || Bo.

Alternatively, we can consider a 2D or perpendicular turbulence model in which
the turbulent field is a function of the perpendicular coordinates (x, y) only, i.e.,

§B2P (r) = 8B (x. y).

so that
sk
AZD(k” kJ_) —gzD(k ) ( ”)

In this case, the wave vectors are orthogonal to the mean magnetic field, k L By,
and therefore lie in a 2D plane perpendicular to the mean field.

Finally, one can construct a two-component model that corresponds to a superpo-
sition of the slab and 2D models. This model is quasi-3D and

SBl-wmp(l') — SBIZD (X, y) + 5B;Iab(z).
Because we have
(8B} (8B (x.)) =
the correlation tensor has the form
P (k) = P (k) + P3P (K).

In addition to the underlying geometry of the assumed interplanetary or inter-
stellar turbulence, we need to specify the wave number dependence of A(k), kL),
i.e., the wave number spectrum. For the slab model, this requires that we prescribe
1% (k) and similarly g2? (k) for the 2D model. A typical spectrum observed in

the solar wind has three distinct regions: (i) an energy containing range at small
wave numbers (i.e., large scales), and is typically of the form k~!. The energy
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220 5 Charged Particle Transport in a Collisionless Magnetized Plasma

Fig. 5.2 Schematic of the A
wave number spectrum Spect‘r al
observed typically in the solar density
wind, illustrating the energy
containing range, the inertial

k—1

k-5/3

range, and the dissipation Energ.y. | L
range. The bendover scale containing ; Dissipation
£~ " and the dissipation scale range | Inertial range N\ "ange

kg are identified

E;le b2 p) = energy range of the spectrum, depending on whether the turbulence
is of the slab or 2D kind. (ii) At larger wave number scales, energy in turbulent
fluctuations is transferred locally from larger to smaller scales in a self-similar
manner. This part of the spectrum is called the inertial range and typically has the
form k~>/3, which is the Kolmogorov form of the spectrum.’ For the inertial range,
we introduce a dissipation wave number kg 45/2p and defined the spectrum by
g”“”/ZD(ES_,}lb/ZD < ksiab2p < kasiabj2p) = inertial range of the spectrum. (iii)
Finally, for large wave numbers or small scales, the turbulence loses energy through
dissipation, and so this part of the spectrum is called the dissipation range, and is
much steeper than the rest of the spectrum, typically k3. The dissipation range may
be defined as g”“”/ 2D (ka.s1ap 2D = ksiap s2p) = dissipation range of the spectrum
(see Fig. 5.2 for a schematic illustration and Fig. 5.3 for several examples observed
in the solar wind).

In most studies of energetic particle transport, the dissipation range plays very
little role and is therefore neglected typically. The energy and inertial ranges are
however critical in determining particle transport properties and a useful analytic
form of the wave number spectrum for magnetic (and other) fluctuations is

g k)~ (1+ k,-zﬁiz)_v, i = slab or 2D.

range is defined by a bendover or turnover scale such that g¥'**/2P (k. 2D =

This form of the spectrum contains both the energy range (modeled as a constant)
and an inertial range with slope k2" defined by a bendover scale ¢;.

An important quantity used to characterize turbulence and closely related to the
bendover scale is the correlation length, defined by the following integral,

Lo (8B2) = /Ooo Rj; (r,0)dr;.

The correlation length represents the characteristic length scale for the spatial
decorrelation of turbulence. Hence, £, ;; SBJZ is simply the area under the correlation
function R;;. Clearly, the correlation length depends intimately on the nature of the
turbulence and wave number spectrum through the correlation function.

5Kolmogorov (1941).
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Fig. 5.3 Example of spectra upstream and downstream of a perpendicular interplanetary shock
wave (Zank et al. 2006)

Consider now the correlation function for slab turbulence, assuming that
I'(r,t) = 1, i.e., magnetostatic turbulence. Turbulent magnetic fluctuations vary
only along the direction of the mean magnetic field z, so

R} = (8B;()6B}(0)).

assuming z(0) = 0 because of homogeneous turbulence. On using the form of the
axisymmetric magnetic correlation tensor, and the results from the geometric form
of A(k” s kJ_), we find
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8(k kik;
Py = & (5 - )
3k )

= ”"b(k|)—8,] ifi,j =x,y,

and P;; = 0 = P;. If we assume the general form of the turbulence spectrum
above, we can express g*/? as

(v)

&1 ky) = S o (8B2) (14 K32 ) (5.27)

where the normalization constant has to be determined. Thus, using cylindrical
coordinates k, = kj cos0, k, = k) sin, k, = k| to express the wave vector,
we find

(5B3up) = (5B2) + (8B2) = Rau(0) + Ry, (0) = / Bk [Poc(®) + Pyy ()]

—2/2”/ / ”“”(k) )kJ_dekJ_dk”

= 8x / g (k) d k.
0
On using (5.27), we find

C ') =4 “ree ) dk
v slab A [|*slab Il

o0
= 2/ 721 — 1)V,
0

after using the change of variables t = kﬁﬁ?l .- This integral is the beta function

(related to the gamma function I"(x)) defined by B(x, y) = fooo V(10 tdt,

x>0,y >0,and B(x,y) = I'(x)I"(y)/I"(x+y). Thus, setting x = %,y = v—%

yields
1 r'(v)

CO) = mTw-1/2)

since I'(1/2) = /7.

The slab correlation function can now be calculated using (5.24)
R (2) = (8B, (2)5B*(0)) = / A3k P cos(ky2)
oo
= 471/ g1 (ky) cos(kyz)d k|
0

=2C(v) (8B}, / (1 + x?)™" cos(ax)dx,
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where x = k{54 and a = z/{45. The last integral is of a standard tabulated form

00 1/2—v
/0 (1 + x?) 7" cos(ax)dx = I:/(f) (2) K,—1/2(a),

where Kg(z) is the modified Bessel function of imaginary argument. The perpen-
dicular correlation function R} = R, + R, can therefore be expressed as

1/2—v
Rslub — 2((SBszlab> 2651(1’7 / K “12
L rov-1/2)\ : '

) . (5.28)

gslab

Shalchi provides two useful asymptotic forms® for the slab correlation function in
the limits z < €45 and z > L4, respectively

1 250\ "
KV—1/2(Z < Eslab) ~ EF(U — 1/2) ( ;lab) ’

= R(z < Lyw) = (B2,,) ifv>1/2;

7l B
K120z > Lyap) ~ ,/%e o/stap

20 1—v
= R < lawp) = % (533,4,,)( ;fab) o=/ btab

The bendover scale £y, is the characteristic length scale for the spatial decorre-
lation of the turbulence for the exponentially decaying correlation function in the
limit z > £g4p.

The slab correlation length can also be computed, and this illustrates the
relationship between £, ;.5 and the bendover scale length £y;,;. Recall from the
definition of £. g4p

00
ec,slab (8352],117) = /(; Rﬁab(z)dz
[ele) 00 )
= 27‘[/ dk||gSlab(k||)/ dZelk”Z
—00 —00

= (27)? /_ dkyg*' (k)8 (ky)

= (27)*g"“"(0) = 2 C(V)ly1ap (B2 1) -

6Useful limits of these and many other related functions are tabulated in Abramowitz and Stegun
(1974). For this case, A. Shalchi used the formulae (9.6.9) and (9.7.2).
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since [ dze'*1* = 27§(ky). Thus the slab correlation length and the bendover scale
are related via

Ec,slab = Z”C(V)Eslabv

which if we assume a Kolmogorov power law for the inertial range, v = 5/6, we
have C(5/6) = 0.1188 and hence £ 555 = 0.75€514p-

The 2D magnetostatic correlation function is a little more laborious to compute.
Since §B;(r) = 6B;(x, y), the 2D correlation tensor is given by

RP (x.y) = (8B;(x.y)8B;(0,0)),

or
Rec(x,y) = /d-’?kpxx(k)eikr _ /d:’»kPxx(k)eikxx-&-ikyy’
and we have
PP = U0 Y (5~ 55 ifi =y,

or =0 ifiorj =z

For the wave spectrum, we assume the same normalized form as for the slab case
except that we introduce the 2D counterparts £, and (§B3,),

-V

gl (k1) =

) o (5B30) (1 + KL35)

On introducing cylindrical coordinates for the wave vector and position

ky =kicos¥, ky,=kisiny;

x=rcos®, y=rsind,

we find
2D o 2D S(kll) ki k-
Ry (x.y) = / / / (k1)—— os* W | e/5Tk  dWdk  dk

00 2
= / ko_gzD(kJ_)/ 4 sinzlllexp [ikyr(cos @ cos ¥+ sin @ sin ¥)]
0 0

00 2
= / ko_gzD(kJ_)/ dW sin® Wexp[ik | r cos(® — ¥)].
0 0
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5.3 The Magnetic Correlation Tensor 225

A standard simplification of these integrals makes use of a series expansion in terms
of Bessel functions,

00
txsma_ Z Jn(x)elna eixcosoz: Z Jn(x)ein(()l—|—:r/2)7

n=—0oo n=—0o0

which allows us to obtain

2
R (x,y) = / dkyg®P (k1) Z Jn (kJ_r) AW sin® We " oin(@+7/2)

n=—oo

The corresponding expression for R, is given by

RZD(x y) = / dkg*P (k1) Z Jn (klr)/ dW cos® We ¥ i n(@F7/2)

n=—0o0

meaning that

R (x.y) = / dk1g®” (k1) Z Ju(kLr) / dWwe=in¥ pin(@+m/2)

n=—0oo

Since

2 )

/ dwer ™ =278,
0
the 2D perpendicular correlation function reduces to
o0
R () =2 [ dkoig?® (es) ok,
0
which can be further expressed as (using as before x =k ¢,p anda = r/{,p)
o0
RP(r) = 4C(v) (8B3)) / (1 + x>V Jy(ax)dx. (5.29)
0

As before, it is instructive to consider the limits @ = 0 and a — oo. The former
limit yields (Jo(0) = 1)

/ oo(1 +x%)Vdx = (4C(v))~' = R (r = 0) = (§B3,).
0
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226 5 Charged Particle Transport in a Collisionless Magnetized Plasma

The latter limit yields (f;~ Jo(y)dy = 1)

o0 (] 2\ 7V
[Taser @i = ¢ [T (142) ao
0 0 a

a

[

1 o0 1
—/.mw@=—;
a Jo

a

¢
= R’ (r > lp) = 4C(v) (8B3)) %

Note that the spatial decorrelation length for the turbulence is determined by the 2D
bendover scale £,p. Notice too that although the same forms of the wave number
spectrum were used for both the slab and 2D cases, the correlation functions are
nonetheless different, with the 2D correlation function decaying more slowly with
increasing distance compared to the slab case (which falls off exponentially).

As before, we can relate the 2D correlation length £, ,p to the bendover scale
£,p. In this case, we need to introduce a minimum wave number, X,,;, = €2p/Lop,
to avoid a divergent integral,

1 o0
torp = —— [ Ri(d
2D (5322D)/0 1(r)dr

oo

= 4C(v) dx(1 4 x?)™" /OO drJy (Zx_r)

Xmin 0 2D

= 4C(v)tap /"" d_x(l +x%)7

Xmin

1 d 00
~ 4C(v)lap (/ TX +/ xz"ldx)
Xmin 1

1 L
~ 4C(v)lap (— +1n ﬂ) .
2v

The wave spectrum used here is normalized correctly only if L,p > £;,p, and in
the limit of an infinitely large box, L,p — o0, the correlation length is infinite.

5.4 Quasi-linear Transport Theory of Charged Particle
Transport: Derivation of the Scattering Tensor

We have so far prescribed a very simple diffusion in pitch-angle expression to
describe the scattering of particles by in situ magnetic fluctuations. In this and the
next section, we derive expressions that describe the scattering of energetic particles
in low-frequency magnetic turbulence.
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5.4 Quasi-linear Transport Theory of Charged Particle Transport... 227

Since we consider particles that can have high energies, we begin with the
momentum form of the Vlasov or collisionless Boltzmann equation

af pxBY df

_+£.vf+q(E+_) =0, (5.30)
m m ap

ot

for particles of mass m and charge g. Following le Roux et al. (2004)” we use a
quasi-linear approach to derive a Fokker-Planck kinetic transport equation for the
diffusion of charged particles experiencing scattering in pitch-angle and momentum
space due to the presence of Alfvénic/slab and quasi-2D turbulence in the solar
wind. Quasi-linear theory proceeds essentially by assuming that charged particle
gyro-orbits are only weakly perturbed by electromagnetic fluctuations. Typically,
there are three ways to proceed. One can proceed from the formalism discussed
in the derivation of the Fokker-Planck equation from the Chapman-Kolmogorov
equation, assuming a Markovian process, and evaluate the diffusion coefficients
directly. A second approach, which we follow here, is to directly expand Eq. (5.30)
to determine the diffusion coefficients. A third approach is to work directly from
the Newton-Lorentz equations for particle motion in a fluctuating electromagnetic
field and directly compute momentum and spatial diffusion coefficients from the
Taylor-Green-Kubo (TGK) forms,®

D) = /0 di (i)

D) = /0 4t (v (), (1)),

where p is the cosine of the particle pitch angle and v is the particle velocity.

Several assumptions are made explicitly to ensure the validity of the quasi-
linear approximation. The first is that the electromagnetic fluctuations are of small
amplitude. This ensures that particles follow approximately undisturbed helical
orbits on a particle correlation time 7”7, which is the characteristic time for a
particle to gyrate on an undisturbed trajectory before being disturbed by incoherent
or random fluctuations. This obviously means that the particle correlation time is
much less than the characteristic time scale for particle pitch-angle scattering 7,
ie., © < 7. The time scale over which particle orbits are significantly distorted
by pitch-angle scattering is therefore much longer than the particle correlation time
scale on which a coherent helical orbit is maintained.

In Eq.(5.30), we may expand the electromagnetic fields, E and B, the flow
velocity u, and the distribution f into mean and fluctuating parts using a mean field
decomposition, i.e., a field or scalar Q is may be decomposed as Q@ = Q¢ + 6Q

7See also le Roux and Webb (2007).
8See Shalchi (2009) for a general discussion of this approach.
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228 5 Charged Particle Transport in a Collisionless Magnetized Plasma

such that the ensemble average (Q) = Qg and (§Q) = 0. It does not necessarily
follow that §Q < Q, although in quasi-linear theory, this assumption is made to
eliminate second-order and higher correlations. Hence,

E = E, + JE,
B =B, + 4B,

SE) = 0;
SB) = 0;
u=uy+déu, (fu)=0;
f=rfo+df. (8f)=0.

The fields are assumed to vary smoothly on the large scale L, and randomly varying
fluctuations occur on the smaller correlation length scale £, <« L. The power
spectrum of fluctuations ranges from scales on the order of the correlation length to
smaller than the particle gyroradius r,. In the analysis here, we assume an infinitely
extended wave number power spectrum for simplicity, rather than include the details
of the dissipation range part of the spectrum. The total electric field, in the MHD
approximation, is

—_

E=—-uxB,

where u and B are measured in the observer’s frame. Applying the small amplitude
assumption to the mean field decomposition of the electric field E yields

Ey = —uyxBy, and J6E = —uy x 5B — du x By,

after neglecting quadratically small terms (Su < uy, and 6B < By). We will neglect
the induced turbulent electric field SE (although see le Roux et al. for the case where
this term is retained). We will make the assumption that the particle distribution is
co-moving with the background plasma frame, so that the mean motional electric
field term is zero, Eq = 0.

The mean field decomposition above is substituted into the collisionless Boltz-
mann equation (5.30). The ensemble averaged form of this equation is then
subtracted from the full, unaveraged transport equation (5.30), yielding a transport
equation for the rapidly fluctuating variable §f. This equation contains the differ-
ences of second-order terms and their corresponding ensemble averages. Since we
assume from the outset that §f < fp, 6B < By, the quadratic terms are small and
can be neglected (Exercise). The linearized equation for the correction §f is

ad ) )
Dsr+ R ovsr ). 0L = X

.1

where 2 = ¢By/m is the particle gyrofrequency. The corresponding mean-field
equation for the distribution function fj is given by

0 a
ﬁ+2.vf0+(pxg)._0=_q<
m p

(5.32)

p x38B d5f
ot '

m ap
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5.4 Quasi-linear Transport Theory of Charged Particle Transport... 229

where the right-hand nonlinear term describes the perturbing effect of the fluctuating
magnetic field on the scattered particle distribution. As we illustrate below, this term
introduces a diffusion coefficient in pitch-angle space. The closure of (5.32) can be
affected by solving the quasi-linear equation (5.31) for §f, and then evaluating the
ensemble-averaged term in (5.32).

Consider a homogeneous, infinitely extended plasma system with Cartesian
coordinates (x, y, z) with the z-axis aligned with the mean magnetic field By = Byz.
Since the turbulence is comprised of slab turbulence with wave vectors along
the mean magnetic field and 2D turbulence with fluctuations and wave vectors
transverse to By, we have

§B(x.y.2) = 8By (x,y)X + 8By (x. y)y + 8B+ ()X + 8B, (2)¥.

where the 2D component §By/, (x, y) describes the magnetic field fluctuations that
convect with the background flow. The second set of terms 6B/, (z) comprises the
slab or Alfvénic component. For notational convenience, we express magnetic field
variations as 6B/, and this includes both the slab and 2D components.

The Cartesian form of the momentum coordinates p = (px, p,, p;) in the
mean-field aligned co-moving coordinate system (p, is along the mean-field
direction) can be expressed in terms of spherical coordinates, so that p =
p(sin 6 cos ¢, sin 0 sin ¢, cos 0), where p is the particle momentum magnitude, 6
the particle pitch-angle, and ¢ the particle phase angle. Consider the right-hand side
of (5.31),

(px0B) -V, fo = p(8B;sinfsing — 8B, cos 8, 6B, cos — 3B, sin6 cos ¢,
8B, sinfl cos¢p — 8B, sinfsing) -V, fy

0 a
= @B 4 (px 5B), 0 4 (px5). L
0px Py ap.
On using the results,
a 0 10 i 0
P = sm@cos¢—p + cos@cosq&—@ — ;:;:SQ %;
ad d 1 d cos¢ 0
— =sinf 0 —= — 5.33
o = sin s1n¢ o + cos O sin¢ 290 T peind 9 (5.33)
a 0 10
— =cosf— —sinf——,
o = cos o sin FET)

we find that

4 |£2] . af;
- (P x 6B - foo) =—7F (SB,C sing — 8B, cos¢>) 8_90’
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230 5 Charged Particle Transport in a Collisionless Magnetized Plasma

and the coefficient of dfy/dp is identically zero. In deriving this result, we have
invoked the further assumption that the ensemble averaged distribution function
is gyrotropic i.e., is independent of the particle phase angle ¢. Thus, effects such
as diffusion perpendicular to the mean magnetic field and gradient and curvature
drifts are neglected in this description of particle transport. This is equivalent
to assuming that the particle gyroradius r, < £, the correlation length of
the turbulent fluctuations. Equivalently, this requires that the particle gyroperiod
T, =071«

The evolution equation for §f is a first-order quasi-linear equation and therefore
can be solved using the method of characteristics. Accordingly, we have the
following set of seven ordinary differential equations to solve,

d

E(Sf = (SB sing — B, cos¢ (5.34)
dr p

— == 5.35
dt m ( )
dp

— = 2. 5.36
7 p X (5.36)

For particles located initially at ry = r(fy) = (X9, Yo, 20) With momentum p, and
phase angle ¢y, we can solve the above odes to obtain

P(t') = do—R2(t' —10);  x(t') = xo —r¢ (sinp(t') —singhy) ;
y(") = yo +re (cos@(t’) —cosgo):  z(t") = zo + veos O(t" — 1);

8f(r.p.t) = /l (—% (8By sing’ — 8By cos ') = Ay ) dt’ + 8f (ro, pos 1),

(5.37)

where r, = vsin 0/£2 is the particle gyroradius, and ¢’ = ¢ (¢'), B; (r(¢'),¢’), and
fo = fo(r(t)),p(t'),t"). The particles evidently follow undisturbed helical orbits
along By since p and 6 are unchanged during the interaction period, this being
less than the characteristic time scale for particles to interact with small-amplitude
turbulence, viz. 7. Consequently, 77 must be restricted so that ¢’ — #, remains
sufficiently small that §f < fo.

The above expressions can be rewritten in terms of the time difference Ar =
t —t’, where ¢ denotes the observation time and ¢’ is the time during which the
particle executes a helical trajectory. Hence, At € [t — fy, 0] so this substitution
implies that we follow the particle trajectory backward in time. Rewriting the
solution for §f yields

8f(r.p,t) = At_to (—— (8By sing — 8B, cos ) fo) d(At) + §f(ro, pos to),
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where ¢ = ¢ (t — At), 8B; (r(t — At), t — At), and fo = fo(r(t — At), p(t — At),t —
At). The expressions for the undisturbed particle orbits are now independent of the
initial values, and are given by

P(t—At) =p(1)+2(At); x(E—At)=x(t)—rg (sing(t—At)—sing(t));
y(t — At) = y(t) + ry (cosp(r — At) —cos¢(t)); z(t — Ar)
= z(t) + —vcos 0(At).

Note that £ — tp > 1 and thus |r — ro| > £.. If A denotes the parallel mean free
path for the spatial diffusion of particles, then the assumption of small amplitude
turbulence implies that £, < A. The overall ordering of scales is therefore r, <
le <A K L.

Having obtained the solution §f, we can evaluate the ensemble-averaged colli-
sion term on the right-hand-side of (5.32). Introducing

¥ = —cos¢péB), +sin¢dB,; ¥, = sin¢dB, + cos pBy,

we have

i<px8B-i8f> |Q|<( cos $3B, + sin @3B.) 5 f>
m ap

|ﬁ|<C°S (5in $3B, + cos @3B 5 f>
= 20 s 4 210 83¢ (87 )
)
= (g v+ 220 )
g oy 1)
:@Le%( né (5f)) + 'i'cosgai(f%)

after using 0¥, /d¢ = —W,. Since fy is independent of gyrophase, we neglect the
last term. Thus, in spherical coordinates, we have the relation

<px8B 88f>
p

m
1 0
sinf 96

(@ sin ((8Bx(r,t) sing(t) — 6B, (r,1) cos¢(t)) Sf))
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On substituting for §f and using the relations,

cos(t) = cos (¢p(t — At) — 2(At))

= cos p(t — At) cos(2At) + sin¢gp(t — At) sin(2At);
sing(t) = sin (¢ (t — At) — 2(At))

= sin¢g(t — At) cos(§2At) — cos p(t — At) sin(§2At).

we obtain a diffusion equation in particle pitch angle,
B 96 1 0 0
_q<PX ._f>: , _(D%ﬁ), (5.38)

where the diffusion coefficient Dyy is given by

2\2 00
Dyo(r,1) = (7) sin@/ (Ryyc2 — (Rey — Ryx)es + R”sz)
B 0
X cos(§2At)d(At)

2\* . o0 ) 2 .
+ B sin 6 (Ryycs—l—nyc —Ryys —Rxxcs) sin(2Ar)d (At).
0 0

Here, ¢ = cos¢(t — At) = cos(¢p(t) + 2At) and s = sing(t — At) =
sin (¢(t) + 2At), and R;; is the two-point, two-time correlation function for the
magnetic fluctuations along the unperturbed particle orbit, i.e.,

Rij (Ar(At), At) = (8B;: (0)6B; (Ar(At), At)).
We then have
Rij (r,x(t — At),1,1 — At) = (8B;(r,1),8B; (x(t — At),t — At)),

where the components of r(t — At) are determined above.

Observe that in deriving the diffusion form of the particle transport equation,
we moved the pitch-angle derivative of the distribution function f from under the
integral in the expression for §f. There is an important implication embedded in
the time scales associated with the ordering of particle scattering and diffusion,
7 < 7,,. This ordering implies that R;; — 0 on a much shorter time scale than
the time scale on which the particle orbit deviates from an undisturbed trajectory,
implying that the integrand contributes only over the time 7/ rather than 7, to the
time integration. Since the gyrotropic-independent distribution function f; varies on
a time scale comparable to the pitch-angle diffusion time 7,,, derivatives of f; can be
taken out from under the integral. The second implication is that we can then extend
the integral describing pitch-angle diffusion to co (f) — —oo in the expression

for 61).
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The turbulence responsible for scattering the particles has been assumed to be
axisymmetric about the mean magnetic field By = ByZ. The axisymmetry condition
for the correlation matrix R(dr) under an arbitrary rotation ¢’ about By = ByZ is
expressed by

R(Sr) = OR(O7 6r)07,

where both the left- and right-hand sides are independent of ¢’, and O is the rotation
matrix

cos¢’ sing’ 0
O = —sing’ cos¢’ 0 |,
0 0 1

and O7 is the transpose. Hence, the elements of the left and right matrices

Rxx ny sz
R@r) = | Ry, R,, R,, | =OR(O”ér)0”
sz Rz_v Rzz

Rix®+Ryysc+Rycsc+Ryys? —RisScHRy?—Rycs?>+Ryys¢ Rec+Rys
= —Rxxsc—nysz+Ryxcz+Ryysc Rxxsz—nysc+Ryxsc—i-Ryyc2 —Rs+R,.c
R c+R;s —R.s+R;c R,

(5.39)

are independent of ¢’. Inspection of the axisymmetric matrix conditions show that
the integrands of the diffusion coefficient Dyy are therefore independent of ¢’.
Consequently, using ¢’ = ¢(t — At), we have

8x = x(t — At) — x(2)
=rg[sing(t) —sing(t — At)]
= rg [sing(t — At)(cos(2At) — 1) — cos p(t — At) sin(§2At)]
= —rgsin(2At),
etc. if we set ¢ (t — At) = 0. This therefore yields
or = [—rg sin(§2At), rg(1 — cos(§2At)), —v cos Q(At)] ,
from which we find
(076r) = —ry[cos(t — At) sin QA1 + sing(t — Ar)(1 — cos QA)];
T
(0 Sr)y

rg[—sing(t — At)sin 2At + cos p(t — At)(1 —cos 2A1)];

(OTSr)y = —vycos 0At,
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which corresponds to the unperturbed helical trajectories derived by substituting the
trigonometric expansions for cos ¢ (¢) etc. as done above. Thus, for axisymmetric
turbulence, the R;; terms in the pitch-angle diffusion coefficient are independent of
¢(t — At), so we may without loss of generality set ¢ (¢ — At) = 7/2, significantly
simplifying the expression for the diffusion coefficient,

2 poo
Dy = sin 6 (Bﬁ) / (cos(RA1)R . — sin(RANR, | d(Ar).  (5.40)
0 0

The integral (5.40), divided by B2, is essentially the particle decorrelation time. In
addition, setting ¢ (t — At) = 7/2 allows the arguments of the two-point, two-time
correlation functions to be expressed as

x(t = At) = x(t) + rglcos(2A1) — 1], y(t — At) = y(t) — ry sin(2At1);
z2(t — At) = z(t) — vcos(0Ar).

By introducing a mean magnetic field By = ByZ into Eq. (5.32), and using ;t =
cos 6, the cosine of the particle pitch-angle, we obtain the simplest 1D form of the
collisionless transport equation as

/o o 0 /o
Sy w2 (p, 7). 5.41
at M dz  du ( . B,u) 4D

where the Fokker-Planck diffusion coefficient in pitch-angle space is given by

2 poo
Dy = (1—p?) (3%) /O (cos(2At) R — sin(RA1)Ry,) d(At).  (5.42)

For slab turbulence, the pitch-angle scattering diffusion coefficient can be further
simplified since R, = 0, yielding the standard expression

2 poo
Dy = (1—p?) (%) /0 R} cos(RAr)d(Ar). (5.43)

Using the results of the previous section, we may evaluate D, for slab turbulence.
Recall that

Ry = f kP (K)e'™™

2 po0 P00 Sk )
= / / / g”ab(k”)%e’“hd@dkldk”
0 0 —00 1

— 47T/ gslab(k”)eik”zdk”
0

oo .
— A7 / gslab(k”)etk”/wdk”’
0
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where we used z = —vcos 0¢. On replacing At by ¢ in (5.43), we have

2 2 2 *® *© slab —i(kypuv—2)t
D[L/L =4n(l —pn) E /(; /0 g (k||)€ I dk”dl‘

B

2\ . 2
— 47_[2(1 _ ,LLZ) (E) gslab (k” — _) .
Iy

Thus, for slab turbulence, energetic charged particles diffuse in pitch angle due to
their scattering with waves that satisfy the resonance condition uvk) = £2.

2\ [
=47 (1 — ) (—)/O g1 (kS (kv — 2)dk;

Exercises

1. Rewrite the Vlasov equation (5.30) using a mean field expansion for the
electromagnetic variables, assuming that the particle distribution function is
co-moving with the plasma (thus ensuring that E) = 0), and neglecting the
fluctuating electric field term. Hence derive (5.31) and (5.32).

2. Derive the relations (5.33) and hence show that
2
B

—% (px38B-V, fy) = (8B sing — 8By cos ) %.

5.5 Diffusion Perpendicular to the Mean Magnetic Field:
The Nonlinear Guiding Center Theory

To determine the transport of energetic particles perpendicular to a mean magnetic
field is not possible within a gyrophase averaged formulation of the Fokker-Planck
equation. Instead, we can compute directly the perpendicular spatial diffusion
coefficient x| from the Fokker-Planck coefficients. Recall that the mean square
displacement is given by

((Ax)%) = ((x (1) = x(0))%),

for an averaging operator {...). Several forms of diffusion can be described if we
suppose that the following temporal scaling holds for the spatial variance

((Ax)z) ~1°.

The following regimes are typically identified:

1. 0 < 0 < 1: subdiffusion;
2. 0 = 1: regular Markovian diffusion;
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3. 1 < o < 2: superdiffusion, and
4. o0 = 2: free streaming or ballistic particle motion.

There have been suggestions that energetic particles can be subdiffusive, and at
early times in an impulsive solar energetic particle event, particles are typically
free streaming. Over long time scales, however, particle motion is more typically
diffusive.

The diffusion coefficient is defined as

2
Kex = lim ((Ax) )

t—00 2t

)

where we assume that x is normal to the mean magnetic field. To estimate the spatial
variance, we appeal to the Taylor-Green-Kubo (TGK) formalism. In general, the
variance is given by

((Ax)*) (1) = <(/0t vx(t)d‘l:)2>
-/ ' | e (o ©)
/ dr / dE(r(Dve(6)) / dr f dE (e (D (6)).

On assuming temporal homogeneity, i.e., that the velocity correlation depends only
on the time difference, then we choose

(e (@ (§)) = (va(T = §)vx(0))

for the first integral, and

(e (@vx(§)) = (e (§ — D)vx(0))

for the second, to obtain

(Ax)) (1) = /0 d [0 CdE((r - B (0) + /0 d / dE(ve(E — T, (0))

= /Otdrfordé(vx(é)vx(O)) +[0tdr/01_rd5(vx($)vx(0)),

after using the transformations t — & — £ and £ — 7 — £ in the respective integrals.
These integrals can be simplified using partial integration and applying Leibnitz’
rule to obtain
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(Ax2) (1) = © / CdE EmO)| / Aot (s (D) (0))
0 0 0

e / dElvEv0) + / et (v — e (0))

r [0 e, ©va(0)) — /0 e (2 (0)

+ fot dtt(vi(t — T)v(0))

/I dt(t — 1) {(ve(7)v,(0)) + /t dtt{vi(t — 7)v,(0))
0 0

=2 /0 dt(t = 1) (s () (0)).

The running diffusion coefficient d, (¢) is defined as

1d
dxx(t) = EE ((Ax)z) (2)

1d !
= 2 - X (0
fo (t = ) s (D)2 (0))

2dt
= /: dt (v, (t)vc(0)).

The limit d,, (t — oo) defines diffusive particle transport, therefore

or = /0 " 4t (@m 0)),

which is the Kubo formula for the diffusion coefficient.

A detailed discussion of guiding center motion of energetic charged particles
can be found in many plasma text books and so is not repeated here. Instead, if we
assume that background magnetic field is varying slowly, that for any of the slab,
2D, or composite turbulence models discussed above, the guiding center velocity
(assuming B = Byz + 6B) is given by

3B ,
va(t) ~ VZ(Z)?;; V8~ v (1) =2,

Note that the assumption of slab, 2D, or composite turbulence models implies that
8B, = 0. Particle motion is thus a superposition of the particle gyromotion and
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the stochastic motion of the particle’s guiding center, which follows the random
motion of magnetic field lines. The gyromotion can be neglected when computing
a diffusion coefficient.

The first systematic derivation of the perpendicular diffusion coefficient was
proposed by Matthaeus et al. (2003) and is called the nonlinear guiding center
(NLGC) theory. Improvements and extensions to the original model have been
made’ but the original development is very instructive in its simplicity. To ensure
agreement with numerical simulations of particles experiencing scattering in low
frequency turbulence, we introduce a parameter a (typically taken to be 1/3) that
allows for slight deviations from purely guiding center motion, and take

OB,
By’

V& =av,

This is reasonable since the magnetic field can occasionally experience variation
on scales that are not necessarily slowly varying. The TGK expression for the
perpendicular diffusion coefficient is

= 8 g
e = [ drvionio)
az 0 i}
= B_(%/O dt (v;(t)3Bx(1)v;(0)8B;(0)) .

The fourth-order correlation introduces a closure problem. This is frequently
resolved by the assumption that the fourth-order correlation can be replaced by
the product of second-order correlations (motivated by the example of Gaussian
statistics), which yields

2 o)

= 5 [ dt{=(0v0) (3B()SBY(0)).
o J0

KXX

Since the particle velocity along the field is mediated by pitch-angle scattering, we
may suppose that particle distribution becomes approximately isotropic on diffusion
time scales and that there is a decorrelation time scale associated with the parallel
velocity. The decorrelation time will be related to the parallel mean free path, so
we can use an exponential model to describe the two-point velocity correlation
function,

V2
(v:(0)v:(0)) = ge‘”””.

9Well summarized by Shalchi (2009)

veronica.belser@uah.edu



5.5 Diffusion Perpendicular to the Mean Magnetic Field... 239

The magnetic correlation function Ry, (t) = (6B, (t)6B} (0)) can be expressed as a
Fourier transform

SB((x,1) = / d*k6B,(k,t)e’*™ = R, (t) = f d*k (8B (1)8B} (0)e'™™4¥),

under the assumption of homogeneous turbulence.

At this point, it is still unclear how to further decompose the ensemble averaged
integrand in the magnetic correlation function. Corrsin (1959) suggested that at
long diffusion times, the probability distribution of particle displacements and the
probability distribution of the Eulerian velocity field would become statistically
independent of each other — this is Corrsin’s independence hypothesis. At large
values of the diffusion time, the independence hypothesis asserts that the joint
average in Ry, can be expressed as the product of two separate averages, i.e.,

(SBX(I)SB:(O)eik'AX> — (5BX(I)SB;:(O)) (eik-Ax)'

Applying Corrsin’s independence hypothesis then yields
Ri(t) = / d*k Py, (k1) (e™4%),

requiring only that we estimate the characteristic function (e . The simplest
approximation is to assume a Gaussian distribution of the particles, so that

ik~Ax)

(e™2%) = exp [ ((Ax)*)k; — %((Ay)z)ki - %((Az)z)kf} .

1
2
Since we are considering time scales that correspond to large values of the diffusion

time, we can approximate the parallel and perpendicular transport as diffusion, so
that ((Ax)z) = 2tk for example, yielding

(e™4%) = exp [—Kxxkil - Kyyk;l - Kzzkzzt] .

Subject to these six assumptions, we obtain a nonlinear integral equation for the
perpendicular diffusion coefficient

2 oo
Ky = % / d3k/ dtP.,(k, 1) exp [—vt//\” - Kxxkil‘ — Kyykit — Kzzkzzt] .
0 0

On expressing the correlation tensor P, (K, t) as the product of a stationary tensor
P, (k) and a dynamical correlation tensor I"(k, t), i.e., Py (k,t) = I'(k,t) P, (k),
and assuming the exponential form,

Ik, t) =e 70"
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240 5 Charged Particle Transport in a Collisionless Magnetized Plasma

allows the time integral to be solved

= [d3k Prx (5.44)
w 3B} VA + keck? + lcyyk; + k.k2 + y(k) '

The nonlinear integral equation (5.44) is the central result of the NLGC theory,
describing the diffusion of energetic particles perpendicular to the mean magnetic
field where 6B, = 0. The particle transport results from a combination of pitch-
angle scattering along the magnetic field while the underlying magnetic field is
experiencing random diffusive motion. The superposition of parallel transport and
random magnetic field transport of the particle guiding center leads to a nonlinear
diffusion of particle normal to the large-scale magnetic field. As indicated, more
sophisticated treatments of the NLGC theory have been developed since. The
nonlinear integral equation (5.44) can be solved approximately and analytically for
the slab, 2D, and composite turbulence models in the magnetostatic limit.'"

5.6 Hydrodynamic Description of Energetic Particles

In deriving the cosmic ray transport equation, we have assumed that the underlying
energetic particle distribution function is isotropic to zeroth order. We further
assumed that the energetic particle number density and momentum is sufficiently
small that the background flow in which the “scattering centers” (Alfvén waves or
MHD turbulence) are convected is not altered by the energetic particle population,
nor is the convection electric field. Energetic particles therefore behave essentially
as massless particles that may possess a significant internal energy, which will be
expressed through an isotropic or scalar pressure, say P., and energy density E.,
and an energy flux F...!! In this case, the general system of MHD equations will be
modified by the inclusion of the cosmic rays, through

9

B—’Z £V () = 0; (5.45)
G

oW

ST Vs=0. (5.47)

10Zank et al. (2004) and Shalchi et al. (2004).
11 Webb (1983) and Zank (1988).
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250 5 Charged Particle Transport in a Collisionless Magnetized Plasma
5.7 Application 1: Diffusive Shock Acceleration

It is quite straightforward to see that a particle gains energy by interacting once with
a shock, most easily seen for a superluminal shock perpendicular to the magnetic
field. In this case, we can suppose that a particle conserves its first adiabatic moment,

2 2
Pl _ P,
B, B,

where the subscripts 1,2 denote upstream and downstream of the shock. At a
perpendicular shock, the jump in magnetic field B,/B; is equal to the shock
compression ratio, showing that the perpendicular momentum of an energetic
particle can be increased by a factor of 2 or less. This is not a particularly large
energy gain, and the effect is of course annulled by the expansion of the downstream
medium to the original density. Since the process is purely kinematic and reversible,
the energetic particle spectrum is essentially the preacceleration spectrum shifted
in energy. The situation is quite different when diffusive effects are included
since the number of times that a particle interacts with a shock then becomes a
random variable and some particles, by interacting many times with the shock,
achieve very high energies. The stochastic character of particles interacting with the
shock diffusively corresponds to an increase in entropy for the energetic particle
distribution (as it does for the thermal background plasma), with the result that
the accelerated particle spectrum is relatively independent of the details of the
preacceleration spectrum. We discuss the macroscopic approach to the diffusive
acceleration of energetic particles at a shock based on the transport equation that
we have derived above. This approach was pioneered by Krymsky (1977), Axford
et al. (1977), and Blandford and Ostriker (1978), and is well reviewed by Drury
(1983) and Forman and Webb (1985).

The shock is taken to be an infinite plane separating a uniform upstream and
downstream state, and we choose a frame in which the shock front is stationary.
We shall suppose that all quantities depend only on the x spatial coordinate (a 1D
problem) and that the flow velocity is steady, given by

o x<0
M(X)_ 75 )C>07

where u; and u, are the upstream and downstream constant velocities. To determine
the boundary conditions that the energetic particle distribution must satisfy at the
shock, we require first that the particle number density must be conserved across
the shock i.e., particles are neither created nor lost at the shock, so that

[f1= flof =o. (5.55)
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5.7 Application 1: Diffusive Shock Acceleration 251

where x = 0— and x = 04 denote locations infinitesimally close to the shock on
the upstream and downstream side respectively. The second condition (the transport
equation governing particle transport is second-order) that we require is that the
normal component of the particle current is continuous if there is no source at the
surface, and changes by an amount equal to the particle injection rate at the surface.
To determine the current, observe that the transport equation

af Py O _
E_Fu-Vf—EV'u%—v'(K'Vf)v

can be expressed as

f paf 14 f
Lavi|w.vr_ £ PuvZ fu.vr=0
T [ S =390 T3 Ve, TV
f 1L ofp
—+V-S+——|=u-Vf|=0, 5.56
= o TV St g 5V (5.56)
where
a
S vy PV,
3dp
is the energetic particle streaming in space and J, = (p/3)u - Vf is the

streaming in momentum space. Equation (5.56) expresses the transport equation
in fully conservative form in phase space, averaged over ¢ and with the distribution
function close to isotropy. Because cosmic rays are highly mobile (v >> u), the
omnidirectional density f cannot change abruptly, hence the normal component of
the net streaming S must be the same on both sides of any surface of discontinuity.
On assuming a steady state and integrating across a sharp discontinuity, we obtain
the second boundary condition that energetic particles must satisfy across a shock,

T _ow

. (5.57)
0— 47 p?

_satr=2® [, raf ..
[S]=S no_—4”p2 & |:K Vf+38puj| n

Here, n is the shock normal, and Q(p) is the particle injection rate at the shock.
This form of the boundary conditions includes the effects of shock drift acceleration.
Note that the transport equation and the derived boundary conditions are appropriate
to relativistic particles i.e., only in the limit that the velocity W (where W is the
speed of the scattering frame or the observer’s frame relative to the frame in which
the electric field vanishes) is much less than the particle velocity v (W < v), as
well as particle drift (through the antisymmetric part of the spatial diffusion tensor
k). That the boundary conditions apply in the limit that W/v < 1 implies that the
boundary conditions (5.55) and (5.57) are valid only for particles of speed v >
uy sec 0g,, where 6p, is the angle between the upstream magnetic field and the
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252 5 Charged Particle Transport in a Collisionless Magnetized Plasma

Fig. 5.4 General form of the
solution (5.58) illustrating the
spatial exponential growth of
the distribution function

upstream of the shock and the
constant ambient value far U, U,

upstream — —

shock normal. Furthermore, the transport equation was derived in the limit of near
isotropy in the scattering frame, meaning that the particle distribution upstream and
downstream of the shock must remain close to isotropy. These conclusions can be
weakened slightly for the non-relativisitic form of the transport equation derived
above, but isotropy remains a critical assumption. This latter condition is not always
met at shocks where energetic particle distributions are often observed to be highly
anisotropic.

Consider the 1D transport equation with a constant upstream and downstream
velocity and solve the transport equation on either side of the shock, imposing
continuity of f(x, p) as x — £oo. The transport equation becomes

df; d ( df; 0
uj— — — [k(x,p)— | =0,
dx dx P X

where i = 1,2 (upstream, downstream) and x(x, p) is the diffusion coefficient
parallel to the shock normal. The general solution is

fi(ep) = Ai(p) +B,»<p)exp/0' s

eb(x) _ eb(ioo)
filx.p) = f(&00.p) + [£0. p) = f (00, Pl T—zs—

where b(x) = fox (u/x)dx. If b(do00) are unbounded, the spatial dependence is
then given by

ds x < 0;

Fx.p) = f(=00. p) + [£(0. p) — f(—00. p)]exp /
0 K(S, p)
= f(0,p) x>0 (5.58)

The general solution (5.58) is illustrated in Fig.5.4. The general solution f(x, p)
has a possible constant background of upstream particles f(—oo, p) plus an
accelerated population that increases toward the shock on a diffusive scale length
k(x, p)/u; but remains constant downstream.

veronica.belser@uah.edu



5.7 Application 1: Diffusive Shock Acceleration 253

The momentum spectrum of the energetic particle population is determined by
the streaming boundary condition (5.57) at the shock,

Q(p)
4 p?’

p df (0, p) p df (0, p)
_uz_— + Ml_—

3 dp 3 dp +ui [f(0, p) — f(=o00, p)] =

where we have used the result u; [f(0, p) — f(—o0, p)] = kdf/dx and have
allowed for the injection of Q(p) particles at the shock per unit momentum per
cm? s at the shock. This then yields the ordinary differential equation in momentum

Q(p)]
dgp? |’

d 3u
pd—f(O, p)+ !
14

fO.p) =

Uy —uz Uy —us

[ulf(—oo, »+

illustrating that the source of the energetic particles is the background particle
population f(—oo, p) convected through the shock and locally injected particles.
Which particle population is more important depends on the relative flux and the
characteristic energies. On solving the equation for the particle spectrum, we obtain
the central result of diffusive shock acceleration theory,

fO.p) =

P
[y [ulf(—oo, )+ (5.59)

Pinj

Q(p’)} dp'
Uy — Uy 47 p/2 p/ ’
where ¢ = 3r/(r — 1) and r = uy/u, is the shock compression ratio. Here, p;,;
is the injection momentum. The upper limit on particle momentum is particularly
important if time-dependent particle acceleration is considered, such as at inter-
planetary shock waves where the shock propagation time and evolution need to
be considered carefully since this places constraints on the time available for a
particle to experience acceleration.'? Time dependent diffusive shock acceleration is
discussed below. The spectrum of particles at energies well above the source energy
is therefore a power law o p~9. The characteristic compression ratio for a strong
shock is r = 4 for a gas with adiabatic index y, = 5/3, implying that ¢ = 4, which
is very close to the index of 4.3 inferred for the source of galactic cosmic rays. For
weak shocks, the power law is steeper, indicating fewer high energy particles.

A very important point to note is that the spectral slope of the accelerated particle
spectrum is independent of the details of the scattering process i.e., the diffusion
coefficient, depending only the kinematics of the flow. The reason a power law
results is because the momentum gained by the particle on each shock interaction is
proportional to the momentum it already has and to the probability of its escaping
from the acceleration region. This is very nicely discussed by Bell (1978) from a
microscopic perspective.

In (5.59), the accelerated particle spectrum p~7 is formed from the spectrum of
sources at lower momenta p’ < p. If no source of particles is present for momenta
above some p,, then f(0, p) o< p~ for all p > p,. If the spectrum of the source

13Zank et al. (2000).
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254 5 Charged Particle Transport in a Collisionless Magnetized Plasma

is steeper than p~9, then at large p, the accelerated spectrum will still approach
the p~? power law, but if the source is flatter (harder) than p~¢, the reaccelerated
spectrum at high energies will have the same slope as the source i.e., the new
spectrum will not reflect the characteristics of the last acceleration. In general then,
a shock with ¢ = 3r/(r — 1) will produce a power law spectrum with p~7 if the
source spectrum is mono-energetic or has a spectral slope steeper than ¢, but if the
source is harder such that ¢’ < ¢, the spectrum tends to p~4 at large energies
(Exercise).

The basic time scale associated with diffusive shock acceleration is of the
order of «/u’?. The importance of the acceleration time scale has to do with
the maximum energy to which a particle can be accelerated by a shock wave.
Observationally, galactic cosmic rays possess a source spectrum that is a power
law ~p~*3 over many decades up until about 10'* eV/nucleon, at which point the
spectrum begins to steepen (the knee). The maximum energy to which a galactic
cosmic ray can be accelerated is related presumably to either the time available
to accelerate the particle (the lifetime of shock wave responsible for particle
acceleration) or to the size of the acceleration region (both of which are possibly
related). Similarly, energetic particles accelerated in solar energetic particle (SEP)
events have a maximum energy. To estimate the maximum energy, whether at a
supernova drive shock wave or at an interplanetary shock requires that we know the
particle acceleration time scale, and that this then be related to, for example, the
characteristic time scale associated with the shock wave.!* To make the estimate for
the time scale of diffusive shock acceleration more precise, we consider a steady
planar shock at which a steady mono-energetic source of particles at the shock is
turned on at ¢ = 0. We then seek time dependent solutions of the cosmic ray
transport equation across a discontinuous shock with (¢ = 0, x, p) = 0 and source
Q68(p — po) at the shock, located at x = 0. On introducing the Laplace transform

o0
g(s,x.p) = / e f(t.x. pydt,
0

the transport equation upstream (i = 1) and downstream (i = 2) of the shock
becomes

N dg . d’g
s Ui—— =Ki—5—,
g dx dx?

assuming for simplicity that k is independent of x. The solutions that satisfy the
boundary condition

g—>0 as x— +oo are g xexp(Bix),

147Zank et al. (2000).
15 Axford (1981).
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5.7 Application 1: Diffusive Shock Acceleration 255

where

U; : 4\ /?
i=— 1= 1+ —= )
8 %[ ()(+M%)}

The boundary conditions at the shock are given by

0 a
=0 |egh + Bt | = =nso = o

where the square brackets denote as usual a jump in the enclosed quantity. On
writing go(s, p) = g(s, 0, p) for the Laplace transform of the spectrum at the shock,
we find that

s dg

3 pdp

On letting A; = /1 + 4k;s/u? — 1, we can rewrite this as

m ot dgo
3 pdp

1
kiB1go — k2B280 + = E”S(p_PO)-

1 1
5(1411‘11 + uzAz) go + uigo + = ;nS(p—po),

which has the solution

3n V4 -4 73 M1A1 + M2A2 dp/
g, p)=———|—) exp|—| ;————|-
s(ur —u2) \ po p 2 ur—uy p

By formally inverting the transform, the time-dependent spectrum of accelerated
particles at the shock is given by

I ,
Jo(2,0, p) = i go(s, p)e'ds.
Tl J—ioco
To obtain the asymptotic behavior at large times, we consider the contribution of the
simple pole at s = 0, which gives the steady spectrum,

3n p\ ! 3r
Jo(00,0, p) = fo(oo, p) = (—) . P=po q= ;
uy — up Po r—1

in agreement with the steady-state result. Obviously,

3
Jo(t. po) = ulfnuz = fo(o0, po).
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256 5 Charged Particle Transport in a Collisionless Magnetized Plasma

At a general time ¢ > 0 and momentum p > py, we can express the spectrum
formally as

folt. p) = foloo. p) /0 o()dr',

where
1 100
d() = — exp [ts — h(s)] ds,
271 J_iso
and
3 fPu A Ay d
h(s)=—/ mA ¥ ind 20P
2 Po uy — up P

The function ¢ (¢, pg, p) is the probability distribution function for the time taken to
accelerate a particle from momentum py to p. In fact, since

[000 ¢ (t) exp(—ts)dt = exp[—h(s)],

and /4 (0) = 0, we have that

/Oooqb(t)dt =1,

indicating that the distribution is properly normalized. Hence, exp[—A(s)] can be
thought of as the moment generating function for ¢(¢). Recall that to obtain the
mean we can differentiate 4(s) with respect to s and then set s = 0 to obtain an
expression for the mean acceleration time

o0 9
{t) /thﬁ(t)dt:%h(o)

3 n d
/ (ﬂ n Q) @ (5.60)
Uy —u Jp, \Ui uJ p

Thus, the important conclusion is that the time scale for the acceleration of particles
of momentum p at a shock not mediated by cosmic rays is simply

face(p) = —> (ﬂ+ﬂ). (5.61)

up —uz \up Uz
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Exercises

1. Suppose that an upstream energetic particle distribution proportional to p~¢ is
convected into a shock with compression ratio r from upstream. In the absence
of particle injection at the shock itself, calculate the reaccelerated downstream
energetic particle spectrum, and explain what happens ifa < g = 3r/(r — 1) or
a>q.

2. Suppose that a shock of compression ratio r accelerates n cm™ particles injected
as a monoenergetic source §(p — po) at the shock, so producing a downstream
energetic particle spectrum o< p~?. Now suppose the shock propagates out
of the system and the compressed gas relaxes back to the ambient state. Let
another shock propagate into the system and suppose that this shock reaccelerates
the decompressed accelerated power law spectrum that was accelerated earlier.
Assume no additional injection of particles into the diffusive shock acceleration
process. Compute the energetic particle distribution reaccelerated at the second
shock. Again, suppose that the second shock disappears out of the system and the
energetic particle decompresses again. Derive the energetic particle spectrum if a
third shock reaccelerates the previously accelerated spectrum of particles. What
can you infer about the effect of multiple accelerations and decompressions of a
spectrum of energetic particles by multiple shock waves?

5.8 Application 2: The Modulation of Cosmic Rays
by the Solar Wind

The fundamental concepts underlying the modulation of galactic cosmic rays by
the solar wind can be developed on the basis of a simplified form of the cosmic
ray transport equation. The solar wind flows supersonically and nearly radially
outward from the sun and carries the heliospheric magnetic field. The large-scale
magnetic field follows the Parker spiral. On smaller scales, as discussed, the solar
wind convects magnetic irregularities — magnetic turbulence — that are responsible
for scattering galactic cosmic rays. The charged particles gyrate about the mean
magnetic field but experience pitch-angle scattering due to the magnetic turbulence,
meaning that the cosmic ray transport equation is a suitable description of particle
transport for galactic cosmic rays attempting to enter the heliosphere. That cosmic
rays experience scattering in the outwardly flowing solar wind means that they
experience considerable difficulty in reaching the inner heliosphere. Consequently,
the intensity of cosmic rays in the inner heliosphere will be much lower than in the
outer heliosphere.

To ensure a tractable description, consider the cosmic ray transport equation in
the absence of a large-scale magnetic field and adopt a 1D spherically symmetric
geometry. For a constant radial solar wind speed u, the steady-state spherically
symmetric 1D cosmic ray transport equation becomes
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first-order, we find that the scattering of PUIs in a turbulent
magnetofluid introduces a term analogous to that of heat con-
duction. The second-order correct set of equations describing
PUIs in a multi-fluid context leads to the introduction of the
viscous terms that define the PUI stress tensor. We systemati-
cally derive the system of multi-fluid equations that describe a
background Maxwellian proton and electron plasma plus a non-
Maxwellian PUI population. Because we assume Maxwellian
distributions for the background protons and electrons, the
background plasma contributes no heat flux or stress tensor
terms. For completeness, we derive a “single-fluid” description
analogous to the equations of magnetohydrodynamics (MHD)
that describes a PUI mediated plasma. The “single-fluid” model
possesses collisionless heat flux and viscous stress terms, un-
like the MHD equations. In Section 3, we derive the dispersion
relation for linear waves in a PUI mediated plasma and dis-
cuss the general properties of waves in a multi-fluid PUI me-
diated plasma. In Section 4, we present numerical solutions to
the dispersion relation for the supersonic solar wind, the THS
plasma, and the plasma in the VLISM. The multi-fluid waves are
also compared to the more familiar two-fluid plasma modes. In
Section 5, we present an analysis and numerical solutions of the
linearized single-fluid model, presenting results for the VLISM
only. In the final section, we discuss and summarize our results.

2. DERIVATION OF THE MULTI-FLUID MODEL
2.1. First-order Correct Multi-fluid Model: Heat Conduction

In deriving a multi-fluid model that includes PUIs self-
consistently, we shall assume that the distribution function for
the background protons and electrons are each Maxwellian,
which ensures the absence of any heat flux or stress tensor
terms for the background plasma. The exact form of the
continuity, momentum, and energy equations governing the
thermal electrons and protons are therefore given by

on,
ot

+V - (n.,) =0; )

Ju,
mn< u +ue-Vu6) = VP, —en,(E+u, x B): (5)

ot
opP,
o7 +u,-VP,+y,P,V-u, =0, (6)
for the electrons, and
s LV (nyuy) = 0 %)
- (nglg) = U3
at )

du,
mons (% tu, - Vus> — VP +en, (E+u, xB); (8)

oP
; +u;- VP +y, PV - -u, =0, C)]

for the protons. Here n./, u./s, and P,/ are the usual macro-
scopic fluid variables for the electron/proton number density,
velocity, and pressure respectively, y,, the electron/proton adi-
abatic index, E the electric field, B the magnetic field, and e the
charge of an electron.

ZANK ET AL.

Pickup ions initially form an unstable distribution that ex-
cites Alfvénic fluctuations. The self-generated fluctuations and
in situ turbulence serve to scatter PUIs in pitch angle. The
Alfvén waves and magnetic field fluctuations both propa-
gate and convect with the bulk velocity of the system U =
U(u,, uy, u,, n,, ng, n,, m,, m,), where n, and u, refer to PUI
variables. The PUIs are governed by the Fokker—Planck trans-
port equation with a (for now unspecified) collisional term

8f/otle,

of e _¥
E+V.vf+m—p(E+va)~va—8t , (10)

c

for average electric and magnetic fields E and B. We assume
that the velocity v of PUIs is always non-relativistic. The
transport Equation (10) has to be transformed into a frame that
ensures there is no change in PUI momentum and energy due
to scattering. For the present, assume that the cross-helicity o
is nonzero and let

v=c+U+0Vy << c=v-U—-0V,, (11
where V4 is the Alfvén velocity and ¢ is the random velocity.
The transport equation is therefore

9 0
8—‘};‘+(Ui+O'VAi+Ci)a—f+ |:i(E+UXB)z

X; mp
e Ui an
+—(exB), — — —(U;+0Vsj+c;)—
mp( x B); a1 (j O Vaj Cj)axj
Vs ava\ |9f  of
o (LA U oV e A 2L 2 Y
0(81‘ o+ oV Cf)axj>]aci 51 |,

12)

The velocity U is still unspecified, so we choose U such that
E = E + U x B = 0. This assumption corresponds to choosing

ExB
U, =U-7= 7 =0, (13)
since we choose U; = 0 (U is parallel to B and therefore

arbitrary). This corresponds to expressing (10) in the guiding
center frame. The transformation to the velocity U then yields

0 0 oU;
W iren L] Lexmy, - 2
dt 0Xx; m ot
aU; | d 1)
—%wﬁ%i=l, (14)
Xj ac; ot c
after setting the cross-helicity o = 0. By taking moments

of (14), we can derive the evolution equations for the macro-
scopic PUI variables, such as the number density n, = [ f d’c,
velocity npu,, = [ ¢; fd’c, and so on. Although unspecified
for now, we shall assume that moments of the collisional term
8f/8t|. are zero. This can be checked against the particular
scattering model that we use below. The zeroth moment of (14)
yields the continuity equation for PUIs,

0y 3 Urtu,)) =0 (15)
—L 4 —mpU; +up,))) =0,
9t ox T
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where u,, is the PUI bulk velocity in the guiding center frame.
For the first moment, we multiply (14) by ¢; and integrate over
velocity space. This yields, after a little algebra,

0
g(np(Uj +upj)) +V - [n,U; +upj)+npupUj]

d e
*om / cicjfd’c = m—pnpsjkzupkBl, (16)
where ¢; j; is the Levi—Civeta tensor.

To close Equation (16), we need to evaluate the PUI distribu-
tion function f, which requires that we solve (14). In solving (14),
we assume (1) that the PUI distribution is gyrotropic, and (2)
that scattering of PUIs is sufficiently rapid to ensure that the PUI
distribution is nearly isotropic. We can therefore average (14)
over gyrophase, obtaining the so-called focused transport equa-
tion for non-relativistic particles (Isenberg 1997). Details of
the derivation can be found in Chapter 5 of Zank (2013), and
the explicit expression is given in Appendix A. To solve the
gyrophase-averaged transport equation requires that we spec-
ify the scattering or collisional operator. We make the simplest
possible choice, which is the isotropic pitch-angle diffusion

operator,
K 8
< s(1 — f) a7
" o
where 4 = cosf is the cosine of the particle pitch-angle 6
and v; = 7,! is the scattering frequency. The form of the

scattering operator (17) allows us to solve the focused transport
equation (Al) using a Legendre polynomial expansion of the
distribution function f. This is summarized in Appendix A
and details can be found in Chapter 5 of Zank (2013). The
first-order correct solution to the gyrophase-averaged form of
Equation (14), i.e., (A1), is

f = fo+ufi; (18)
Jfo= fox, c, 1); (19)
fl _ —ﬁb 8f0 DUi Tb 8f0 (20)

3 8x, ‘Dt 3 "ac’

where ¢ = |c| is the particle random speed, b = B/B is
a directional unit vector defined by the magnetic field, and
D/Dt = 9/dt + U;d/0x; is the convective derivative. Both fj
and f; are functions of position, time, and particle random speed
¢, i.e., independent of pitch-angle i (and of course gyrophase
¢). Of particular importance is the retention of the large-scale
velocity U acceleration and shear terms. These terms are often
neglected in the derivation of the transport equation describing
fo (for relativistic particles, the transport equation is the familiar
cosmic ray transport equation). Thus, the second term in (20)
is typically neglected, although it is known as the relativistic
heat inertia term in the relativistic transport theory of cosmic
rays (Webb 1985, 1987, 1989). As will be seen below, retaining
these terms is absolutely essential to derive the correct multi-
fluid formulation for PUIs. By introducing

3 3
/Ciijd c = /(Ci _Mpi)(cj - ij)fd c+nPMPiu1’j
_ ’ 3
= /cicjfd CHNplpltp;

3
-~ /C;C}(f0+,u,f1)d CHnplpp;,
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we can show that
0 1 0
a_xi / C;C}fodSC = m—pa—xl((supp), and
/clfc_’]-ufld% =0, (21)

where :
P, = m,,?n / c’2foc/2dc. (22)

Consequently, the PUI stress tensor is identically zero at first-
order and there exists only an isotropic pressure tensor &;; Pp.
We show in the following section that retaining the second-
order terms in the Legendre polynomial expansion of the
gyrophase-averaged equation (A2) does in fact yield a non-
zero collisionless stress tensor. The PUI momentum equation to
first-order can therefore be expressed as

0 1
(n,,(U +up, ))+ [np(U+u,,)(U +ip; )+ 6 Pi|
e
= m—l’l,,SjklupkB[. (23)

p

To derive the transport equation for P,, we multiply (14) by
(1/2)c?and integrate over d 3¢. We then use (18)—(20) to evaluate
the various integrals. Introducing ¢’ = ¢ —u,, as before, we find

1 , 31 (I
/2C f()d C_Em_pp +2npup,

for example. Similarly, we find that the heat flux q(x, ) can be
expressed as

1 1

gi(x 1) = /2 2 fdPe = Z/czcifd%
51

— 5 —up Pp—

2m, —npuiupi. 24)

2
It then follows that
1
/ zc/zcl’-fod% =7 / c’3,ub,- foc/zdc/ =0,

and

1 2 d
/Ec’zclf,ufld‘gc/ = _?71 c’zkijgf(;c’zdc/
1 P,
— K

) ij a - Cli(X» t)- (25)

In (25), we introduced the spatial diffusion coefficient

1,

kij = bj—>bj, (26)
3
together with PUI speed-averaged form Kj;. The collisionless
heat flux for PUIs is therefore described in terms of the
PUI pressure gradient and consequently the averaged spatial
diffusion introduces a PUI diffusion time and length scale
into the multi-fluid system. The diffusion coefficient, i.e., the
coefficient for the PUI heat flux, is proportional to the particle
scattering time t,, and therefore a function of the background
turbulent intensity. A separate calculation, possibly based on
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quasi-linear theory for the parallel diffusion coefficient or the
nonlinear guiding center theory for the perpendicular diffusion
coefficient, is necessary to obtain reasonable estimates of the
scattering time (Matthaeus et al. 2003; Zank et al. 2004).

The remaining terms are straightforwardly evaluated. We find

e 1 of e
—¢; 4B —ctc;i—d3c = ——¢;; Bt .
mpt?/k k/ 2C Cj e ¢ mpgjknp“m kUp ;
DU; 1,0 DU;
- — —czid3c=npupi—;
Dt 2 dc Dt
aU; 1 a 5 aU; 1 aU;
— | = j—fd3c= —P,,—+—n,,u2—
ij 2 aC,' 2 8x,~ 2 pax,-
N aU;
RpllpUp ——.
7 9x;

On combining these results, we obtain, after some algebra, the
transport equation for the PUI pressure

aP, 5 1
7+(up+U)'VPp+§PpV'(llp+U)=§V'(K'VPI,),
(27)

illustrating that the PUI heat flux yields a spatial diffusion term
in the PUI equation of state. The PUI system of equations is
properly closed and correct to the first-order. The second-order
correct PUI equations, which includes the PUI stress tensor, is
given in the following subsection. For completeness, the PUI
total energy equation has the form

o (3 1 AR ,
g 5 ,,+§n,,(u,,+U) +§ En,,(up+U) (upi+Ui)

5 1 oP, e
+§Pp(upi+Ui)_§Kijo = m—peijknpuijk(upi+U,~).
(28)

The full system of PUI equations is given by (15), (23), and (27)
or (28). It is not particularly illuminating to work in the guiding
center frame, and we may simplify (15), (23), and (27), (28), by
letting

U,=u,+U.

The right-hand side (RHS) of Equations (23) and (28) is
proportional to u,, x B, which becomes

(U,~U)xB=E+U, x B,

since E was perpendicular to B by construction initially. Hence
the PUI fluid equations can be written in the more familiar form

9
% +V-(n,U,) =0; (29)

d
—m,U,)+V-[n,U,U,+1P,] = in,,(E +U, x B);
ot m,
(30

o (3 1 1,5
E E ,,+§n[,Up +V. EHI’UPU/’-'-EP[’UP

1
_ EK. vpp] = min,,U,, -(E+U, xB), @31
p
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which is the form we use below. Similarly, we have
0P, 5 1
?+UP-VPP+§ ,,V~U,,:§(V-K~VP,,). (32)

The full thermal electron-thermal proton—PUI multi-fluid
system is therefore given by Equations (4)—(9) and (29)—(31)
or (32), together with Maxwell’s equations

oB
— =-V x E; (33)
ot
V x B = uol; (34)
V-B=0; (35)
J =e(mu; +n,U, —n.u,), (36)

where J is the current and w the permeability of free space.

2.2. Second-order Correct Multi-fluid Model: the Stress Tensor

As shown above, the zeroth- and first-order solutions for the
pressure tensor yields an isotropic scalar pressure P;; = P,4;;
only. Consider now the second-order Legendre polynomial
expansion of f,

1
f = fo+ufi+ §<3u2 - Dfo. (37)

As before, we need to evaluate

, 1
/c,-cjfd3c = /C,/'Cj <f0 + ufi + 5(3M2 - 1)f2>
X d3c’+npupiupj,

from which we find
/ /fd3 ,_LP 8"'
cic; fod’c _mp 58ijs
/c;c}ufld%'zo.

Although not discussed explicitly above, since the PUI pressure
is defined in the frame of the bulk PUI velocity u,, the
distribution function over which the integral is taken needs to
evaluated in this frame. Since the expression (A7) for f; is a
function of the guiding center velocity U, we need to transform
to the frame U’ = U +u,,. On using the solution (A7) for f>, we
obtain

/ 1 / / 1
/ ¢ 5061’ — D pd'c = / ¢’ 5 Gu = 1) frd’e’

au. 19U/
"(bb ’—--l); (38)

- 15 ! j8x,~ 3 Bxi

1 2 alu: 19U/

’2 2 3 Ui J i
—Bur-Dfpdd=—-=bb,—L —=-—L): 39
/sz(” )fade 1 < ! 9x; 38x,-> (39)
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1
/ iz Br = Dpd’d =0, (i # ), (40)
where the coefficient of viscosity 7 is defined as
4 0
n=2 [ so(ten) fode! @1
4

~ Tﬂ 1, focdc’ (42)

P,
~ 20D (43)

mp

Equation (41) is the formal definition of the coefficient of
viscosity for the PUI gas. If we assume (probably reasonably)
that |¢| > |u,|, then we obtain (42), which may be regarded as
a PUI pressure moment weighted by the PUI scattering time.
Finally, if we assume that t; is independent of ¢, we then
obtain the “classical” form (43) of the viscosity coefficient.
The pressure tensor may therefore be expressed as

10 0 : ,
AUl 19U

Pp=P@H+( 0 1 0 | L (bkbe—" . ——'") .
0O 0 =2 15 8X( 3 axm

(44)
The pressure tensor may be written in a more revealing form
if we introduce a “viscosity matrix,”

1 P,t,bib
(Me) = o) = (15bube) = (E ”m—“> )
P

and note that n;; = n;; and n/15 = 011 + n + 133 = 9;;8;
(since b? = 1). Then

1 (b 2L L) e (9 a0

15 0xy 3 9x, 2 0xy  0xg
1 ou’ e (U, 99U, 2_ aU,
b (O 9P Zs OTm ) 46
3o =S oy T 3%y, ) (4O

which yields the pressure tensor as the sum of an isotropic scalar
pressure P, and the stress tensor, i.e.,

1 0 O
(Pyj) = Pp(a,-,->+< 0 1 0 )ﬁ
00 —2) 2
’ / /
X (% + & - %8k4%> = P,I+1I1,. (47)
dxg  Oxx 3 7 dxy,
The stress tensor is a generalization of the “classical” form
in that several coefficients of viscosity are present, and of
course the derivation here is for a collisionless charged gas
of PUIs experiencing only pitch-angle scattering by turbulent
magnetic fluctuations. Use of the pressure tensor (47) yields
a “Navier—Stokes”-like modification of the PUI momentum
equation,

0 1 e
E(HPUP)-'- V. |:7’lpUpUp + m_IPP} = m—np(E+Up X B)
p

p
1 0 O
1 U U

——v.lo1 o ﬂ( Pk Z7Pe

mpy 0O 0 =2 2 B)Cg 8xk

2 500 2Yrm ¢ (E+U, xB)— ——V.TI,, (48)
- — e — X _ — . s

3 K 0x,, m,,np P m, P
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where we used U, = u,+U = U’ as before. The full momentum
equation with the second-order stress tensor correction is
included for completeness but in the linearized wave analysis
below, we use only the first-order correct equations, i.e., only
the heat conduction term is included.

2.3. Reduced “Single-fluid” Model

For some problems, such as the investigation of turbulence in
the outer heliosphere, IHS, or VLISM, the full multi-fluid model
is far too complicated to solve. By making the key assumption
that U, >~ uy, we can reduce the multi-fluid system above to an
MHD-like set of model equations. The assumption that U, >~ u,
is quite reasonable since (1) the bulk flow velocity of a plasma
is always dominated by the protons, and (2) the pick-up process
itself forces newly created PUISs to essentially co-move with the
background plasma flow. Accordingly, we let U, >~ u, = U, be
the overall proton (i.e., thermal background protons and PUIs)
velocity. The thermal proton and PUI continuity and momentum
equations are therefore trivially combined as

an;
LV (U = 0; (49)
at
aU;
mpn; W'FU,"VUI' = —V(P5+Pp)+en,~(E+U,~xB)

V-1, (50)

wheren; = ng+n,.Since the PUIs are not thermally equilibrated
with the background plasma (7; # T,), we need to deal
separately with the P, and P, equations. These become

3P

o+ U VA +y PV U =0; (51)
IP, 1
e +U,»~VPp+prpV-U,-=§V-(K-Vpp)- (52)

By combining the proton Equations (49)—(52) with the electron
Equations (4)-(6), we can obtain an MHD-like system of
equations. On defining new macroscopic variables,

0 = MmN, +mpyn;;

q= —e(n,—n);
poU = m.n.u, +mpniUi§
= — e(neue —I’l,‘U,'), (53)
Wwe can exXpress
_p—(my/e)g )
ne = mp(l — 6 = IO/mP’
0 p+&my/e)g i
T T+ e
W — pU—(mp/e)y o mpJ,
‘T p—(myleg e p’
u = PUFEm/O) (54)
p+&(m,/e)q

where the smallness of the mass ratio§ = m,/m, < 1 hasbeen
exploited. Use of the approximations (54) allows us to combine
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The full thermal electron—thermal proton—-PUI multi-
fluid system is therefore given by Egs. (2)—(4) and (31)-
(33) or (30), together with Maxwell’s equations,

% =—-V xE (34)
V x B = pol; (35)
V- B=0; (36)
J = e(nsus + npyU, — neu), (37)

where J is the current and po the permeability of free
space. The diffusion tensor is assumed to be of a simple
diagonal form (i.e., we do not include the off-diagonal
terms associated with drift and curvature-see the discus-
sion in Zank (2014) and we specify

k. 0 O 1 1,
K= 0 k. 0 |; KJ_—?’]*CO, k= z—=0C5.
0 0 g 382 382
(38)

We parametrize the perpendicular component of the
heat conduction tensor by a term 1 < 1. In estimating the
diffusion coefficients (38) from (29), we choose a charac-
teristic PUI speed for the region of interest and assume
that the scattering time can be approximated by a time
scale greater than the corresponding gyroperiod.

Single-fluid-like model

For many problems, the complete multi-component
model derived above is far too complicated to solve. The
multi-fluid system (2)—(4) and (31)—(33) or (30), together
with Maxwell’s equations can be considerably reduced in
complexity by making the key assumption that U, >~ u;.
The assumption that U, >~ u, is quite reasonable since
(i) the bulk flow velocity of the plasma is dominated by
the background protons since the PUI component scat-
ters off fluctuations moving with the background plasma
speed and (ii) the large-scale motional electric field forces
newly created PUISs to essentially co-move with the back-
ground plasma flow perpendicular to the mean magnetic
field. Accordingly, we let U, 2~ ug = U; be the bulk pro-
ton (i.e., thermal background protons and PUIs) velocity.
The thermal proton and PUI continuity and momentum
equations are therefore trivially combined as

on;

— + V.- mU;) =0;

Y (39)

aU;
MpH; (atl +U;- VU;’) = —V(Ps + Pp)

+eni(E+U; x B) =V -1, (40)
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where #n; = ng + n,. Since the PUIs are not thermally
equilibrated with the background plasma (Ty # T)), we
need to deal separately with the P; and P, equations.
These become

dP;
87+Ut VP + ys PV - U; = 0 41

0Py P 5p Ui _ 10 (0B 2. 0L
dt Taw T3 Pam  Bom du; 3 7 ox
(42)

We can combine the proton Eqs. (39)—(42) with the elec-
tron Egs. (2)—(4) to obtain an MHD-like system of equa-
tions. On defining the macroscopic variables,

P = Mehe + mpn;;  q = —e(ne — n;);

pU = meneu, + mp”iUi§ ] = —e(neu. — n;U;p), 43)
we can express
Co—mfoq _ _ p+Emloq
e = Wlp(l—é) —p/mp7 ni = Wlp(l‘i'é) —p/mps
_ —mp/e)) . mp ] ‘:PU+§(mp/e)]~
T p—(myleyg e p’ ' p+Em/og
(44)

where the smallness of the mass ratio & = m,/m, < 1
has been exploited. Use of the approximations (44) allows
us to combine the continuity and momentum equations
in the usual way and to rewrite the thermal electron and
proton pressure in terms of the single-fluid macroscopic
variables. Thus,

0
L4V (U =0,

Y (45)

U
<¥+U VU> = V(P +P;+Py) +]xB-V-TI;

(46)
dP;
oy U VP RV U =0; (47)
9P pv-u="ry.vp,+ ¥ py. <1>
at ep e P
(43)
where
1O 0\ roue  ou, 2 U
Myy=({01 O — =4+ — - .
00 —2 2\ oxy¢ Xy 3 axm

Since we may assume that the current density is much
less than the momentum flux, i.e., |J| <« |poU], we can
simplify (48) further by neglecting the RHS. By assuming
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that y. = ys; = y, we can combine the thermal proton and
electron equations in a single thermal plasma pressure
equation with P = P, + P,

oP

5 TU-VP+yPV-U=0.
Note that at this point, no assumptions about either the
thermal electron or proton pressures (or temperatures)
have been made.

Finally, we need an equation for the electric field E.
To do so, we multiply the respective momentum equa-
tions by the electron or proton charge, sum, and use the
approximations (44) to obtain

(49)

i\ LG
5(7) p[aﬁv Ju +UJ)

m
= e—:j(VPe—]xB—EV(PS—FPp)
—&V-T) +E+ U x B.

The generalized Ohm’s law is therefore

E=—UxB—"2(VP,—JxB—£VP,), (50
ep

where we have retained the PUI pressure since in prin-
ciple it can be a high-temperature component of the
plasma system and &P, may be comparable to the P,
term. For typical cases of interest, however, the P, term
can be neglected in Ohm’s law (50). Neglect of the elec-
tron pressure and Hall current term then yields the usual
form of Ohm’s law.

The reduced single-fluid model equations may there-
fore be summarized as

)
Liv.puy =0,

ot D

ou
p(at_{—U.VU) =-V@P+Py)+]xB-V_-II; (52)

(L L12+3(P+P)+ 132 +V ! U2U+5(P+P)U
ar\2” 2 L2V 2’ 2 »

1, 1 1
+—BU~ —U-BB+11-U, — K- VP| =0;

Ho o (53)
P
E-I—U'VP—F)/PV'U:O; 54)
B
E=-UxB: — =-VxE u)=VxB V-B=0.
(55)

The single-fluid description (51)—(55) differs from the
standard MHD model in that a separate description for
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the PUI pressure is required. Instead of the conserva-
tion of energy Eq. (53), one could use the PUI pressure
Eq. (42) for continuous flows. PUIs introduce both a col-
lisionless heat conduction and viscosity into the system.

The model Egs. (51)—(55), despite being appropriate to
non-relativistic PUIs, are identical to the so-called two-
fluid MHD system of equations used to describe cosmic
ray-mediated plasmas (Webb 1983). However, the deri-
vation of the two models is substantially different in that
the cosmic ray number density is explicitly neglected in
the two-fluid cosmic ray model and a Chapman—Enskog
derivation is not used in deriving the cosmic ray hydro-
dynamic equations. Nonetheless, the sets of equations
that emerge are the same indicating that the cosmic ray
two-fluid equations do in fact include the cosmic ray
number density explicitly.

The single-fluid-like model may be extended to include,
e.g., anomalous cosmic rays (ACRs) as well as PUIs. In
this case, the ACRs are relativistic particles. The same
analysis carries over, and one has an obvious extension of
the model Egs. (51)—(55) with the inclusion of the ACR
pressure. Thus, the extension of (51)—(55) is

9
3—‘: + V- (pU) =0; (56)
U
p(at +U'VU> =—-V(®P+P,+Py)+]xB
= V-1, = V- Ty; (57)
aP
§+U-VP+)/PV-U:O; (58)
Py
W'FU'VPP'F)/pPpV'U
1
= gv (Kp - VPy) — (yp — DI, : (VU); (59)
0Py
W+U'VPA+)/APAV~U
1
=3V (Ka - VP4) = (ya = D4 : (VU); (60)
9B
E=-UxB; E:—VXE; uoJ=VxB;, V.-B=0,
(61)

where we have introduced the ACR pressure Py, the
corresponding stress tensor I14, the ACR diffusion ten-
sor K4 and adiabatic index y4 (4/3 < y4 <5/3). The
coupled system (56)—(61) is the simplest continuum
model to describe a non-equilibrated plasma compris-
ing a thermal proton—electron plasma with suprathermal
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particles (e.g., PUIs or even solar energetic particles) and
relativistic energy (anomalous) cosmic rays. The system
includes both the collisionless heat flux and viscosity
associated with the suprathermal and relativistic particle
distributions.

On reverting to Eqs. (51)—(55), we can recover the
standard form of the MHD equations if we set the heat
conduction spatial diffusion tensor K = 0 and the coef-
ficient of viscosity (ng) =0, which corresponds to
assuming t; — 0. If the total thermodynamic pressure
Pyota1 = P + Py is introduced, then we recover the stand-
ard MHD equations (dropping the subscript “total”), i.e.,

ap
— + V- (pU) =0;

” (62)

ouU
p¥+pu.vu+(y—1)Ve+(VxB)xB=0; (63)

(1 B? 1,
-pU"+e+— | +V- E'OU +ye |U

ar\ 2 200
1
+—B x (U x B)} =0; (64)
Ko
oB

with an equation of state e = ankgT /(y — 1). The choice
of o = 2 (or greater if incorporating the contribution of
cosmic rays, etc.) corresponds to a plasma population
comprising protons and electrons.

In setting K=0 and (ny) =0, we have implicitly
assumed that PUIs are completely coupled to the thermal
plasma. With K # 0, heat conduction reduces the effec-
tive coupling of energetic particles to the thermal plasma,
and their contribution to the total pressure is not as
large. This will have important consequences for numeri-
cal models of, e.g., the large-scale heliosphere since they
incorporate PUIs into the MHD equations, without dis-
tinguishing PUIs from thermal plasma and therefore
neglect heat conduction. Consequently, the total pressure
is over-estimated.

Conclusions

Observations by Voyager 1 and 2 and the IBEX spacecraft
indicate that plasma in the outer heliosphere (the super-
and subsonic solar wind) and the VLISM possesses
characteristics of a multi-component plasma, being
essentially a non-equilibrated distribution of background
thermal protons and electrons and PUIs of various ori-
gins. Limitations of space prevent discussion of all the
observational threads that lead to this conclusion, and we
list and discuss above only a few. In the supersonic solar
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wind region of the outer heliosphere, the anomalous
heating of the solar wind (Williams et al. 1995) has been
interpreted in terms of the dissipation of PUI-driven
turbulence that leads to the heating of the solar wind
plasma (Zank et al. 1996; 2012; Matthaeus et al. 1996,
1999; Smith et al. 2001; Adhikari et al. 2015a). In the
inner heliosheath and the VLISM, the observed plasma
characteristics of the HTS (Zank et al. 1996; Richardson
2008; Richardson et al. 2008) and the ENA observations
made by IBEX (Zank et al. 2010; Desai et al. 2012, 2014;
Zirnstein et al. 2014) have been similarly interpreted in
terms of a multi-component plasma distribution com-
prising various PUI populations. Estimates of the col-
lisional frequency between thermal plasma components
and PUls in the outer supersonic solar wind (> ~10
AU), IHS, and VLISM show that equilibration cannot be
achieved in these regions. Illustrated in Fig. 4 is a sche-
matic of the solar wind—LISM interaction region with
colors indicating regions that have to be described in
terms of a multi-component plasma. The three colors for
the different regions indicate that each region has a dis-
tinct multi-component plasma description reflecting the
different origins of the PUI population for each. In the

\
N

~

Fig.4 Schematic of the solar wind-LISM interaction showing the
boundaries. The colored regions require a non-equilibrated multi-
component plasma description. The different colors indicate that the
non-equilibrated PUI component(s) originates from different physical
processes. The region in white surrounding the Sun corresponds to
the ionization cavity where PUls are not present in sufficient numbers
to effectively mediate the plasma. See text and Table 1 for details
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