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186 5 Charged Particle Transport in a Collisionless Magnetized Plasma

5.1 Transport Equations for Non-relativistic Particles
Scattered by Plasma Fluctuations

5.1.1 The Focussed Transport Equation

Electromagnetic fluctuations in a flowing medium such as the solar wind act to
scatter particles, in pitch angle, gyrophase, or in energy. Although we do not
explicitly restrict our attention to any particular form of electromagnetic waves
in this subsection, we will implicitly consider particles scattered in pitch angle by
magnetic fluctuations – either Alfvén waves or convected magnetic fluctuations. In
this subsection, we derive a general equation for a gyrotropic distribution function
that describes non-relativistic particles scattering in a flowing medium. Such a
model was developed by Isenberg (1997) based on an approach by Skilling (1971)
to describe the propagation of pickup ions in the solar wind. Although particles
may eventually scatter towards isotropy in the frame of the medium, we not assume
an isotropic distribution in this subsection. Following Isenberg, we begin with
the Boltzmann equation for the distribution function f .x; v; t / of non-relativistic
particles in the inertial frame,1

�
@f

@t
C v � rf C F

m
� rvf D ıf

ıt

�

s

C S: (5.1)

The force term can be quite general, but we restrict our attention to F D q=c.E C
v � B/ i.e., the inertial frame electromagnetic force acting on a particle of charge
q, mass m, with c the speed of light. In the Boltzmann equation, S is a particle
source term. Of note is that (5.1) has been implicitly separated into mean and
fluctuating parts with the fluctuating components being treated as “scattering”
terms and relegated to the right-hand-side. The scattering term ıf=ıt/s acts to
stochastically scatter particles towards isotropy. In later subsections, we explicitly
calculate various forms of the scattering operator. Here, we focus on the left-hand-
side of (5.1).

Let us consider a frame of reference that propagates in the inertial “rest” frame
at a velocity U. Strictly speaking, this new frame comprises both the background
convection velocity and the “average” velocity of the scattering “centers” (Alfvén
waves, for example). Certainly in the supersonic solar wind, the convection velocity
is much larger than the velocity of the background scattering fluctuations and so
the additional velocity of the fluctuations is often neglected. Most importantly, a
velocity transformation U can be identified with the velocity of the background
conducting plasma, in which case the motional electric field E D �U � B=c exactly
cancels the electric field and leaves F D qv � B=c. It is important to recognize that
the scattering term in this frame conserves energy since all macroscopic electric
fields are transformed away. With no electric fields, particles can only scatter in
pitch angle. However, energy is not conserved in the “rest” frame and this has
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5.1 Transport Equations for Non-relativistic Particles Scattered by Plasma Fluctuations 187

important consequences, as we discuss later in considering particle acceleration at
shock waves. Let us write

v D c C U ” c D v � U;

for which the following transformations hold,

@

@t
! @

@t
C @ci

@t

@

@ci
D @

@t
� @Ui

@t

@

@ci
I

@

@xj
! @

@xj
� @Ui

@xj

@

@ci
I @

@vi
! @

@ci
:

On applying these frame transformations to the inertial form of the Boltzmann
equation (5.1), we obtain an equation in mixed coordinates for the distribution
function f .x; c; t /,

@f

@t
C.Ui C ci /

@f

@xi
C
�
q

m
.c � B/i � @Ui

@t
� .Uj C cj /

@Ui

@xj

�
@f

@ci
D ıf

ıt

�

s

: (5.2)

The subscripts refer to vector components and the summation convention holds.
Let us now suppose that the particle gyroradius is much smaller than any

other spatial scales in the system and similarly that their gyroperiod is smaller
than other time scales. Thus, the particle distribution function can be regarded as
nearly gyrotropic, and so f .x; c; t / is essentially independent of gyrophase i.e.,
f .x; c; t / ' f .x; c; �; t/, where the particle pitch angle � 
 cos 
 D c�b=c and the
direction vector b 
 B=jBj is the unit vector along the large-scale magnetic field.
Since we are assuming gyrotropy of the distribution function, we may average (5.2)
over gyrophase. By gyrophase averaging, we neglect the action of perpendicular
drifts on the distribution function. It is convenient to introduce spherical coordinates
(
 
 pitch-angle, � 
 gyrophase, c 
 jcj),

cx D c sin 
 cos�I cy D c sin 
 sin�I cz D c cos 
 D c�I

c2 D c2x C c2y C c2z I cos 
 D cz

c
I � D cibi

c
I cDcx OexCcy OeyCcz Oez;

and � D �.x/ and � D �.x/. Consequently, we have the following transformations,

r D r C r� @

@�
C r� @

@�
I

@

@ci
D @c

@ci

@

@c
C @�

@ci

@

@�
C @�

@ci

@

@�

D ci

c

@

@c
C
�
bi

c
� �ci

c2

�
@

@�
C @�

@ci

@

@�
;
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which yields, on assuming that f .x; c; �; �; t/ D f .x; c; �; t/,

@f

@t
C .Ui C ci /

�
@f

@xi
C @�

@xi

@f

@�

�

C
�

˝"ijkcj bk � @Ui

@t
� .Uj C cj /

@Ui

@xj

�

�
�
ci

c

@f

@c
C
�
bi

c
� �ci

c2

�
@f

@�

�

D ıf

ıt

�

s

; (5.3)

where the gyrofrequency˝ D qjBj=m has been introduced and " is the Levi-Civita
tensor. We introduce an averaging operator for � such that "ijk D 1=2�

R 2�
0
Qd�

and average (5.3) term-by term. Thus, since

�
@f

@t

�

D @f

@t
I

�

Ui
@f

@xi

�

D Ui
@f

@xi
I

�

ci
@f

@xi

�

D hci i @f
@xi

;

and Oez D b, we obtain

hci i @f
@xi

D c�bi
@f

@xi
)
�

.Ui C ci /
@f

@xi

�

D .Ui C c�bi /
@f

@xi
:

Here we used

hci D chsin 
 cos� Oex C sin 
 sin� Oey C cos 
 Oezi D c�b;

since hsin�i D hcos�i D 0. Use of

�
@�

@xi

�

D
Dcj
c

E @bj
@xi

D �bj
@bj

@xi
;

and bj bj D 1, or bj @bj =@xi D 0, shows that

�

Ui
@�

@xi

@f

@�

�

D 0:

Now consider
�

ci
@�

@xi

�

D c
Dci cj
c2

E @bj
@xi

;

and the gyrophase averaged term hci cj =c2i term-by term. We have

�
c2x
c2

�

D 1 � �2
2

Oex Oex I
*
c2y

c2

+

D 1 � �2
2

Oey Oey I
*
c2z

c2

+

D �2 Oez Oez;
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and the cross terms hci cj =c2i D 0 for all i ¤ j , i; j D x; y; z. Recalling that
Oez Oez D bb we obtain

c
Dci cj
c2

E @bj
@xi

D c

�
1 � �2
2

Oex Oex C 1 � �2
2

Oey Oey C �2bb
�
@bj

@xi

D c

�
1 � �2
2

.I � bb/C �2bb
�
@bj

@xi

D c

�
1 � �2
2

�
ıij � bibj

�C �2bb
�
@bj

@xi

D c
1 � �2
2

ıij
@bj

@xi
D c

1 � �2
2

@bi

@xi
;

since bj @bj =@xi D 0. Here we used Oex Oex C Oey Oey C Oez Oez D Oex Oex C Oey Oey C bb D I
or Oex Oex C Oey Oey D I � bb, where I is the identity matrix. Consequently, we have

�

ci
@�

@xi

@f

@�

�

D c
1 � �2
2

@bi

@xi

@f

@�
:

On using the results h Oej i D hcj =ci D �bj and h Oej Oei i D .1� �2/=2.ıij � bibj /C
�2bibj of before, we find

��

�@Ui
@t

� Uj @Ui
@xj

��
ci

c

@f

@c
C
�
bi

c
� �ci

c2

�
@f

@�
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D
�

�@Ui
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� Uj @Ui
@xj

��

�bi
@f

@c
C 1 � �2

c
bi
@f

@�

�

;

and
�

cj
@Ui

@xj

�
ci

c

@f

@c
C
�
bi

c
� �ci

c2

�
@f

@�

��

D @Ui

@xj

�

c

�
1 � �2
2

�
ıij � bibj

�C �2bibj

�
@f

@c

C
�

�bibj � �
�
1 � �2
2

�
ıij � bibj

�C �2bibj

��
@f

@�

�

:

Finally, the Lorentz force terms yield

˝"ijk

Dci cj
c2

E
bkc

@f

@c
D 0I

�˝"ijk
Dci cj
c2

E
bk�

@f

@�
D 0;
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because hci cj =c2i D 0 for all i ¤ j and "ijk D 0 if and only if i ¤ j ¤ k. The
final term,

˝"ijk

Dcj
c

E
bibk

@f

@�
D ˝"ijkbibj bk�

@f

@�
D 0;

because "ijk D 0 if and only if i ¤ j ¤ k and
P

i

P
j

P
j "ijk D 0.

On using the above gyrophase-averaged results and collecting terms, we obtain
the reduced gyrophase-averaged transport equation

@f

@t
C .Ui C c�bi /

@f

@xi
C
�
1 � 3�2
2

bibj
@Ui

@xj
� 1 � �2

2
r � U

��bi
c

�
@Ui

@t
C Uj

@Ui

@xj

��

c
@f

@c
C 1 � �2

2

�

cr � b C �r � U

�3�bibj @Ui
@xj

� 2bi

c

�
@Ui

@t
C Uj

@Ui

@xj

��
@f

@�
D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

: (5.4)

The transport equation (5.4) is also known as the “focussed transport equation”
and this non-relativistic form, derived by Isenberg (1997), differs from the earlier
relativistically correct form derived by Skilling (1971) in that it contains the
convective derivative of U since Skilling assumed that U � c.

le Roux and Webb (2012) present a particularly nice discussion of the meaning
of the terms in the focussed transport equation (5.4). As discussed above, Eq. (5.4)
is in the solar wind flow frame, which is noninertial. Since the plasma flow is
non-uniform and non-stationary, scattered particles undergo velocity or momentum
changes as measured in the flow frame due to pseudoforces associated with the non-
uniform non-stationary nature of the flow. Recall from Chap. 2 that the gradient of
the flow velocity can be expressed as the sum of the flow divergence, the flow shear,
and the flow rotation, i.e.,

@Ui

@xj
D 1

3

@Ui

@xi
ıij C 1

2

�
@Ui

@xj
C @Uj

@xi
� 2

3

@Ui

@xi
ıij

�

C 1

2

�
@Ui

@xj
� @Uj

@xi

�

D 1

3

@Ui

@xi
ıij C �ij C !ij ;

where �ij and !ij denote the shear and rotation tensors of the flow respectively. On
expressing the flow gradient terms in the focussed transport equation (5.4) by the
general representation above, the method of characteristics shows that

1

c

�
@c

@t

�

D �1
3

@Ui

@xi
C 1 � 3�2

2
bibj .�ij C !ij / � �bi

c

dUi

dt

D �1
3

@Ui

@xi
C 1 � 3�2

2
bibj �ij � �bi

c

dUi

dt
(5.5)
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where dUi=dt is the convective derivative, and we recognize that the rotation tensor
is antisymmetric (!ij D �!ji ), so that the sum bibj!ij D 0. Thus, flow rotation
does not contribute to changes in particle speed. Similarly, we find that

�
@�

@t

�

D 1 � �2
2

�

c
@bi

@xi
� 3�bibj �ij � 2bi

c

dUi

dt

�

; (5.6)

and flow rotation does not contribute to changes in particle pitch-angle either.
Expressions (5.5) and (5.6) describe the gyrophase averaged rate of change of the
particle velocity c and pitch-angle �. If particle velocity or momentum is measured
in a nonuniform nonstationary plasma (noninertial) flow frame, the magnitude of
the particle velocity or momentum will be modified if the flow diverges (r � U),
experiences shear (�ij ), or rotation (!ij ), or accelerates (dUi=dt ), while the particle
pitch angle varies in response to flow shear, rotation, or acceleration. It is interesting
to note (recall the telegrapher equation discussion, Chap. 2) that the shear and
rotation tensor terms in Eq. (5.5) are multiplied by the term �.3�2 � 1/=2, which
is the second-order Legendre polynomial P2.�/, whereas the divergence of the
flow, r � U is multiplied by the zeroth-order Legendre polynomial P0 D 1, and
the acceleration term dUi=dt by the first-order Legendre polynomial P1.�/ D �.
For distributions f that are close to isotropic, this ordering of the terms associated
with the Legendre polynomials gives the order of the importance in terms of energy
change with respect to a physical process.

The flow divergence term r � U in Eq. (5.5) is nothing more than the well
known adiabatic momentum change term in the standard cosmic ray transport
equation that will be discussed below. Evidently, the divergence of the flow has
no effect on the particle pitch angle. Physically, the effect of the divergence of a
collisionless flow on energetic particles is consistent with the notion that particles
are coupled to the flow through their interaction (scattering) with electromagnetic
fields embedded in a highly conductive flow, but when the electromagnetic fields
are neglected the divergence of the flow still affects the particle momentum simply
because momentum is measured in the frame of a nonuniform plasma flow. As we
discuss in more detail below, the rapid (negative) divergence of a flow across a shock
wave leads to a convergence of the flow and the compression of electromagnetic
fields embedded in the flow. As shown explicitly in the formulation of the focused
transport equation, particles respond to the compression of electromagnetic fields
embedded in the flow, and experience adiabatic compression. Notice that all of the
effects due to a nonuniform nonstationary flow frame vanish if particle momentum is
measured in an inertial frame, but if one is interested in what happens to the random
component of the particle velocity at a shock, for example, noninertial effects must
be taken into account.

Most investigations are currently restricted to the 1D version of the focussed
transport equation. If one assumes for example a constant radial flow, such as the
solar wind, with U D U Or and a large-scale radial magnetic field pointing away from
the Sun, b D Or, then Eq. (5.4) simplifies to
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@f

@t
C .U C �c/

@f

@r
� 1 � �2

r
Uc
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@c
C 1 � �2

r
.c C �U/

@f

@�
D
�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

: (5.7)

Exercises

1. By collecting all the terms associated with the gyrophase-averaging of (5.2),
derive the general form of the gyrophase-averaged transport equation (5.4).

2. By assuming a constant radial flow velocity for the solar wind and a radial
interplanetary magnetic field, derive the 1D focussed transport equation (5.7).

3. Assume that the one spatial dimensional gyrotropic distribution function can be
expressed as

f .r; c; �/ D f�.r; c/H.��/C fC.r; c/H.�/;

where H.x/ denotes the Heaviside step function and f˙ refer to anti-
sunward (fC)/sunward (f�) hemispherical distributions. By substituting
f D f�H.��/C fCH.�/ in the 1D focussed transport equation

@f

@t
C.UC�c/@f
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�1��

2

r
Uc
@f

@c
C1��2

r
.cC�U/@f

@�
D @
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�

�.1��2/@f
@�

�

;

and integrating over � separately from �1 to 0 and then from 0 to 1, show that

@f˙
@t

C
�
U ˙ c

2

� @f˙
@r

� 2U

r

c

3

@f˙
@c

C c

r
.fC � f�/ D �� .fC � f�/

where � 
 �.� D 0/ gives the rate of scattering across � D 0. Note that the
form of the scattering term is of diffusion in pitch-angle, and this is discussed
below. The term � is the scattering frequency.

5.1.2 The Diffusive Transport Equation

The solution of the general gyrophase-averaged transport equation is a formidable
task for almost any physically interesting system so considerable effort has been
invested in trying to simplify (5.4) by means of several additional assumptions. Let
us assume that the scattering operator can be represented by a diffusion operator in
pitch-angle,

�
ıf

ıt

ˇ
ˇ
ˇ
ˇ
s

�

D @

@�

�

�
�
1 � �2� @f

@�

�

; (5.8)

where � is a characteristic scattering frequency. The scattering term is discussed
further in more general terms in the following subsections.
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The dependence of the gyrophase-averaged particle distribution function f on
the pitch-angle � D cos 
 with � 2 Œ�1; 1� suggests a natural expansion in terms of
Legendre polynomials. The orthogonality properties of the complete set of Legendre
polynomials allow us to rewrite the focussed transport equation (5.4) as an infinite
set of partial differential equations in terms of the polynomial coefficients of the
expansion. To ensure tractability, one typically truncates the infinite set at a low
order, which is a form of closure. Accordingly, we expand the gyrophase-averaged
particle distribution function f as

f .x; t; c; �/ D
1X

nD0

1

2
.2nC1/Pn.�/fn.x; t; c/; wherefn.x; t; c/ D

Z 1

�1
fPn.�/d�:

The orthogonality condition is given by

Z 1

�1
Pm.�/Pn.�/d� D

(
0 m ¤ n
2

2nC1 m D n
;

and some useful recurrence relations that will be used below are

.nC 1/PnC1.�/ D .2nC 1/�Pn.�/ � nPn�1.�/I

.1 � �2/ d
d�
Pn.�/ D nPn�1.�/ � n�Pn.�/ D n.nC 1/

2nC 1
ŒPn�1.�/ � PnC1.�/� I

d

d�
PnC1.�/ � � d

d�
Pn.�/ D .nC 1/Pn.�/I

�
d

d�
Pn.�/ � d

d�
Pn�1.�/ D nPn.�/I

d

d�
ŒPnC1.�/ � Pn�1.�/� D .2nC 1/Pn.�/:

We systematically project and expand each of the terms in (5.4) from left to right
using the Legendre polynomial Pm.�/ and the expansion for f .

The first (time-derivative) term becomes

@f

@t
W
Z 1

�1
Pm

@f

@t
d� D

1X

nD0

1

2
.2nC 1/
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�1
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@fn

@t
D @fm

@t
;

after using the orthogonality relation. Similarly, the second (convective) term
becomes

Ui
@f

@xi
W Ui

1X

nD0

1

2
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�1
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D Ui

@fm
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:
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The third term in (5.4) is a little more interesting in that we need to use the first of
the recurrence relations. Thus,

c�bi
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On expanding f , we find
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The first term on the right-hand side contributes only when n D m C 1 and the
second term only when n D m � 1, so yielding
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The third term can therefore be expressed as
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The fourth term in the focused transport equation (5.4) is
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The first term can be rewritten immediately as
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We need to use the first of the recurrence relations to infer
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On using this identity for the second term above, we obtain
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The first integral contributes only when n D m � 2, the second when n D m and
the last when n D mC 2, so yielding
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On assembling the various terms, we obtain for the fourth term of the focused
transport equation,

1 � 3�2
2

bibj
@Uj

@xi
c
@f

@c
W cbibj @Uj

@xi

1

2

@fm

@c
� vbibj

@Uj

@xi

3

2

.m � 1/m
.2mC 1/.2m � 1/

@fm�2
@c

� cbibj @Uj
@xi

3

2

�
.mC 1/2

2mC 3
C m2

2m � 1
�

1

2mC 1

@fm

@c

� vbibj
@Uj

@xi

3

2

.mC 2/.mC 1/

.2mC 3/.2mC 1/

@fmC2
@c

:

veronica.belser@uah.edu



196 5 Charged Particle Transport in a Collisionless Magnetized Plasma

The fifth term of (5.4) can be expanded as
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:

On using the results of expressing the third term in terms of a Legendre polynomial
expansion, we have for the sixth term in (5.4)
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:

The computation of the seventh term in the focused transport equation is also
straightforward. We can immediately express
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Use of the second recursion relation above yields
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so that, since the first summand contributes only for n D mC 1 and the second for
n D m � 1,
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Consider now the eighth term in (5.4). We have
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The second of the recursion relations yields
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The first term contributes only for n D mC 2, the second for n D m, and the third
for n D m � 2, from which we obtain
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we can express term eight as
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We can utilize these results to express term nine in (5.4) as
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The results from evaluating the seventh term yield
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Finally, let us consider the specific form of the diffusion term in pitch-angle �,
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Since � is independent of �, we find
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On using the following relation,
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and since the integral only contributes for n D m, we have
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This completes the evaluation of each of the terms in (5.4).
By gathering the results above together, the complete transformed focused

transport equation (5.4) can now be expressed as an infinite set of partial differential
equations in the coefficients fn of the Legendre polynomials,
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fm: (5.9)

The infinite set of partial differential equations (5.9) is equivalent to the focused
transport equation (5.4) and therefore as challenging to solve. At each order of
the expansion, i.e., the pde for a Legendre coefficient of particular order, it is
clearly seen that the equation possesses coefficients of a higher order. This is
another expression of the closure problem. Closure is typically affected by simply
truncating the Legendre polynomial expansion at a finite number of coefficients.
This procedure is somewhat arbitrary and one formally needs to establish that the
truncation remains sufficiently close to the full solution. This is typically very
difficult in practice, and so is rarely done. An example of the subtleties that can
arise was discussed in Chap. 2, Sect. 2.8, where an even or an odd truncation of
the Legendre polynomial expansion of a simplified Boltzmann equation yielded
fundamentally different solutions, with the even truncation capturing the non-
propagating characteristic solution and the odd truncation missing that particular
mode.

Let us consider the simplest reduction of the set of equations (5.9) by truncating
the infinite set of equations at some arbitrary order with the hope that this does not
introduce any unphysical character into the reduced model. Typically, truncations
are made at the lowest order possible. For the f1 approximation (i.e. assume fn D
0 8 n � 2), we have, on setting m D 0,
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(5.10)

and on setting m D 1 and neglecting all terms with indices having i � 2, we find
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On rearranging the above expression, we obtain

@f1

@t
C Ui

@f1

@xi
� 2

5
cbibj

@Uj

@xi

@f1

@c
C 2

5
c
@Ui

@xi

@f1

@c
C 1

5

@Ui

@xi
f1 � 3

5
bibj

@Uj

@xi
f1

D ��f1 � cbi

3

@f0

@xi
C DUi

Dt

bi

3

@f0

@c
; (5.11)

where the f0 Legendre coefficients are expressed as source terms in the evaluation
of the next order Legendre coefficients f1. To solve Eq. (5.11) for f1 in terms
of the lower order Legendre coefficient f0, we make the further assumption that
the zeroth-order coefficient f0 is almost isotropic, implying that f1 � f0. The
next assumption that we impose is that � D 
�1 is large, i.e., rapid scattering
of the charged particles (which is consistent with the assumption that the particle
distribution is nearly isotropic), so that the term �f1 � O.f0/. Subject to these
assumptions, Eq. (5.11) can then be solved, yielding
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Suppose first that the background flow possesses no large-scale accelerations or
gradients, i.e., Dui =Dt D 0, so that f1 can be expressed as a diffusion term,
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For the case that DUi=Dt D 0, use of (5.13) in (5.10) yields
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where we introduced the diffusion coefficient

� D c2


3
:

The diffusion term bi�bj is a tensor comprising an isotropic part and an anisotropic
part,
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where the elements of the tensor are simply �ii D b2i �, �ij D bibj � for i ¤ j and
�ij D �ji . Use of the diffusion tensor K allows us to express the convective-diffusive
or advective-diffusive transport equation as
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C U � rf0 � c

3
r � U

@f0

@c
D r � .Krf0/ : (5.14)

Subject to the assumptions imposed in deriving Eq. (5.14), this is the standard
form of the transport equation for non-relativistic charged particles experiencing
scattering in a turbulent magnetized medium. The physical content of the transport
equation (5.14) is interesting when considered term-by-term. The second term
shows that the scattered particles that comprise the distribution f0 essentially co-
move with the background flow in which the “scatterers” are embedded. The third
term is an energy change term in response to the divergence of the background flow.
This is seen by considering
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where � D ln c. The characteristics for this equation are given by
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which yields
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from some initial time t0 to a time t . If U is stationary, then the change in particle
velocity is given by

ln c.t/ � ln c.t0/

t � t0 D �1
3

r � U:

According as r � U is convergent (< 0) or divergent (> 0), particles will gain or
lose speed c in the flow. For example, if the particle distribution function upstream
of a region of a 1D decelerating flow (@U=@x < 0) is a power law f � c�q , then
the spectrum behind the decelerating flow will be shifted uniformly to the “right” in
which each speed ln c increased by an amount proportional to the velocity gradient.
Consequently, the energy of the particle distribution function will increase.

The diffusion term contains much of the physics of the magnetic field structure
as well as the scattering properties of the small scale fluctuating field. As a
consequence, the term K contains much more than simply diffusion. The isotropic
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part of the tensor K describes particle diffusion along (parallel) and perpendicular
to the magnetic field. The anisotropic terms are generally thought to describe the
collective drift of particles due to gradients and curvature in the magnetic field B
and magnitude jBj. However, in a sense shown below, the particle response to the
large-scale magnetic field geometry and gradients is present in all the elements of
the tensor K. This can be seen by expressing
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The first term of (5.15) describes the isotropic and the anisotropic diffusive
propagation of charged particles. The coefficients of @f0=@xj in the second and third
terms of (5.15) are evidently velocity terms that are associated with variations in bi ,
i.e., these are drift terms associated either with gradients in B, jBj, or large-scale
curvature of B. Note that

@bi

@xi
D r � b D r �

�
B

jBj
�

D �B � rjBj
jBj2 ;

is non-zero only if jBj varies spatially. This term is therefore related to the variation
in pitch-angle that a single particle experiences as it propagates along a magnetic
field that is converging or diverging. Consequently, the term r � b D L�1 defines
the so-called focusing length L, and the collective effect of focusing is therefore
embedded in the “diffusion” term of the transport equation (5.14). The terms
@bj =@xi when i ¤ j include the large-scale curvature in B since

@bj

@xi
D 1

jBj
@Bj

@xi
� Bj

jBj2
@jBj
@xi

:

The terms @bj =@xi also describe gradients in the components of B.
If we now include the DUi=Dt convective derivative that was neglected in

the solution of first-order correction f1, i.e., (5.12), the transport equation for f0
becomes

@f0

@t
C Ui

@f0

@xi
� @Ui

@xi

c

3

@f0

@c
D @

@xi

�
c2


3
bibj

@f0

@xj

�

� @

@xi

�
c


3
bibj

DUi

Dt

@f0

@c

�

:

Use of the definition � D c2
=3 and the diffusion tensor K allows us to express the
transport equation in the presence of large-scale flow gradients and accelerations as

@f0

@t
C U � rf0 � r � u

c

3

@f0

@c
C r �

�

K
DU
Dt

1

c

@f0

@c

�

D r � .Krf0/ : (5.16)
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The convective transport equation (5.14) and its extensions to relativistic charged
particles is one of the most intensively studied equations in space physics and
astrophysics as it is the basis for almost all work on energetic charged particle
transport, ranging from galactic cosmic rays to solar energetic particles.

5.2 Transport Equation for Relativistic Charged Particles

5.2.1 Derivation of the Focussed Transport Equation

Consider now the extension of the previous two sections to include relativistic
charged particles propagating in a non-relativistic background plasma flow with
infinite conductivity.1 It is assumed from the outset that the charged particles expe-
rience resonant scattering due to turbulent fluctuations in the background magnetic
field. The fluctuations have typically been assumed to be magnetohydrodynamic
waves, typically Alfvén waves, which tends to ensure that the scattered particles are
trapped by the waves and stream with them. The waves define a frame of reference,
the “wave frame,” which propagates through the inertial or observer’s (rest) frame
and this is the frame in which the scattering is executed. In general, the wave frame
is non-inertial, since, if we assume that the waves propagate at the local Alfvén
speed VA and they experience convection at the background plasma flow velocity
U, the wave frame velocity, VA C U may vary with space and time. This frame as
expressed here also assumes that all the waves propagate uniformly in one direction
which may not be appropriate. To avoid these complications, we shall assume that
the background plasma flow speed sufficiently exceeds the Alfvén speed that we can
neglect VA. This is certainly true in the solar wind where VA ' 50 km/s compared
to the solar wind radial flow speed of 350–700 km/s.

The collisionless Vlasov equation that is valid for both relativistic and non-
relativistic particles may be written as

d

dt
f .x;p; t / 
 @f

@t
C vi

@f

@xi
C dpi

dt

@f

@pi
D 0; (5.17)

where f .x;p; t / is the distribution function in the rest frame and dp=dt is the force
on the charged relativistic particle. In the wave frame, scattering of the particles does
not change the momentum or energy of the particles, so we need to transform (5.17)
into the wave frame. The transformations that we need are listed in the footnote.2

1As noted earlier, the transport equation was derived by Skilling (1971). His treatment is very brief
and the development given here is guided by an excellent set of notes developed originally by Dr’s
G.M. Webb and J.A. le Roux, to whom I am indebted for sharing them with me.
2We summarize the various Lorentz transformations that are needed in the derivation of the
focussed transport equation. A four-vector has three spatial components and one time component,
.x0; x1; x2; x3/ D .x0; x

a/ D x˛ , where small Roman superscripts denote spatial coordinates
of the four-vector and Greek superscripts denote all four components. The length of a four-
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We need to derive

d

dt 0
f .x0;p0; t 0/ D 0;

where the distribution function and the variables correspond to the wave frame. Nev-
ertheless, we will observe the cosmic rays in the rest or observer’s frame, and this
will therefore introduce a set of mixed coordinates as was done above. Exploiting
the Lorentz invariance of the distribution function, f .x;p; t / D f .x0;p0; t 0/, we
have

vector is x˛x˛ D x21 C x22 C x23 � x20 D xaxa � x20 , and is invariant between coordinate
systems. The contraction of any two four-vectors is invariant between coordinate systems. The
Lorentz transformation matrix (see Jackson 1975, Sect. 11.7) enables one to transform one tensor
to another. When the Lorentz matrix operates on a four-vector, it yields

x0

0 D � .x0 � ˇaxa/ I

xa0 D xa C ˇa
�
ˇbxb

ˇ2
.� � 1/� �x0

�

I � D 1
p
1� U 2=c2

I ˇa D U a=c;

where the transformation of the four vector is between reference frames in which the primed
variable has velocity U a relative to the non-primed variable. c denotes the speed of light. The
corresponding inverse Lorentz matrix can of course be used. Typical four vectors are time-space
.ct; xa/ D x˛ , and the energy and momentum of a particle .E=c; pa/ D .mc; pa/ D �m0.c; va/,
where m0 is the rest mass of the particle. Since m0 is constant, �.c; va/ is a four-vector. Defining
the proper time of a particle 
 of a particle as dt=d
 D � allows the four-velocity to be expressed
as dx˛=d
 . The various transformations that we need are as follows:

t D �

�

t 0 C x0 � U
c2

�

I t 0 D �

�

t � x � U
c2

�

I

p D p0 Cm0U
�

v0 � U
c2

.� � 1/C �

�

I
�

1� v � U
c2

�

�v0 D v C U
�

v � U
c2

.� � 1/� �

�

I
�

1C v0 � U
c2

�

�v D v0 C U
�

v0 � U
c2

.� � 1/C �

�

I

E0 D � .E C U � B/C .1� �/
E � U
c2

UI

B0 D �

�

B � 1

c2
U � E

�

C .1� �/
B � U

v2
U:

Note that if jUj=c 	 1,

� D .1� U 2=c2/�1=2 ' 1C .U 2=2c/2;

so that � ' 1 is valid to the first order in U=c.
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d

dt
f .x;p; t /

dt

dt 0
D 0:

The Lorentz transformation for time between the observer and wave frames yields
to first-order in jUj=c

t ' t 0 C x0 � U
c2

:

Consequently, we have

dt

dt 0
'
�

1C v0 � U
c2

�

H)
�

1C v0 � U
c2

�
df

dt
.x;p; t / D 0:

We now need to introduce a transformation so that the particle momentum is
measured in the wave frame. This requires that the various partial derivatives in
the Vlasov equation are transformed from the observer’s frame to the wave frame
i.e., .x;p; t / 7! .x;p0; t /. This requires the use of the inverse Lorentz transformation
for particle momentum (Footnote), which to first order in jUj=c yields � ' 1 and

p0 D p �m0U;

where m0 D � 0m0 and � 0 D 1=
p
1 � v02=c2 for the relativistic particle in the

observer’s frame. Considering the time derivative yields

@

@t
D @

@t
C @p0

i

@t

@

@p0
i

D @

@t
C @

@t
.pi �m0Ui/

@

@p0
i

D @

@t
�m0 @Ui

@t

@

@p0
i

:

The spatial derivative transforms as

@

@xi
D @

@xi
C @p0

j

@xi

@

@p0
j

D @

@xi
�m0 @Uj

@xi

@

@p0
j

:

Finally, instead of the inverse transform, we use p0 D p �mU to obtain

@

@pi
D @p0

j

@pi

@

@p0
j

D @

@pi

�
pj �mUj

� @

@p0
j

D ıij
@

@p0
j

� Uj @m
@pi

@

@p0
j

:

Introducing the basis vector for spherical coordinates allows us to express

@m

@pi
D Oepi @m

@p
;

and since

m D �m0 D m0

�

1 � v2

c2

��1=2
D m0

�

1 � p2

m2c2

��1=2
) m D

�

1C p2

m2
0c
2

�1=2
;

veronica.belser@uah.edu



5.2 Transport Equation for Relativistic Charged Particles 207

we have

dm

dp
D p

mc2
:

We then obtain

@

@pi
D ıij

@

@p0
j

� viUj
c2

@

@p0
j

:

On retaining only terms of O.U=c/, we obtain

�

1C v0 � U
c2

�
@f

@t
D
�

1C v0 � U
c2

��
@f

@t
�m@Ui

@t

@f

@p0
i

�

'
�

1C v0 � U
c2

�
@f

@t
�m@Ui

@t

@f

@p0
i

:

Consider now the convective term,
�
1C v0 � U=c2

�
vi @f =@xi . To the first order in

U=c, using the Lorentz transformation for the velocity, and � ' 1 gives

v D v0 C U
1C v0 � U=c2

:

This then yields

�

1C v0 � U
c2

�
v0
i C Ui

1C v0 � U=c2

 
@f

@xi
�m0 @Uj

@xi

@f

@p0
j

!

D �
v0
i C Ui

� @f

@xi

�m0 �v0
i C Ui

� @Uj
@xi

@f

@0
j

:

Consider now the momentum change term
�
1C v0 � U=c2

�
.dpi=dt/@f=@pi . We

assume that the momentum change is due to electromagnetic fields only. Thus, we
have the Lorentz force

dpi

dt
D q

�
Ei C "ijkvjBk

�
;

where q is the particle charge, B the external magnetic field, E the electric field, and
"ijk is the Levi-Civita tensor. The first order Lorentz transformation for E is simply

E0 ' E C U � B ” E ' E0 � U � B;

which yields

dpi

dt
D q

�
E 0
i C "ijk.vj � Uj /Bk

�
:
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To address the transformation of the velocity, the Lorentz transformation yields � '
1 and

�

1 � v � U
c2

�

v0 D v � U;

at O.U=v/, from which we find

dpi

dt
D q

�

E 0
i C

�

1 � v � U
c2

�

"ijkv0
jBk

�

;

so that
�

1C v0 � U
c2

�
dpi

dt

@f

@pi
D q

�

1C v0 � U
c2

�

E 0
i

@f

@pi

C q

�

1C v0 � U
c2

��

1 � v � U
c2

�

"ijkv0
jBk

@f

@pi
:

The Lorentz transformation for time and its inverse yield

dt 0

dt
D �

�

1 � v � U
c2

�

I dt

dt 0
D �

�

1C v0 � U
c2

�

;

from which we obtain

�2
�

1 � v � U
c2

��

1C v0 � U
c2

�

D 1;

or
�

1 � v � U
c2

��

1C v0 � U
c2

�

D 1

in the limit U=c � 1. We may therefore derive

�

1C v0 � U
c2

�
dpi

dt

@f

@pi
D q

��

1C v0 � U
c2

�

E 0
i C "ijkv0

jBk

��

ıij � viUj
c2

�
@f

@p0
j

:

Now consider the Lorentz transformation of the magnetic field. To first order, we
have

B0 D B � 1

c2
U � E;

but since E D �U � B, B0 D B C U � .U � B/=c2, this implies that

B0 D B;
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at this order. This, together with

dp0
i

dt
D q

�
E 0
i C "ijkv0

jB
0
k

�
;

allows us to write
�

1C v0 � U
c2

�
dpi

dt

@f

@pi
D q

v0 � U
c2

E 0
i

�

ıij � viUj
c2

�
@f

@p0
j

C dp0
i

dt

�

ıij � viUj
c2

�
@f

@p0
j

:

Consider the term q"ijkv0
jB

0
k.viUj =c

2/@f=@p0
j . The first order velocity transforma-

tion yields

v D v0 C U
1C v0 � U=c2

;

so that

q"ijkv0
jB

0
k

viUj
c2

@f

@p0
j

D q

1C v0 � U=c2
"ijkv0

jB
0
k

v0
i C Ui

c2
Uj

@f

@p0
j

' q

1C v0 � U=c2
1

c2
"ijkv0

jB
0
kv0
iUj

@f

@p0
j

D q

1C v0 � U=c2
1

c2

�
v0 � B0� � v0Uj

@f

@p0
j

D 0;

after neglecting the UiUj =c
2 term in the second line. The term q.v0 �

U=c2/E 0
ivi .Uj =c

2/@f=@p0
j is O

�
.U=c/2

�
and so is neglected. We therefore obtain

�

1C v0 � U
c2

�
dpi

dt

@f

@pi
'
�

q
v0 � U
c2

E 0
i C dp0

i

dt

�
@f

@p0
i

;

where

dp0
i

dt
D q

�
E 0
i C "ijkv0

jB
0
k

�
:

On combining the results above, we obtain the Vlasov equation in mixed coordi-
nates,

�

1C v0 � U
c2

�
@f

@t
C �

v0 C U
� � rf C q

v0 � U
c2

E 0
i

@f

@p0
i

�
�

m0
�
@Ui

@t
C Uj

@Ui

@xj

�

C p0
j

@Ui

@xj
� dp0

i

dt

�
@f

@p0
i

D 0; (5.18)
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with f .x;p; t /. However, since the coordinates .x;p0; t / are in the mixed coordinate
system, we need to introduce the transformation f .x;p; t / 7! f 0.x;p0; t /. Recall
that

f .x;p; t /d 3xd3p D f 0.x;p0; t /d 3x0d3p0;

and that d3x D �d3x0. Consider the transformation of the volume element in
momentum space. On using p D p0 C m0U, dm0=dp D p=.m0c2/, and dp=dpi D
pi=p, we have

d3p D dpxdpydpz

D
�

dp0
x C Ux

p0

m0c2
dp0

��

dp0
y C Uy

p0

m0c2
dp0

��

dp0
z C Uz

p0

m0c2
dp0

�

D dp0
xdp

0
ydp

0
z

�

1C p0
xUx

m0c2

� 

1C p0
yUy

m0c2

!�

1C p0
zUz

m0c2

�

D dp0
xdp

0
ydp

0
z

�

1C p0 � U
m0c2

�

CO

�
U 2

c2

�

' dp0
xdp

0
ydp

0
z

�

1C v0 � U
c2

�

:

Thus, we have the transformation

f .x;p; t / D f 0.x;p0; t /
� .1C v0 � U=c2/

;

which to first order in U=c, � ' 1 yields

f .x;p; t / D f 0.x;p0; t /
.1C v0 � U=c2/


 f 00.x;p0; t /:

On setting f .x;p; t / D f 00.x;p0; t / in (5.18), we have the final form of the
transformed equation,

�

1C v0 � U
c2

�
@f 00

@t
C �

v0 C U
� � rf 00 C q

v0 � U
c2

E 0
i

@f 00

@p0
i

�
�

m0
�
@Ui

@t
C Uj

@Ui

@xj

�

C p0
j

@Ui

@xj

�
@f 00

@p0
i

C @

@p0
i

�
F 0
i f

00� D 0: (5.19)
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e2

e1

e3

ep

p

ϕ

θ

Fig. 5.1 The coordinates for
a particle gyrating about a
mean magnetic field B
oriented along the z-axis. The
particle momentum is given
by the vector p, the
pitch-angle by 
 , and the
gyrophase by �. The
directional vector
b � B=jBj D e3

In deriving (5.19), we used

@

@p0
i

�
dp0

i

dt

�

D @

@p0
i

�
q"ijkv0

jB
0
k

�
D q"ijk

@v0
j

@p0
i

B 0
k

D q"ijkB
0
ke

0
pi

@

@p0
�
e0
pj v0�

D q"ijke
0
pi e

0
pj

@v0

@p0B
0
k

D qe0
pi ."ijke

0
pjB

0
k/

1

m0� 02

D q

m0� 02 e0
p �
�

e0
p � B0� D 0:

Just as we did in the derivation of the focussed transport equation for non-
relativistic particles, we shall assume that the particle distribution function is nearly
gyrotropic, making f .x; v; t / ' f .x; v; �; t/ where the particle pitch angle is
� 
 cos 
 as before. For the sake of notational convenience, we henceforth drop
the “prime” on the variables and distribution function. The averaging procedure
proceeds in much the same way as before. For completeness, we provide some of
the details in the derivation although using a slightly more general notation. The
local geometry of a charged particle gyrating about the mean magnetic field B is
illustrated in Fig. 5.1. The coordinates .x1; x2; x3/ refer to a magnetic field system
and e3 D b 
 B=jBj. Since the magnetic field is not assumed to be uniform, the
unit vectors .e1; e2; e3 D b/ are functions of x. As before, � D cos 
 D ep � b.

Recall that the momentum can be expressed in spherical coordinates as

@f

@p
D ep

@f

@p
C e


1

p

@f

@

C e�

1

p sin 


@f

@�
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where

p D p .sin 
 cos�e1 C sin 
 sin�e2 C cos 
b/ I

ep D @p
@p

D sin 
 cos�e1 C sin 
 sin�e2 C cos 
bI

e
 D 1

p

@p
@


D cos 
 cos�e1 C cos 
 sin�e2 � sin 
bI

e� D 1

p sin 


@p
@�

D � sin�e1 C cos�e2:

As before, we require the following integrals,

˝
ep
˛ D 1

2�

Z 2�

0

epd� D cos 
bI

˝
epep

˛ D 1

2�

Z 2�

0

epepd� D 1

2
sin2 
 ŒI � bb�C cos2 
bb;

after using hcos2 �i D hsin2 �i D 1=2.
Consider the time derivative

@f

@t
D @f

@t
C @�

@t

@f

@�

D @f

@t
C @

@t

�
ep � b

� @f

@�
D @f

@t

after using bi@bi=@t D 0 as before. Evidently, h@f=@ti D @f=@t . Now,

�
p � U
mc2

�
@f

@t
D 1

2�

Z 2�

0

piUi

mc2

�
@f

@t
C epj

@bj

@t

@f

@�

�

d�

D Ui

mc2
1

2�

Z 2�

0

pi
@f

@t
d� C Ui

mc2
@bj

@t

1

2�

Z 2�

0

piepj
@f

@�
d�

D pUi

mc2
@f

@t

1

2�

Z 2�

0

epid� C pUi

mc2
@bj

@t

@f

@�

1

2�

Z 2�

0

epi epj d�

D p�

mc2
Uibi

@f

@t
C pUi

mc2
@bj

@t

@f

@�

�
1

2
sin2 
.ıij � bibj /C cos2 
bibj

�

D v�

c

�
U
c

� b
�
@f

@t
C 1

2

v.1 � �2/
c

�
U
c

� @b
@t

�
@f

@�
:

veronica.belser@uah.edu



5.2 Transport Equation for Relativistic Charged Particles 213

On considering the convective term,

@f

@xi
D @f

@xi
C epj

@bj

@xi

@f

@�
;

we derive the gyrophase averaged expression
��
Ui C pi

m

� @f

@xi

�

D Ui
@f

@xi
C p

m

@f

@xi
hepi i C Ui

@bj

@xi

@f

@�
hepj i C p

m

@bj

@xi

@f

@�
hepi epji

D .Ui C v�bi /
@f

@xi
C 1

2
v.1 � �2/ @bi

@xi

@f

@�
:

On expressing

@f

@pi
D @p

@pi

@f

@p
C @�

@pi

@f

@�

D epi
@f

@p
C @

@pi
.epj bj /

@f

@�

D epi
@f

@p
C bj

@

@pi

�
pj

p

�
@f

@�

D epi
@f

@p
C bj

p

�

ıij � pj

p

@p

@pi

�
@f

@�

D epi
@f

@p
C bj

p
.ıij � epi epj / @f

@�
;

we may consider
�

�mdUi
dt

@f

@pi

�

D �mdUi
dt

@f

@p
hepi i �mdUi

dt

bj

p
ıij
@f

@�
Cm

dUi

dt

bj

p

@f

@�
hepi epj i

D �m�dUi
dt

bi
@f

@p
� m

p
.1 � �2/dUi

dt
bi
@f

@�
:

We can similarly evaluate
�

�pk @Ui
@xk

@f

@pi

�

D �p
�
1

2
.1 � �2/@Ui

@xi
C 1

2
.3�2 � 1/bibj @Ui

@xj

�
@f

@p

C 1

2
.1 � �2/

�
@Ui

@xi
� 3bibj @Ui

@xj

�

�
@f

@�
:

Finally,

q

m
.p � B/ � @f

@p
D q

m
.p � B/ �

�

ep
@f

@p
C
�

b
p

� �ep

�
@f

@�

�

D 0;

since .p � B/ � b D 0 and .p � B/ � ep D 0.
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On combining the results above, we obtain the focussed transport equation or,
equivalently, the Boltzmann equation for a gyrotropic particle distribution,

�

1C v�

c

U � b
c

�
@f

@t
C .U C v�b/ � rf C 1 � �2

2

�
v

c

�
U
c

� @b
@t

�

C vr � b

� 2m

p

�
dU
dt

� b
�

C � .r � U � 3bb W rU/
�
@f

@�
�
�
�m

p

�
dU
dt

� b
�

C 1

2
.1 � �2/r � U C 1

2
.3�2 � 1/bb W rU

�

p
@f

@p
D
�
ıf

ıt

�

s

: (5.20)

The righthand term is the scattering term, due charged particles scattering in pitch-
angle due to the stochastically fluctuating magnetic field. Certainly for parallel
propagation, the scattering fluctuations are typically assumed to be Alfvén waves.
The scattering of charged particles conserves particle energy in the wave frame. In
the transformation from the observer’s frame (the rest frame) to the wave frame,
the macroscopic electric fields are transformed away by the background velocity
U because the plasma is infinitely conductive. Electric fields associated with the
waves disappear in a frame moving with the waves. In the absence of electric
fields, charged particles can only experience scattering in pitch angle. Energy is
not, however, conserved in the observer’s frame.

On assuming that dU=dt D 0 and neglecting terms O.U=c/, we recover the
usual form of the focussed transport equation,

@f

@t
C .U C v�b/ � rf C

�
1 � 3�2
2

.bb W rU/ � 1

2
.1 � �2/r � U

�

p
@f

@p

C 1 � �2
2

Œvr � b C �r � U � 3�bb W rU�
@f

@�
D
�
ıf

ıt

�

s

: (5.21)

The focussed transport equation (5.21) can be reduced to the convective-diffusive
equation if the distribution function f .x; p; �; t/ ' f .x; p; t/ i.e., if the scattering
experienced by the particle is sufficiently strong that the distribution is nearly
isotropic. The analysis of Sect. 2 carries over directly with “c” being replaced by
“p”, and the general convective-diffusive transport equation is given by

@f

@t
C U � rf � p

3
r � U

@f

@p
D r .Krf / : (5.22)

This is the standard form of the transport equation for relativistic charged particles
experiencing scattering in a non-relativistic turbulent plasma.
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Exercises

1. Derive the following averaging relations:

˝
ep
˛ D 1

2�

Z 2�

0

epd� D cos 
bI

˝
epep

˛ D 1

2�

Z 2�

0

epepd� D 1

2
sin2 
 ŒI � bb�C cos2 
bb:

2. Complete the derivation of

��
Ui C pi

m

� @f

@xi

�

D .U C v�b/ � rf C 1

2
v.1 � �2/r � b

@f

@�
:

3. Show that

@

@pi
.epj bj / D bj

p
.ıij � epi epj /:

4. Complete the derivation of

�

�pk @Ui
@xk

@f

@pi

�

D �p
�
1

2
.1 � �2/@Ui

@xi
C 1

2
.3�2 � 1/bibj @Ui

@xj

�
@f

@p

C 1

2
.1 � �2/

�
@Ui

@xi
� 3bibj @Ui

@xj

�

�
@f

@�
:

5.3 The Magnetic Correlation Tensor

As will be discussed in detail below, the magnetic correlation tensor plays a central
role in determining the transport properties of particles experiencing pitch-angle
scattering by turbulent magnetic field fluctuations. A very detailed discussion of
different forms of the magnetic correlation tensor has been presented by Shalchi
(2009).3 The general form of the two-point, two-time magnetic correlation tensor
has the form

Rij .r; t; r0; t0/ D hıBi .r; t /; ıBj .r0; t0/i;

where r 0 denotes a different spatial location and h�i an ensemble average. It is
convenient to consider the correlation tensor using a Fourier representation

3See also Tautz and Lerche (2011).
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ıBi .r; t / D
Z
ıBi .k; t /eik�rd3k;

from which we find

Rij .r; t; r0; t0/ D
Z
d3k

Z
d3k0 ˝ıBi .k; t /ıBj .k0; t0/

˛
eik�rCik0�r0

: (5.23)

As is typically assumed, we suppose that the magnetic turbulence is homogeneous,
so that the correlation function depends only on the separation jr � r0j between two
points. Then we can express

˝
ıBi .k; t /; ıBj .k0; t0/

˛
as
˝
ıBi .k; t /; ıBj .k0; t0/

˛
ı.k C

k0/, which allows us to integrate (5.23) as

Rij D
Z
d3k

˝
ıBi .k; t /; ıBj .�k; t0/

˛
eik�.r�r0/:

From the definition of the Fourier transform, ıBj .�k/ D ıB�
j .k/ where � denotes

the complex conjugate. This allows us to introduce the usual definition of the
correlation tensor,

Pij .k; t; t0/ D
D
ıBi .k; t /ıB�

j .k; t0/
E
;

and the correlation tensor Pij .k; t; t0/ is expressed in wave number space. The
correlation tensor (5.23) then reduces to

Rij .r; t; r0; t0/ D
Z
d3kPij .k; t; t0/eik�.r�r0/:

On setting t0 D 0 and r0 D 0, we have

Pij .k; t / D hıBi .k; t /ıB�
j .k; 0/i;

with

Rij .r; t / D
Z
d3kPij .k; t /eik�r: (5.24)

Although we restrict ourselves to stationary turbulence, we note that the inclusion of
temporal effects in the correlation tensor is typically accomplished by assuming that
the correlation tensor has a separable form in the spatial and temporal components,

Pij .k; t / D Pij .k; 0/� .k; t /;

where � .k; t / is a dynamical correlation function and Pij .k; 0/ 
 Pij .k/ is the
magnetostatic correlation tensor.
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For completeness, we first consider isotropic turbulence. The general form of an
isotropic rank-2 tensor is4

Pij .k/ D A.k/ıij C B.k/kikj C C.k/
X

k

"ijkkk:

Recall that "ijk is the Levi-Civita or unit alternating tensor and has values "ijk D 0

if any of i , j , and k are repeated, "ijk D C1 or �1 when i , j , and k are all different
and in cyclic or acyclic order respectively.

Since r � ıB D 0,

X

i

ki ıBi .k/ D 0;

which yields

X

i;j

hkiıBikj ıB�
j i D

X

i;j

kikjPij D 0:

If we substitute the general form Pij of an isotropic rank-2 tensor, it therefore
follows immediately that for magnetic turbulence

0 D A.k/
X

i;j

kikj ıij C B.k/
X

i;j

k2i k
2
j C C.k/

X

i;j;k

"ijkkikj kk

D A.k/k2 C B.k/k4;

and hence that

B.k/ D �A.k/
k2

:

The general form of the magnetic isotropic tensor is therefore

Pij .k/ D A.k/

�

ıij � kikj

k2

�

C C.k/
X

k

"ijkkk:

Since

Pij .k/ D hıBiıB�
j i D hıB�

i ıBj i� D hıBj ıB�
i i� D P �

j i .k/;

4Batchelor (1953)
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we have

P �
j i D A�.k/

�

ıj i � kj ki

k2

�

C C �.k/
X

k

"j ikkk

D A�.k/
�

ıij � kikj

k2

�

� C �.k/
X

k

"ijkkk

D Pij .k/ D A.k/

�

ıij � kikj

k2

�

C C.k/
X

k

"ijkkk;

after using "j ik D �"ijk . We therefore have A.k/ D A�.k/, i.e., A.k/ is real, and
C.k/ D �C �.k/, implying that C.k/ is imaginary. Quite generally, we can express

C.k/ D iA.k/
�.k/

k
;

to obtain

Pij .k/ D A.k/

"

ıij � kikj

k2
C i�.k/

X

k

"ijk
kk

k

#

; (5.25)

where A.k/ and �.k/ are real, and �.k/ is known as the magnetic helicity.
Appropriate models for A.k/ and �.k/ must be given.

Let us reconsider now the correlation tensor in the presence of magnetic
turbulence that is axisymmetric with respect to a preferred direction; typically the
z-axis along which the uniform mean magnetic field is assumed to be oriented. In
this case, it can be shown (not done here, see Matthaeus and Smith (1981)) that the
isotropic form of the correlation tensor also holds for axisymmetric turbulence,

Pij .k/ D A.kk; k?/
"

ıij � kikj

k2
C i�.kk; k?/

X

k

"ijk
kk

k

#

:

In most applications to cosmic ray or energetic particle transport, the magnetic
helicity term is neglected, as is the parallel component of the turbulent magnetic
field ıBz. In this case, the correlation tensor reduces to

Pij .k/ D A.kk; k?/
�

ıij � kikj

k2

�

; (5.26)

where i; j D x; y and Piz D 0 D Pzj .
To complete the correlation tensor for use in a transport equation describing par-

ticle scattering in a turbulent magnetic field, we need to specify both the geometry
of the magnetic turbulence and the spectrum of the magnetic field fluctuations. This
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will allow us to model the function A.kk; k?/. Three possible geometries, besides
the isotropic case discussed already, are possible in the interplanetary (and possibly
interstellar) environment. The first is the slab model, which is a one-dimensional
model in that the turbulent magnetic field depends only on the z-coordinate

ıBslab
i .r/ D ıBslab

i .z/;

allowing us to express the function

Aslab.kk; k?/ D gslab.kk/
ı.k?/
k?

:

For the slab model, the wave vectors are parallel to the mean magnetic field, i.e.,
k k B0.

Alternatively, we can consider a 2D or perpendicular turbulence model in which
the turbulent field is a function of the perpendicular coordinates .x; y/ only, i.e.,

ıB2D
i .r/ D ıB2D

i .x; y/;

so that

A2D.kk; k?/ D g2D.k?/
ı.kk/
k?

:

In this case, the wave vectors are orthogonal to the mean magnetic field, k ? B0,
and therefore lie in a 2D plane perpendicular to the mean field.

Finally, one can construct a two-component model that corresponds to a superpo-
sition of the slab and 2D models. This model is quasi-3D and

ıB
comp
i .r/ D ıB2D

i .x; y/C ıBslab
i .z/:

Because we have

hıBslab
i .z/ıB�;2D

i .x; y/i D 0;

the correlation tensor has the form

P
comp
ij .k/ D P slab

ij .k/C P 2D
ij .k/:

In addition to the underlying geometry of the assumed interplanetary or inter-
stellar turbulence, we need to specify the wave number dependence of A.kk; k?/,
i.e., the wave number spectrum. For the slab model, this requires that we prescribe
gslab.kk/ and similarly g2D.k?/ for the 2D model. A typical spectrum observed in
the solar wind has three distinct regions: (i) an energy containing range at small
wave numbers (i.e., large scales), and is typically of the form k�1. The energy
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range 

Energy 
containing 
range 

kdl-1

k-3

k-5/3

k-1
Spectral
density

k 

Fig. 5.2 Schematic of the
wave number spectrum
observed typically in the solar
wind, illustrating the energy
containing range, the inertial
range, and the dissipation
range. The bendover scale
`�1 and the dissipation scale
kd are identified

range is defined by a bendover or turnover scale such that gslab=2D.kslab=2D �
`�1
slab=2D/ D energy range of the spectrum, depending on whether the turbulence

is of the slab or 2D kind. (ii) At larger wave number scales, energy in turbulent
fluctuations is transferred locally from larger to smaller scales in a self-similar
manner. This part of the spectrum is called the inertial range and typically has the
form k�5=3, which is the Kolmogorov form of the spectrum.5 For the inertial range,
we introduce a dissipation wave number kd;slab=2D and defined the spectrum by
gslab=2D.`�1

slab=2D � kslab=2D � kd;slab=2D/ D inertial range of the spectrum. (iii)
Finally, for large wave numbers or small scales, the turbulence loses energy through
dissipation, and so this part of the spectrum is called the dissipation range, and is
much steeper than the rest of the spectrum, typically k�3. The dissipation range may
be defined as gslab=2D.kd;slab=2D � kslab=2D/ D dissipation range of the spectrum
(see Fig. 5.2 for a schematic illustration and Fig. 5.3 for several examples observed
in the solar wind).

In most studies of energetic particle transport, the dissipation range plays very
little role and is therefore neglected typically. The energy and inertial ranges are
however critical in determining particle transport properties and a useful analytic
form of the wave number spectrum for magnetic (and other) fluctuations is

gi .ki / � �
1C k2i `

2
i

���
; i 
 slab or 2D:

This form of the spectrum contains both the energy range (modeled as a constant)
and an inertial range with slope k�2� defined by a bendover scale `i .

An important quantity used to characterize turbulence and closely related to the
bendover scale is the correlation length, defined by the following integral,

`c;ij

D
ıB2

j

E
D
Z 1

0

Rjj .r; 0/dri :

The correlation length represents the characteristic length scale for the spatial
decorrelation of turbulence. Hence, `c;ij ıB2

j is simply the area under the correlation
function Rii . Clearly, the correlation length depends intimately on the nature of the
turbulence and wave number spectrum through the correlation function.

5Kolmogorov (1941).
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Fig. 5.3 Example of spectra upstream and downstream of a perpendicular interplanetary shock
wave (Zank et al. 2006)

Consider now the correlation function for slab turbulence, assuming that
� .r; t / D 1, i.e., magnetostatic turbulence. Turbulent magnetic fluctuations vary
only along the direction of the mean magnetic field z, so

Rslabij D hıBi .z/ıB�
j .0/i;

assuming z.0/ D 0 because of homogeneous turbulence. On using the form of the
axisymmetric magnetic correlation tensor, and the results from the geometric form
of A.kk; k?/, we find
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Pij .k/ D gslab.kk/
ı.k?/
k?

�

ıij � kikj

k2

�

D gslab.kk/
ı.k?/
k?

ıij if i; j D x; y;

and Piz D 0 D Pzj . If we assume the general form of the turbulence spectrum
above, we can express gslab as

gslab.kk/ D C.�/

2�
`slab

˝
ıB2

slab

˛ �
1C k2k`

2
slab

���
; (5.27)

where the normalization constant has to be determined. Thus, using cylindrical
coordinates kx D k? cos 
 , ky D k? sin 
 , kz D kk to express the wave vector,
we find

˝
ıB2

slab

˛ D ˝
ıB2

x

˛C
D
ıB2

y

E
D Rxx.0/CRyy.0/ D

Z
d3k

	
Pxx.k/C Pyy.k/




D 2

Z 2�

0

Z 1

0

Z 1

�1
gslab.kk/

ı.k?/
k?

k?d
dk?dkk

D 8�

Z 1

0

gslab.kk/dkk:

On using (5.27), we find

C�1.�/ D 4`slab

Z 1

0

�
1C k2k`

2
slab

���
dkk;

D 2

Z 1

0

t�1=2.1 � t /��dt;
after using the change of variables t D k2k`

2
slab . This integral is the beta function

(related to the gamma function � .x/) defined byB.x; y/ 
 R1
0
tx�1=.1Ct /xCydt ,

x > 0, y > 0, andB.x; y/ D � .x/� .y/=� .xCy/. Thus, setting x D 1
2
, y D �� 1

2

yields

C.�/ D 1

2
p
�

� .�/

� .� � 1=2/ ;

since � .1=2/ D p
� .

The slab correlation function can now be calculated using (5.24)

Rslabxx .z/ D hıBx.z/ıB�
x .0/i D

Z
d3kP slab

xx cos.kkz/

D 4�

Z 1

0

gslab.kk/ cos.kkz/dkk

D 2C.�/
˝
ıB2

slab

˛
Z 1

0

.1C x2/�� cos.ax/dx;
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where x 
 kk`slab and a 
 z=`slab . The last integral is of a standard tabulated form

Z 1

0

.1C x2/�� cos.ax/dx D
p
�

� .�/

�
2

a

�1=2��
K��1=2.a/;

where Kˇ.z/ is the modified Bessel function of imaginary argument. The perpen-
dicular correlation function R? D Rxx CRyy can therefore be expressed as

Rslab? D 2
˝
ıB2

slab

˛

� .� � 1=2/
�
2`slab

z

�1=2��
K��1=2

�
z

`slab

�

: (5.28)

Shalchi provides two useful asymptotic forms6 for the slab correlation function in
the limits z � `slab and z � `slab , respectively

K��1=2.z � `slab/ ' 1

2
� .� � 1=2/

�
2`slab

z

���1=2
;

H) Rslab? .z � `slab/ D ˝
ıB2

slab

˛
if � > 1=2I

K��1=2.z � `slab/ '
s
�`slab

2z
e�z=`slab ;

H) Rslab? .z � `slab/ D
p
�

� .� � 1=2/
˝
ıB2

slab

˛
�
2`slab

z

�1��
e�z=`slab :

The bendover scale `slab is the characteristic length scale for the spatial decorre-
lation of the turbulence for the exponentially decaying correlation function in the
limit z � `slab .

The slab correlation length can also be computed, and this illustrates the
relationship between `c;slab and the bendover scale length `slab . Recall from the
definition of `c;slab

`c;slab
˝
ıB2

slab

˛ D
Z 1

0

Rslab? .z/d z

D 2�

Z 1

�1
dkkgslab.kk/

Z 1

�1
d zeikk

z

D .2�/2
Z 1

�1
dkkgslab.kk/ı.kk/

D .2�/2gslab.0/ D 2�C.�/`slab
˝
ıB2

slab

˛
;

6Useful limits of these and many other related functions are tabulated in Abramowitz and Stegun
(1974). For this case, A. Shalchi used the formulae (9.6.9) and (9.7.2).
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since
R
d zeikk

z D 2�ı.kk/. Thus the slab correlation length and the bendover scale
are related via

`c;slab D 2�C.�/`slab;

which if we assume a Kolmogorov power law for the inertial range, � D 5=6, we
have C.5=6/ D 0:1188 and hence `c;slab ' 0:75`slab .

The 2D magnetostatic correlation function is a little more laborious to compute.
Since ıBi .r/ D ıBi .x; y/, the 2D correlation tensor is given by

R2Dij .x; y/ D hıBi .x; y/ıBj .0; 0/i;

or

Rxx.x; y/ D
Z
d3kPxx.k/eik�r D

Z
d3kPxx.k/eikxxCikyy;

and we have

P 2D
ij .k/ D g2D.k?/

ı.kk/
k?

�

ıij � kikj

k2

�

if i; j D x; y ;

or D 0 if i or j D z.

For the wave spectrum, we assume the same normalized form as for the slab case
except that we introduce the 2D counterparts `2D and

˝
ıB2

2D

˛
,

g2D.k?/ D C.�/

2�
`2D

˝
ıB2

2D

˛ �
1C k2?`22D

���
:

On introducing cylindrical coordinates for the wave vector and position

kx D k? cos	; ky D k? sin	 I
x D r cos˚; y D r sin˚;

we find

R2Dxx .x; y/ D
Z 2�

0

Z 1

0

Z 1

�1
g2D.k?/

ı.kk/
k?

 

1 � k2?
k2

cos2 	

!

eik�rk?d	dk?dkk

D
Z 1

0
dk?g2D.k?/

Z 2�

0
d	 sin2 	 exp Œik?r.cos˚ cos	C sin˚ sin	/�

D
Z 1

0
dk?g2D.k?/

Z 2�

0
d	 sin2 	 exp Œik?r cos.˚ � 	/� :
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A standard simplification of these integrals makes use of a series expansion in terms
of Bessel functions,

eix sin˛ D
1X

nD�1
Jn.x/e

in˛; eix cos˛ D
1X

nD�1
Jn.x/e

in.˛C�=2/;

which allows us to obtain

R2Dxx .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	 sin2 	e�in	 ein.˚C�=2/:

The corresponding expression for Ryy is given by

R2Dyy .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	 cos2 	e�in	 ein.˚C�=2/;

meaning that

R2D? .x; y/ D
Z 1

0

dk?g2D.k?/
1X

nD�1
Jn.k?r/

Z 2�

0

d	e�in	 ein.˚C�=2/:

Since

Z 2�

0

d	e˙in	 D 2�ın0;

the 2D perpendicular correlation function reduces to

R2D? .x; y/ D 2�

Z 1

0

dk?g2D.k?/J0.k?r/;

which can be further expressed as (using as before x 
 k?`2D and a 
 r=`2D)

R2D? .r/ D 4C.�/
˝
ıB2

2D

˛
Z 1

0

.1C x2/��J0.ax/dx: (5.29)

As before, it is instructive to consider the limits a D 0 and a ! 1. The former
limit yields (J0.0/ D 1)

Z 1

0

.1C x2/��dx D .4C.�//�1 ) R2D? .r D 0/ D ˝
ıB2

2D

˛
:
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The latter limit yields (
R1
0
J0.y/dy D 1)

Z 1

0

.1C x2/��J0.ax/dx D 1

a

Z 1

0

�

1C y2

a2

���
J0.y/dy

' 1

a

Z 1

0

J0.y/dy D 1

a
I

) R2D? .r � `2D/ D 4C.�/
˝
ıB2

2D

˛ `2D
r
:

Note that the spatial decorrelation length for the turbulence is determined by the 2D
bendover scale `2D . Notice too that although the same forms of the wave number
spectrum were used for both the slab and 2D cases, the correlation functions are
nonetheless different, with the 2D correlation function decaying more slowly with
increasing distance compared to the slab case (which falls off exponentially).

As before, we can relate the 2D correlation length `c;2D to the bendover scale
`2D . In this case, we need to introduce a minimum wave number, xmin 
 `2D=L2D ,
to avoid a divergent integral,

`c;2D D 1
˝
ıB2

2D

˛
Z 1

0

R?.r/dr

D 4C.�/

Z 1

xmin

dx.1C x2/��
Z 1

0

drJ0

�
xr

`2D

�

D 4C.�/`2D

Z 1

xmin

dx

x
.1C x2/��

' 4C.�/`2D

�Z 1

xmin

dx

x
C
Z 1

1

x�2��1dx
�

' 4C.�/`2D

�
1

2�
C ln

L2D

`2D

�

:

The wave spectrum used here is normalized correctly only if L2D � `2D , and in
the limit of an infinitely large box, L2D ! 1, the correlation length is infinite.

5.4 Quasi-linear Transport Theory of Charged Particle
Transport: Derivation of the Scattering Tensor

We have so far prescribed a very simple diffusion in pitch-angle expression to
describe the scattering of particles by in situ magnetic fluctuations. In this and the
next section, we derive expressions that describe the scattering of energetic particles
in low-frequency magnetic turbulence.
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Since we consider particles that can have high energies, we begin with the
momentum form of the Vlasov or collisionless Boltzmann equation

@f

@t
C p
m

� rf C q

�

E C p � B
m

�

� @f
@p

D 0; (5.30)

for particles of mass m and charge q. Following le Roux et al. (2004)7 we use a
quasi-linear approach to derive a Fokker-Planck kinetic transport equation for the
diffusion of charged particles experiencing scattering in pitch-angle and momentum
space due to the presence of Alfvénic/slab and quasi-2D turbulence in the solar
wind. Quasi-linear theory proceeds essentially by assuming that charged particle
gyro-orbits are only weakly perturbed by electromagnetic fluctuations. Typically,
there are three ways to proceed. One can proceed from the formalism discussed
in the derivation of the Fokker-Planck equation from the Chapman-Kolmogorov
equation, assuming a Markovian process, and evaluate the diffusion coefficients
directly. A second approach, which we follow here, is to directly expand Eq. (5.30)
to determine the diffusion coefficients. A third approach is to work directly from
the Newton-Lorentz equations for particle motion in a fluctuating electromagnetic
field and directly compute momentum and spatial diffusion coefficients from the
Taylor-Green-Kubo (TGK) forms,8

D��.�/ 

Z 1

0

dth P�.t/ P�.t/iI

Dij .�/ 

Z 1

0

dthvi .t /vj .t/i;

where � is the cosine of the particle pitch angle and v is the particle velocity.
Several assumptions are made explicitly to ensure the validity of the quasi-

linear approximation. The first is that the electromagnetic fluctuations are of small
amplitude. This ensures that particles follow approximately undisturbed helical
orbits on a particle correlation time 
pc , which is the characteristic time for a
particle to gyrate on an undisturbed trajectory before being disturbed by incoherent
or random fluctuations. This obviously means that the particle correlation time is
much less than the characteristic time scale for particle pitch-angle scattering 
�
i.e., 
pc � 
�. The time scale over which particle orbits are significantly distorted
by pitch-angle scattering is therefore much longer than the particle correlation time
scale on which a coherent helical orbit is maintained.

In Eq. (5.30), we may expand the electromagnetic fields, E and B, the flow
velocity u, and the distribution f into mean and fluctuating parts using a mean field
decomposition, i.e., a field or scalar Q is may be decomposed as Q D Q0 C ıQ

7See also le Roux and Webb (2007).
8See Shalchi (2009) for a general discussion of this approach.
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such that the ensemble average hQi D Q0 and hıQi D 0. It does not necessarily
follow that ıQ � Q0, although in quasi-linear theory, this assumption is made to
eliminate second-order and higher correlations. Hence,

E D E0 C ıE; hıEi D 0I
B D B0 C ıB; hıBi D 0I
u D u0 C ıu; hıui D 0I
f D f0 C ıf; hıf i D 0:

The fields are assumed to vary smoothly on the large scale L, and randomly varying
fluctuations occur on the smaller correlation length scale `c � L. The power
spectrum of fluctuations ranges from scales on the order of the correlation length to
smaller than the particle gyroradius rg . In the analysis here, we assume an infinitely
extended wave number power spectrum for simplicity, rather than include the details
of the dissipation range part of the spectrum. The total electric field, in the MHD
approximation, is

E D �u � B;

where u and B are measured in the observer’s frame. Applying the small amplitude
assumption to the mean field decomposition of the electric field E yields

E0 D �u0 � B0; and ıE D �u0 � ıB � ıu � B0;

after neglecting quadratically small terms (ıu � u0, and ıB � B0). We will neglect
the induced turbulent electric field ıE (although see le Roux et al. for the case where
this term is retained). We will make the assumption that the particle distribution is
co-moving with the background plasma frame, so that the mean motional electric
field term is zero, E0 D 0.

The mean field decomposition above is substituted into the collisionless Boltz-
mann equation (5.30). The ensemble averaged form of this equation is then
subtracted from the full, unaveraged transport equation (5.30), yielding a transport
equation for the rapidly fluctuating variable ıf . This equation contains the differ-
ences of second-order terms and their corresponding ensemble averages. Since we
assume from the outset that ıf � f0, ıB � B0, the quadratic terms are small and
can be neglected (Exercise). The linearized equation for the correction ıf is

@

@t
ıf C p

m
� rıf C .p �˝/ � @ıf

@p
D �q p � ıB

m
� @f0
@p
; (5.31)

where ˝ D qB0=m is the particle gyrofrequency. The corresponding mean-field
equation for the distribution function f0 is given by

@f0

@t
C p
m

� rf0 C .p �˝/ � @f0
@p

D �q
�

p � ıB
m

� @ıf
@p

�

; (5.32)
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where the right-hand nonlinear term describes the perturbing effect of the fluctuating
magnetic field on the scattered particle distribution. As we illustrate below, this term
introduces a diffusion coefficient in pitch-angle space. The closure of (5.32) can be
affected by solving the quasi-linear equation (5.31) for ıf , and then evaluating the
ensemble-averaged term in (5.32).

Consider a homogeneous, infinitely extended plasma system with Cartesian
coordinates .x; y; z/with the z-axis aligned with the mean magnetic field B0 D B0 Oz.
Since the turbulence is comprised of slab turbulence with wave vectors along
the mean magnetic field and 2D turbulence with fluctuations and wave vectors
transverse to B0, we have

ıB.x; y; z/ D ıBx.x; y/Ox C ıBy.x; y/Oy C ıBx.z/Ox C ıBy.z/Oy;

where the 2D component ıBx=y.x; y/ describes the magnetic field fluctuations that
convect with the background flow. The second set of terms ıBx=y.z/ comprises the
slab or Alfvénic component. For notational convenience, we express magnetic field
variations as ıBx=y and this includes both the slab and 2D components.

The Cartesian form of the momentum coordinates p D .px; py; pz/ in the
mean-field aligned co-moving coordinate system (pz is along the mean-field
direction) can be expressed in terms of spherical coordinates, so that p D
p.sin 
 cos�; sin 
 sin�; cos 
/, where p is the particle momentum magnitude, 

the particle pitch-angle, and � the particle phase angle. Consider the right-hand side
of (5.31),

.p � ıB/ � rpf0 D p.ıBz sin 
 sin� � ıBy cos 
; ıBx cos 
 � ıBz sin 
 cos�;

ıBy sin 
 cos� � ıBx sin 
 sin�/ � rpf0

D .p � ıB/x @f0
@px

C .p � ıB/y @f0
@py

C .p � ıB/z @f0
@pz

:

On using the results,

@

@px
D sin 
 cos�

@

@p
C cos 
 cos�

1

p

@

@

� sin�

p sin 


@

@�
I

@

@py
D sin 
 sin�

@

@p
C cos 
 sin�

1

p

@

@

C cos�

p sin 


@

@�
I (5.33)

@

@pz
D cos 


@

@p
� sin 


1

p

@

@

;

we find that

� q

m

�
p � ıB � rpf0

� D �j˝j
B

�
ıBx sin� � ıBy cos�

� @f0
@

;

veronica.belser@uah.edu



230 5 Charged Particle Transport in a Collisionless Magnetized Plasma

and the coefficient of @f0=@p is identically zero. In deriving this result, we have
invoked the further assumption that the ensemble averaged distribution function
is gyrotropic i.e., is independent of the particle phase angle �. Thus, effects such
as diffusion perpendicular to the mean magnetic field and gradient and curvature
drifts are neglected in this description of particle transport. This is equivalent
to assuming that the particle gyroradius rg � `c , the correlation length of
the turbulent fluctuations. Equivalently, this requires that the particle gyroperiod

g D ˝�1 � 


p
c .

The evolution equation for ıf is a first-order quasi-linear equation and therefore
can be solved using the method of characteristics. Accordingly, we have the
following set of seven ordinary differential equations to solve,

d

dt
ıf D �j˝j

B

�
ıBx sin� � ıBy cos�

� @f0
@


I (5.34)

dr
dt

D p
m

I (5.35)

dp
dt

D p �˝: (5.36)

For particles located initially at r0 D r.t0/ D .x0; y0; z0/ with momentum p0 and
phase angle �0, we can solve the above odes to obtain

�.t 0/ D �0 �˝.t 0 � t0/I x.t 0/ D x0 � rg
�
sin�.t 0/ � sin�0

� I
y.t 0/ D y0 C rg

�
cos�.t 0/ � cos�0

� I z.t 0/ D z0 C v cos 
.t 0 � t0/I

ıf .r;p; t / D
Z t

t0

�

�j˝j
B

�
ıBx sin�0 � ıBy cos�0� @f 0

0

@


�

dt 0 C ıf .r0;p0; t0/;

(5.37)

where rg D v sin 
=˝ is the particle gyroradius, and �0 
 �.t 0/, ıBi .r.t 0/; t 0/, and
f0 D f0.r.t 0/;p.t 0/; t 0/. The particles evidently follow undisturbed helical orbits
along B0 since p and 
 are unchanged during the interaction period, this being
less than the characteristic time scale for particles to interact with small-amplitude
turbulence, viz. 
pc . Consequently, 
pc must be restricted so that t 0 � t0 remains
sufficiently small that ıf � f0.

The above expressions can be rewritten in terms of the time difference �t 

t � t 0, where t denotes the observation time and t 0 is the time during which the
particle executes a helical trajectory. Hence, �t 2 Œt � t0; 0� so this substitution
implies that we follow the particle trajectory backward in time. Rewriting the
solution for ıf yields

ıf .r;p; t / D
Z t�t0

0

�

�˝
B

�
ıBx sin� � ıBy cos�

� @f0
@


�

d.�t/C ıf .r0;p0; t0/;
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where � D �.t��t/, ıBi .r.t��t/; t��t/, and f0 D f0.r.t��t/;p.t��t/; t�
�t/. The expressions for the undisturbed particle orbits are now independent of the
initial values, and are given by

�.t��t/ D�.t/C˝.�t/I x.t��t/Dx.t/�rg .sin�.t��t/� sin�.t// I
y.t ��t/ D y.t/C rg .cos�.t ��t/ � cos�.t// I z.t ��t/

D z.t/C �v cos 
.�t/:

Note that t � t0 � 

p
c and thus jr � r0j � `c . If �k denotes the parallel mean free

path for the spatial diffusion of particles, then the assumption of small amplitude
turbulence implies that `c � �k. The overall ordering of scales is therefore rg �
`c � �k � L.

Having obtained the solution ıf , we can evaluate the ensemble-averaged colli-
sion term on the right-hand-side of (5.32). Introducing

	1 
 � cos�ıBy C sin�ıBx I 	2 
 sin�ıBy C cos�ıBx;

we have

q

m

�

p � ıB � @
@p
ıf

�

D j˝j
B

�

.� cos�ıBy C sin�ıBx/
@

@

ıf

�

Cj˝j
B

�
cos 


sin 

.sin�ıBy C cos�ıBx/

@

@�
ıf

�

D j˝j
B

@

@

hıf 	1i C j˝j

B

cos 


sin 


@

@�
hıf 	2i

� j˝j
B

cos 


sin 


�

ıf
@	2

@�

�

D j˝j
B

�
@

@

hıf 	1i C cos 


sin 

hıf 	1i

�

C j˝j
B

cos 


sin 


@

@�
hıf 	2i

D j˝j
B

1

sin 


@

@

.sin 
 hıf 	1i/C j˝j

B

cos 


sin 


@

@�
hıf 	2i ;

after using @	2=@� D �	1. Since f0 is independent of gyrophase, we neglect the
last term. Thus, in spherical coordinates, we have the relation

�q
�

p � ıB
m

� @ıf
@p

�

D � 1

sin 


@

@


� j˝j
B

sin 

˝�
ıBx.r; t / sin�.t/ � ıBy.r; t / cos�.t/

�
ıf
˛
�

:
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On substituting for ıf and using the relations,

cos�.t/ D cos .�.t ��t/ �˝.�t//
D cos�.t ��t/ cos.˝�t/C sin�.t ��t/ sin.˝�t/I

sin�.t/ D sin .�.t ��t/ �˝.�t//
D sin�.t ��t/ cos.˝�t/ � cos�.t ��t/ sin.˝�t/:

we obtain a diffusion equation in particle pitch angle,

� q
�

p � ıB
m

� @ıf
@p

�

D 1

sin 


@

@


�

D



@f0

@


�

; (5.38)

where the diffusion coefficient D

 is given by

D

 .r; t / D
�
˝

B

�2
sin 


Z 1

0

�
Ryyc

2 � .Rxy �Ryx/cs CRxxs
2
�

� cos.˝�t/d.�t/

C
�
˝

B0

�2
sin 


Z 1

0

�
RyycsCRxyc2�Ryxs2�Rxxcs

�
sin.˝�t/d.�t/:

Here, c 
 cos�.t � �t/ D cos .�.t/C˝�t/ and s D sin�.t � �t/ D
sin .�.t/C˝�t/, and Rij is the two-point, two-time correlation function for the
magnetic fluctuations along the unperturbed particle orbit, i.e.,

Rij .�r.�t/;�t/ 
 hıBi .0/ıBj .�r.�t/;�t/i:

We then have

Rij .r; r.t ��t/; t; t ��t/ D ˝
ıBi .r; t /; ıBj .r.t ��t/; t ��t/˛ ;

where the components of r.t ��t/ are determined above.
Observe that in deriving the diffusion form of the particle transport equation,

we moved the pitch-angle derivative of the distribution function f0 from under the
integral in the expression for ıf . There is an important implication embedded in
the time scales associated with the ordering of particle scattering and diffusion,


p
c � 
�. This ordering implies that Rij ! 0 on a much shorter time scale than

the time scale on which the particle orbit deviates from an undisturbed trajectory,
implying that the integrand contributes only over the time 
pc rather than 
� to the
time integration. Since the gyrotropic-independent distribution function f0 varies on
a time scale comparable to the pitch-angle diffusion time 
�, derivatives of f0 can be
taken out from under the integral. The second implication is that we can then extend
the integral describing pitch-angle diffusion to 1 (t0 ! �1 in the expression
for ıf ).
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The turbulence responsible for scattering the particles has been assumed to be
axisymmetric about the mean magnetic field B0 D B0 Oz. The axisymmetry condition
for the correlation matrix R.ır/ under an arbitrary rotation �0 about B0 D B0 Oz is
expressed by

R.ır/ D OR.OT ır/OT ;

where both the left- and right-hand sides are independent of �0, and O is the rotation
matrix

O D
0

@
cos�0 sin�0 0

� sin�0 cos�0 0
0 0 1

1

A ;

and OT is the transpose. Hence, the elements of the left and right matrices

R.ır/ D
0

B
@

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

1

C
ADOR.OT ır/OT

D
0

B
@

Rxxc
2CRxyscCRyxscCRyys2 �RxxscCRxyc2�Ryxs2CRyysc RxzcCRyzs

�Rxxsc�Rxys2CRyxc2CRyysc Rxxs
2�RxyscCRyxscCRyyc2 �RxzsCRyzc

RzxcCRzys �RzxsCRzyc Rzz

1

C
A ;

(5.39)

are independent of �0. Inspection of the axisymmetric matrix conditions show that
the integrands of the diffusion coefficient D

 are therefore independent of �0.
Consequently, using �0 D �.t ��t/, we have

ıx 
 x.t ��t/ � x.t/
D rg Œsin�.t/ � sin�.t ��t/�
D rg Œsin�.t ��t/.cos.˝�t/ � 1/ � cos�.t ��t/ sin.˝�t/�

D �rg sin.˝�t/;

etc. if we set �.t ��t/ D 0. This therefore yields

ır D 	�rg sin.˝�t/; rg.1 � cos.˝�t//;�v cos 
.�t/


;

from which we find

�
OT ır

�
x

D �rg Œcos�.t ��t/ sin˝�t C sin�.t ��t/.1 � cos˝�t/� I
�
OT ır

�
y

D rg Œ� sin�.t ��t/ sin˝�t C cos�.t ��t/.1 � cos˝�t/� I
�
OT ır

�
y

D �v cos 
�t;
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which corresponds to the unperturbed helical trajectories derived by substituting the
trigonometric expansions for cos�.t/ etc. as done above. Thus, for axisymmetric
turbulence, the Rij terms in the pitch-angle diffusion coefficient are independent of
�.t ��t/, so we may without loss of generality set �.t ��t/ D �=2, significantly
simplifying the expression for the diffusion coefficient,

D

 D sin 


�
˝

B0

�2 Z 1

0

�
cos.˝�t/Rxx � sin.˝�t/Ryx



d.�t/: (5.40)

The integral (5.40), divided by B2
0 , is essentially the particle decorrelation time. In

addition, setting �.t ��t/ D �=2 allows the arguments of the two-point, two-time
correlation functions to be expressed as

x.t ��t/ D x.t/C rgŒcos.˝�t/ � 1�I y.t ��t/ D y.t/ � rg sin.˝�t/I
z.t ��t/ D z.t/ � v cos.
�t/:

By introducing a mean magnetic field B0 D B0 Oz into Eq. (5.32), and using � D
cos 
 , the cosine of the particle pitch-angle, we obtain the simplest 1D form of the
collisionless transport equation as

@f0

@t
C �v

@f0

@z
D @

@�

�

D��

@f0

@�

�

; (5.41)

where the Fokker-Planck diffusion coefficient in pitch-angle space is given by

D�� D .1 � �2/
�
˝

B0

�2 Z 1

0

�
cos.˝�t/Rxx � sin.˝�t/Ryx

�
d.�t/: (5.42)

For slab turbulence, the pitch-angle scattering diffusion coefficient can be further
simplified since Ryx D 0, yielding the standard expression

D�� D .1 � �2/
�
˝

B

�2 Z 1

0

Rslabxx cos.˝�t/d.�t/: (5.43)

Using the results of the previous section, we may evaluate D�� for slab turbulence.
Recall that

Rxx D
Z
d3kP slab

xx .k/eik�r

D
Z 2�

0

Z 1

0

Z 1

�1
gslab.kk/

ı.k?/
k?

eik�rk?d
dk?dkk

D 4�

Z 1

0

gslab.kk/eikk
zdkk

D 4�

Z 1

0

gslab.kk/eikk
�vdkk;
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where we used z D �v cos 
 t . On replacing �t by t in (5.43), we have

D�� D 4�.1 � �2/
�
˝

B

�2 Z 1

0

Z 1

0

gslab.kk/e�i.k
k
�v�˝/tdkkdt

D 4�2.1 � �2/
�
˝

B

�2 Z 1

0

gslab.kk/ı.kk�v �˝/dkk

D 4�2.1 � �2/
�
˝

B

�2
gslab

�

kk D ˝

�v

�

:

Thus, for slab turbulence, energetic charged particles diffuse in pitch angle due to
their scattering with waves that satisfy the resonance condition �vkk D ˝.

Exercises

1. Rewrite the Vlasov equation (5.30) using a mean field expansion for the
electromagnetic variables, assuming that the particle distribution function is
co-moving with the plasma (thus ensuring that E0 D 0), and neglecting the
fluctuating electric field term. Hence derive (5.31) and (5.32).

2. Derive the relations (5.33) and hence show that

� q

m

�
p � ıB � rpf0

� D �˝
B

�
ıBx sin� � ıBy cos�

� @f0
@

:

5.5 Diffusion Perpendicular to the Mean Magnetic Field:
The Nonlinear Guiding Center Theory

To determine the transport of energetic particles perpendicular to a mean magnetic
field is not possible within a gyrophase averaged formulation of the Fokker-Planck
equation. Instead, we can compute directly the perpendicular spatial diffusion
coefficient �? from the Fokker-Planck coefficients. Recall that the mean square
displacement is given by

˝
.�x/2

˛ D ˝
.x.t/ � x.0//2˛ ;

for an averaging operator h: : :i. Several forms of diffusion can be described if we
suppose that the following temporal scaling holds for the spatial variance

˝
.�x/2

˛ � t � :

The following regimes are typically identified:

1. 0 < � < 1: subdiffusion;
2. � D 1: regular Markovian diffusion;
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3. 1 < � < 2: superdiffusion, and
4. � D 2: free streaming or ballistic particle motion.

There have been suggestions that energetic particles can be subdiffusive, and at
early times in an impulsive solar energetic particle event, particles are typically
free streaming. Over long time scales, however, particle motion is more typically
diffusive.

The diffusion coefficient is defined as

�xx D lim
t!1

˝
.�x/2

˛

2t
;

where we assume that x is normal to the mean magnetic field. To estimate the spatial
variance, we appeal to the Taylor-Green-Kubo (TGK) formalism. In general, the
variance is given by

˝
.�x/2

˛
.t/ D

*�Z t

0

vx.
/d


�2+

D
Z t

0

d


Z t

0

d�hvx.
/vx.�/i

D
Z t

0

d


Z 


0

d�hvx.
/vx.�/i C
Z t

0

d


Z t




d�hvx.
/vx.�/i:

On assuming temporal homogeneity, i.e., that the velocity correlation depends only
on the time difference, then we choose

hvx.
/vx.�/i D hvx.
 � �/vx.0/i

for the first integral, and

hvx.
/vx.�/i D hvx.� � 
/vx.0/i

for the second, to obtain

˝
.�x/2

˛
.t/ D

Z t

0

d


Z 


0

d�hvx.
 � �/vx.0/i C
Z t

0

d


Z t




d�hvx.� � 
/vx.0/i

D
Z t

0

d


Z 


0

d�hvx.�/vx.0/i C
Z t

0

d


Z t�


0

d�hvx.�/vx.0/i;

after using the transformations 
 � � ! � and � � 
 ! � in the respective integrals.
These integrals can be simplified using partial integration and applying Leibnitz’
rule to obtain
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˝
.�x/2

˛
.t/ D 


Z 


0

d�hvx.�/v0.0/i
ˇ
ˇ
ˇ
ˇ

t

0

�
Z t

0

d

hvx.
/vx.0/i

C 


Z t�


0

d�hvx.�/vx.0/i
ˇ
ˇ
ˇ
ˇ

t

0

C
Z t

0

d

hvx.t � 
/vx.0/i

D t

Z t

0

d�hvx.�/vx.0/i �
Z t

0

d

hvx.
/vx.0/i

C
Z t

0

d

hvx.t � 
/vx.0/i

D
Z t

0

d
.t � 
/hvx.
/vx.0/i C
Z t

0

d

hvx.t � 
/vx.0/i

D 2

Z t

0

d
.t � 
/hvx.
/vx.0/i:

The running diffusion coefficient dxx.t/ is defined as

dxx.t/ D 1

2

d

dt

˝
.�x/2

˛
.t/

D 1

2

d

dt
2

Z t

0

.t � 
/hvx.
/vx.0/i

D
Z t

0

d
hvx.
/vx.0/i:

The limit dxx.t ! 1/ defines diffusive particle transport, therefore

�xx D
Z 1

0

d
hvx.
/vx.0/i;

which is the Kubo formula for the diffusion coefficient.
A detailed discussion of guiding center motion of energetic charged particles

can be found in many plasma text books and so is not repeated here. Instead, if we
assume that background magnetic field is varying slowly, that for any of the slab,
2D, or composite turbulence models discussed above, the guiding center velocity
(assuming B D B0 Oz C ıB) is given by

vgx.t/ ' vz.t/
ıBx

B0
I vgy ' vz.t/

ıBy

B0
:

Note that the assumption of slab, 2D, or composite turbulence models implies that
ıBz D 0. Particle motion is thus a superposition of the particle gyromotion and
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the stochastic motion of the particle’s guiding center, which follows the random
motion of magnetic field lines. The gyromotion can be neglected when computing
a diffusion coefficient.

The first systematic derivation of the perpendicular diffusion coefficient was
proposed by Matthaeus et al. (2003) and is called the nonlinear guiding center
(NLGC) theory. Improvements and extensions to the original model have been
made9 but the original development is very instructive in its simplicity. To ensure
agreement with numerical simulations of particles experiencing scattering in low
frequency turbulence, we introduce a parameter a (typically taken to be 1=3) that
allows for slight deviations from purely guiding center motion, and take

vgx D avz
ıBx

B0
:

This is reasonable since the magnetic field can occasionally experience variation
on scales that are not necessarily slowly varying. The TGK expression for the
perpendicular diffusion coefficient is

�xx D
Z 1

0

dt hvgx.t/vgx.0/i

D a2

B2
0

Z 1

0

dt hvz.t/ıBx.t/vz.0/ıB
�
x .0/i :

The fourth-order correlation introduces a closure problem. This is frequently
resolved by the assumption that the fourth-order correlation can be replaced by
the product of second-order correlations (motivated by the example of Gaussian
statistics), which yields

�xx D a2

B2
0

Z 1

0

dt hvz.t/vz.0/i hıBx.t/ıB�
x .0/i :

Since the particle velocity along the field is mediated by pitch-angle scattering, we
may suppose that particle distribution becomes approximately isotropic on diffusion
time scales and that there is a decorrelation time scale associated with the parallel
velocity. The decorrelation time will be related to the parallel mean free path, so
we can use an exponential model to describe the two-point velocity correlation
function,

hvz.t/vz.0/i D v2

3
e�vt=�

k :

9Well summarized by Shalchi (2009)

veronica.belser@uah.edu



5.5 Diffusion Perpendicular to the Mean Magnetic Field... 239

The magnetic correlation function Rxx.t/ D hıBx.t/ıB�
x .0/i can be expressed as a

Fourier transform

ıBx.x; t / D
Z
d3kıBx.k; t /eik�x ) Rxx.t/ D

Z
d3k

˝
ıBx.t/ıB

�
x .0/e

ik��x˛ ;

under the assumption of homogeneous turbulence.
At this point, it is still unclear how to further decompose the ensemble averaged

integrand in the magnetic correlation function. Corrsin (1959) suggested that at
long diffusion times, the probability distribution of particle displacements and the
probability distribution of the Eulerian velocity field would become statistically
independent of each other – this is Corrsin’s independence hypothesis. At large
values of the diffusion time, the independence hypothesis asserts that the joint
average in Rxx can be expressed as the product of two separate averages, i.e.,

˝
ıBx.t/ıB

�
x .0/e

ik��x˛ D hıBx.t/ıB�
x .0/i

˝
eik��x˛ :

Applying Corrsin’s independence hypothesis then yields

Rxx.t/ D
Z
d3kPxx.k; t /

˝
eik��x˛ ;

requiring only that we estimate the characteristic function
˝
eik��x

˛
. The simplest

approximation is to assume a Gaussian distribution of the particles, so that

˝
eik��x˛ D exp

�

�1
2

˝
.�x/2

˛
k2x � 1

2

˝
.�y/2

˛
k2y � 1

2

˝
.�z/2

˛
k2z

�

:

Since we are considering time scales that correspond to large values of the diffusion
time, we can approximate the parallel and perpendicular transport as diffusion, so
that

˝
.�x/2

˛ D 2t�xx for example, yielding

˝
eik��x˛ D exp

h
��xxk2xt � �yyk2yt � �zzk

2
z t
i
:

Subject to these six assumptions, we obtain a nonlinear integral equation for the
perpendicular diffusion coefficient

�xx D a2

B2
0

Z
d3k

Z 1

0

dtPxx.k; t / exp
h
�vt=�k � �xxk2xt � �yyk2yt � �zzk

2
z t
i
:

On expressing the correlation tensor Pxx.k; t / as the product of a stationary tensor
Pxx.k/ and a dynamical correlation tensor � .k; t /, i.e., Pxx.k; t / D � .k; t /Pxx.k/,
and assuming the exponential form,

� .k; t / D e��.k/t ;
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allows the time integral to be solved

�xx D a2v2

3B2
0

Z
d3k

Pxx

v=�k C �xxk2x C �yyk2y C �zzk2z C �.k/
: (5.44)

The nonlinear integral equation (5.44) is the central result of the NLGC theory,
describing the diffusion of energetic particles perpendicular to the mean magnetic
field where ıBz D 0. The particle transport results from a combination of pitch-
angle scattering along the magnetic field while the underlying magnetic field is
experiencing random diffusive motion. The superposition of parallel transport and
random magnetic field transport of the particle guiding center leads to a nonlinear
diffusion of particle normal to the large-scale magnetic field. As indicated, more
sophisticated treatments of the NLGC theory have been developed since. The
nonlinear integral equation (5.44) can be solved approximately and analytically for
the slab, 2D, and composite turbulence models in the magnetostatic limit.10

5.6 Hydrodynamic Description of Energetic Particles

In deriving the cosmic ray transport equation, we have assumed that the underlying
energetic particle distribution function is isotropic to zeroth order. We further
assumed that the energetic particle number density and momentum is sufficiently
small that the background flow in which the “scattering centers” (Alfvén waves or
MHD turbulence) are convected is not altered by the energetic particle population,
nor is the convection electric field. Energetic particles therefore behave essentially
as massless particles that may possess a significant internal energy, which will be
expressed through an isotropic or scalar pressure, say Pc , and energy density Ec ,
and an energy flux Fc .11 In this case, the general system of MHD equations will be
modified by the inclusion of the cosmic rays, through

@n

@t
C r � .nu/ D 0I (5.45)

@G
@t

C r � ˘ D 0I (5.46)

@W

@t
C r � S D 0; (5.47)

10Zank et al. (2004) and Shalchi et al. (2004).
11Webb (1983) and Zank (1988).
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5.7 Application 1: Diffusive Shock Acceleration

It is quite straightforward to see that a particle gains energy by interacting once with
a shock, most easily seen for a superluminal shock perpendicular to the magnetic
field. In this case, we can suppose that a particle conserves its first adiabatic moment,

p2?;1
B1

D p2?;2
B2

;

where the subscripts 1,2 denote upstream and downstream of the shock. At a
perpendicular shock, the jump in magnetic field B2=B1 is equal to the shock
compression ratio, showing that the perpendicular momentum of an energetic
particle can be increased by a factor of 2 or less. This is not a particularly large
energy gain, and the effect is of course annulled by the expansion of the downstream
medium to the original density. Since the process is purely kinematic and reversible,
the energetic particle spectrum is essentially the preacceleration spectrum shifted
in energy. The situation is quite different when diffusive effects are included
since the number of times that a particle interacts with a shock then becomes a
random variable and some particles, by interacting many times with the shock,
achieve very high energies. The stochastic character of particles interacting with the
shock diffusively corresponds to an increase in entropy for the energetic particle
distribution (as it does for the thermal background plasma), with the result that
the accelerated particle spectrum is relatively independent of the details of the
preacceleration spectrum. We discuss the macroscopic approach to the diffusive
acceleration of energetic particles at a shock based on the transport equation that
we have derived above. This approach was pioneered by Krymsky (1977), Axford
et al. (1977), and Blandford and Ostriker (1978), and is well reviewed by Drury
(1983) and Forman and Webb (1985).

The shock is taken to be an infinite plane separating a uniform upstream and
downstream state, and we choose a frame in which the shock front is stationary.
We shall suppose that all quantities depend only on the x spatial coordinate (a 1D
problem) and that the flow velocity is steady, given by

u.x/ D
�

u1 x < 0

u2 x > 0
;

where u1 and u2 are the upstream and downstream constant velocities. To determine
the boundary conditions that the energetic particle distribution must satisfy at the
shock, we require first that the particle number density must be conserved across
the shock i.e., particles are neither created nor lost at the shock, so that

Œf � D f j0C0� D 0; (5.55)
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where x D 0� and x D 0C denote locations infinitesimally close to the shock on
the upstream and downstream side respectively. The second condition (the transport
equation governing particle transport is second-order) that we require is that the
normal component of the particle current is continuous if there is no source at the
surface, and changes by an amount equal to the particle injection rate at the surface.
To determine the current, observe that the transport equation

@f

@t
C u � rf � p

3
r � u

@f

@p
D r � .� � rf /;

can be expressed as

@f

@t
C r �

�

�� � rf � p

3

@f

@p
u
�

C p

3
u � r @f

@p
C u � rf D 0

) @f

@t
C r � S C 1

p2
@

@p

�
p3

3
u � rf

�

D 0; (5.56)

where

S D �� � rf � p

3

@f

@p
u

is the energetic particle streaming in space and Jp D .p=3/u � rf is the
streaming in momentum space. Equation (5.56) expresses the transport equation
in fully conservative form in phase space, averaged over � and with the distribution
function close to isotropy. Because cosmic rays are highly mobile (v � u), the
omnidirectional density f cannot change abruptly, hence the normal component of
the net streaming S must be the same on both sides of any surface of discontinuity.
On assuming a steady state and integrating across a sharp discontinuity, we obtain
the second boundary condition that energetic particles must satisfy across a shock,

ŒS� D S � nj0C0� D Q.p/

4�p2
, �

�

� � rf C p

3

@f

@p
u
�

� n

ˇ
ˇ
ˇ
ˇ

0C

0�
D Q.p/

4�p2
: (5.57)

Here, n is the shock normal, and Q.p/ is the particle injection rate at the shock.
This form of the boundary conditions includes the effects of shock drift acceleration.
Note that the transport equation and the derived boundary conditions are appropriate
to relativistic particles i.e., only in the limit that the velocity W (where W is the
speed of the scattering frame or the observer’s frame relative to the frame in which
the electric field vanishes) is much less than the particle velocity v (W � v), as
well as particle drift (through the antisymmetric part of the spatial diffusion tensor
�). That the boundary conditions apply in the limit that W=v � 1 implies that the
boundary conditions (5.55) and (5.57) are valid only for particles of speed v �
u1 sec 
Bn, where 
Bn is the angle between the upstream magnetic field and the
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U2U1

Fig. 5.4 General form of the
solution (5.58) illustrating the
spatial exponential growth of
the distribution function
upstream of the shock and the
constant ambient value far
upstream

shock normal. Furthermore, the transport equation was derived in the limit of near
isotropy in the scattering frame, meaning that the particle distribution upstream and
downstream of the shock must remain close to isotropy. These conclusions can be
weakened slightly for the non-relativisitic form of the transport equation derived
above, but isotropy remains a critical assumption. This latter condition is not always
met at shocks where energetic particle distributions are often observed to be highly
anisotropic.

Consider the 1D transport equation with a constant upstream and downstream
velocity and solve the transport equation on either side of the shock, imposing
continuity of f .x; p/ as x ! ˙1. The transport equation becomes

ui
dfi

dx
� d

dx

�

�.x; p/
dfi

dx

�

D 0;

where i D 1; 2 (upstream, downstream) and �.x; p/ is the diffusion coefficient
parallel to the shock normal. The general solution is

fi .x; p/ D Ai.p/C Bi.p/ exp
Z x

0

u

�.s; p/
dsI

fi .x; p/ D f .˙1; p/C Œf .0; p/ � f .˙1; p/�
eb.x/ � eb.˙1/

1 � eb.˙1/
;

where b.x/ 
 R x
0
.u=�/ dx. If b.˙1/ are unbounded, the spatial dependence is

then given by

f .x; p/ D f .�1; p/C Œf .0; p/ � f .�1; p/� exp
Z x

0

u

�.s; p/
ds x < 0I

D f .0; p/ x > 0: (5.58)

The general solution (5.58) is illustrated in Fig. 5.4. The general solution f .x; p/
has a possible constant background of upstream particles f .�1; p/ plus an
accelerated population that increases toward the shock on a diffusive scale length
�.x; p/=u1 but remains constant downstream.
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The momentum spectrum of the energetic particle population is determined by
the streaming boundary condition (5.57) at the shock,

�u2
p

3

df .0; p/

dp
C u1

p

3

df .0; p/

dp
C u1 Œf .0; p/ � f .�1; p/� D Q.p/

4�p2
;

where we have used the result u1 Œf .0; p/ � f .�1; p/� D �@f=@x and have
allowed for the injection of Q.p/ particles at the shock per unit momentum per
cm2 s at the shock. This then yields the ordinary differential equation in momentum

p
df

dp
.0; p/C 3u1

u1 � u2
f .0; p/ D 3

u1 � u2

�

u1f .�1; p/C Q.p/

4�p2

�

;

illustrating that the source of the energetic particles is the background particle
population f .�1; p/ convected through the shock and locally injected particles.
Which particle population is more important depends on the relative flux and the
characteristic energies. On solving the equation for the particle spectrum, we obtain
the central result of diffusive shock acceleration theory,

f .0; p/ D 3

u1 � u2
p�q

Z p

pinj

.p0/q
�

u1f .�1; p0/C Q.p0/
4�p02

�
dp0

p0 ; (5.59)

where q D 3r=.r � 1/ and r D u1=u2 is the shock compression ratio. Here, pinj
is the injection momentum. The upper limit on particle momentum is particularly
important if time-dependent particle acceleration is considered, such as at inter-
planetary shock waves where the shock propagation time and evolution need to
be considered carefully since this places constraints on the time available for a
particle to experience acceleration.13 Time dependent diffusive shock acceleration is
discussed below. The spectrum of particles at energies well above the source energy
is therefore a power law / p�q . The characteristic compression ratio for a strong
shock is r D 4 for a gas with adiabatic index �g D 5=3, implying that q D 4, which
is very close to the index of 4.3 inferred for the source of galactic cosmic rays. For
weak shocks, the power law is steeper, indicating fewer high energy particles.

A very important point to note is that the spectral slope of the accelerated particle
spectrum is independent of the details of the scattering process i.e., the diffusion
coefficient, depending only the kinematics of the flow. The reason a power law
results is because the momentum gained by the particle on each shock interaction is
proportional to the momentum it already has and to the probability of its escaping
from the acceleration region. This is very nicely discussed by Bell (1978) from a
microscopic perspective.

In (5.59), the accelerated particle spectrum p�q is formed from the spectrum of
sources at lower momenta p0 < p. If no source of particles is present for momenta
above some pa, then f .0; p/ / p�q for all p > pa. If the spectrum of the source

13Zank et al. (2000).
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is steeper than p�q , then at large p, the accelerated spectrum will still approach
the p�q power law, but if the source is flatter (harder) than p�q , the reaccelerated
spectrum at high energies will have the same slope as the source i.e., the new
spectrum will not reflect the characteristics of the last acceleration. In general then,
a shock with q D 3r=.r � 1/ will produce a power law spectrum with p�q if the
source spectrum is mono-energetic or has a spectral slope steeper than q, but if the
source is harder such that q0 < q, the spectrum tends to p�q0

at large energies
(Exercise).

The basic time scale associated with diffusive shock acceleration is of the
order of �=u2. The importance of the acceleration time scale has to do with
the maximum energy to which a particle can be accelerated by a shock wave.
Observationally, galactic cosmic rays possess a source spectrum that is a power
law �p�4:3 over many decades up until about 1014 eV/nucleon, at which point the
spectrum begins to steepen (the knee). The maximum energy to which a galactic
cosmic ray can be accelerated is related presumably to either the time available
to accelerate the particle (the lifetime of shock wave responsible for particle
acceleration) or to the size of the acceleration region (both of which are possibly
related). Similarly, energetic particles accelerated in solar energetic particle (SEP)
events have a maximum energy. To estimate the maximum energy, whether at a
supernova drive shock wave or at an interplanetary shock requires that we know the
particle acceleration time scale, and that this then be related to, for example, the
characteristic time scale associated with the shock wave.14 To make the estimate for
the time scale of diffusive shock acceleration more precise, we consider a steady
planar shock at which a steady mono-energetic source of particles at the shock is
turned on at t D 0.15 We then seek time dependent solutions of the cosmic ray
transport equation across a discontinuous shock with f .t D 0; x; p/ D 0 and source
Qı.p � p0/ at the shock, located at x D 0. On introducing the Laplace transform

g.s; x; p/ D
Z 1

0

e�st f .t; x; p/dt;

the transport equation upstream (i D 1) and downstream (i D 2) of the shock
becomes

sg C ui
dg

dx
D �i

d2g

dx2
;

assuming for simplicity that � is independent of x. The solutions that satisfy the
boundary condition

g ! 0 as x ! ˙1 are g / exp.ˇix/;

14Zank et al. (2000).
15Axford (1981).
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where

ˇi D ui
2�i

"

1 � .�1/i
�

1C 4�i s

u2i

�1=2#

:

The boundary conditions at the shock are given by

Œf � D 0I
�

�
@f

@x
C p

3
u
@f

@p

�

D �nı.p � p0/;

where the square brackets denote as usual a jump in the enclosed quantity. On
writing g0.s; p/ D g.s; 0; p/ for the Laplace transform of the spectrum at the shock,
we find that

�1ˇ1g0 � �2ˇ2g0 C u1 � u2
3

p
dg0

dp
D 1

s
nı.p � p0/:

On letting Ai D
q
1C 4�i s=u2i � 1, we can rewrite this as

1

2
.u1A1 C u2A2/ g0 C u1g0 C u1 � u2

3
p
dg0

dp
D 1

s
nı.p � p0/;

which has the solution

g0.s; p/ D 3n

s.u1 � u2/

�
p

p0

��q
exp

�

�
Z p

p0

3

2

u1A1 C u2A2
u1 � u2

dp0

p0

�

:

By formally inverting the transform, the time-dependent spectrum of accelerated
particles at the shock is given by

f0.t; 0; p/ D 1

2�i

Z i1

�i1
g0.s; p/e

tsds:

To obtain the asymptotic behavior at large times, we consider the contribution of the
simple pole at s D 0, which gives the steady spectrum,

f0.1; 0; p/ D f0.1; p/ D 3n

u1 � u2

�
p

p0

��q
; p � p0; q D 3r

r � 1 ;

in agreement with the steady-state result. Obviously,

f0.t; p0/ D 3n

u1 � u2
D f0.1; p0/:
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At a general time t > 0 and momentum p > p0, we can express the spectrum
formally as

f0.t; p/ D f0.1; p/

Z t

0

�.t 0/dt 0;

where

�.t/ D 1

2�i

Z i1

�i1
exp Œts � h.s/� ds;

and

h.s/ D 3

2

Z p

p0

u1A1 C u2A2
u1 � u2

dp

p
:

The function �.t; p0; p/ is the probability distribution function for the time taken to
accelerate a particle from momentum p0 to p. In fact, since

Z 1

0

�.t/ exp.�ts/dt D expŒ�h.s/�;

and h.0/ D 0, we have that

Z 1

0

�.t/dt D 1;

indicating that the distribution is properly normalized. Hence, expŒ�h.s/� can be
thought of as the moment generating function for �.t/. Recall that to obtain the
mean we can differentiate h.s/ with respect to s and then set s D 0 to obtain an
expression for the mean acceleration time

hti D
Z 1

0

t�.t/dt D @

@s
h.0/

D 3

u1 � u2

Z p1

p0

�
�1

u1
C �2

u2

�
dp

p
: (5.60)

Thus, the important conclusion is that the time scale for the acceleration of particles
of momentum p at a shock not mediated by cosmic rays is simply


acc.p/ D 3

u1 � u2

�
�1

u1
C �2

u2

�

: (5.61)
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Exercises

1. Suppose that an upstream energetic particle distribution proportional to p�a is
convected into a shock with compression ratio r from upstream. In the absence
of particle injection at the shock itself, calculate the reaccelerated downstream
energetic particle spectrum, and explain what happens if a < q D 3r=.r � 1/ or
a > q.

2. Suppose that a shock of compression ratio r accelerates n cm�3 particles injected
as a monoenergetic source ı.p � p0/ at the shock, so producing a downstream
energetic particle spectrum / p�q . Now suppose the shock propagates out
of the system and the compressed gas relaxes back to the ambient state. Let
another shock propagate into the system and suppose that this shock reaccelerates
the decompressed accelerated power law spectrum that was accelerated earlier.
Assume no additional injection of particles into the diffusive shock acceleration
process. Compute the energetic particle distribution reaccelerated at the second
shock. Again, suppose that the second shock disappears out of the system and the
energetic particle decompresses again. Derive the energetic particle spectrum if a
third shock reaccelerates the previously accelerated spectrum of particles. What
can you infer about the effect of multiple accelerations and decompressions of a
spectrum of energetic particles by multiple shock waves?

5.8 Application 2: The Modulation of Cosmic Rays
by the Solar Wind

The fundamental concepts underlying the modulation of galactic cosmic rays by
the solar wind can be developed on the basis of a simplified form of the cosmic
ray transport equation. The solar wind flows supersonically and nearly radially
outward from the sun and carries the heliospheric magnetic field. The large-scale
magnetic field follows the Parker spiral. On smaller scales, as discussed, the solar
wind convects magnetic irregularities – magnetic turbulence – that are responsible
for scattering galactic cosmic rays. The charged particles gyrate about the mean
magnetic field but experience pitch-angle scattering due to the magnetic turbulence,
meaning that the cosmic ray transport equation is a suitable description of particle
transport for galactic cosmic rays attempting to enter the heliosphere. That cosmic
rays experience scattering in the outwardly flowing solar wind means that they
experience considerable difficulty in reaching the inner heliosphere. Consequently,
the intensity of cosmic rays in the inner heliosphere will be much lower than in the
outer heliosphere.

To ensure a tractable description, consider the cosmic ray transport equation in
the absence of a large-scale magnetic field and adopt a 1D spherically symmetric
geometry. For a constant radial solar wind speed u, the steady-state spherically
symmetric 1D cosmic ray transport equation becomes
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first-order, we find that the scattering of PUIs in a turbulent
magnetofluid introduces a term analogous to that of heat con-
duction. The second-order correct set of equations describing
PUIs in a multi-fluid context leads to the introduction of the
viscous terms that define the PUI stress tensor. We systemati-
cally derive the system of multi-fluid equations that describe a
background Maxwellian proton and electron plasma plus a non-
Maxwellian PUI population. Because we assume Maxwellian
distributions for the background protons and electrons, the
background plasma contributes no heat flux or stress tensor
terms. For completeness, we derive a “single-fluid” description
analogous to the equations of magnetohydrodynamics (MHD)
that describes a PUI mediated plasma. The “single-fluid” model
possesses collisionless heat flux and viscous stress terms, un-
like the MHD equations. In Section 3, we derive the dispersion
relation for linear waves in a PUI mediated plasma and dis-
cuss the general properties of waves in a multi-fluid PUI me-
diated plasma. In Section 4, we present numerical solutions to
the dispersion relation for the supersonic solar wind, the IHS
plasma, and the plasma in the VLISM. The multi-fluid waves are
also compared to the more familiar two-fluid plasma modes. In
Section 5, we present an analysis and numerical solutions of the
linearized single-fluid model, presenting results for the VLISM
only. In the final section, we discuss and summarize our results.

2. DERIVATION OF THE MULTI-FLUID MODEL

2.1. First-order Correct Multi-fluid Model: Heat Conduction

In deriving a multi-fluid model that includes PUIs self-
consistently, we shall assume that the distribution function for
the background protons and electrons are each Maxwellian,
which ensures the absence of any heat flux or stress tensor
terms for the background plasma. The exact form of the
continuity, momentum, and energy equations governing the
thermal electrons and protons are therefore given by

∂ne

∂t
+ ∇ · (neue) = 0; (4)

mene

(
∂ue

∂t
+ ue · ∇ue

)
= −∇Pe − ene (E + ue × B) ; (5)

∂Pe

∂t
+ ue · ∇Pe + γePe∇ · ue = 0, (6)

for the electrons, and

∂ns

∂t
+ ∇ · (nsus) = 0; (7)

mpns

(
∂us

∂t
+ us · ∇us

)
= −∇Ps + ens (E + us × B) ; (8)

∂Ps

∂t
+ us · ∇Ps + γsPs∇ · us = 0, (9)

for the protons. Here ne/s , ue/s , and Pe/s are the usual macro-
scopic fluid variables for the electron/proton number density,
velocity, and pressure respectively, γe/s the electron/proton adi-
abatic index, E the electric field, B the magnetic field, and e the
charge of an electron.

Pickup ions initially form an unstable distribution that ex-
cites Alfvénic fluctuations. The self-generated fluctuations and
in situ turbulence serve to scatter PUIs in pitch angle. The
Alfvén waves and magnetic field fluctuations both propa-
gate and convect with the bulk velocity of the system U =
U(ue, us , up, ne, ns, np,me,mp), where np and up refer to PUI
variables. The PUIs are governed by the Fokker–Planck trans-
port equation with a (for now unspecified) collisional term
δf/δt |c,

∂f

∂t
+ v · ∇f +

e

mp

(E + v × B) · ∇vf = δf

δt

∣∣∣∣
c

, (10)

for average electric and magnetic fields E and B. We assume
that the velocity v of PUIs is always non-relativistic. The
transport Equation (10) has to be transformed into a frame that
ensures there is no change in PUI momentum and energy due
to scattering. For the present, assume that the cross-helicity σ
is nonzero and let

v = c + U + σVA ⇐⇒ c = v − U − σVA, (11)

where VA is the Alfvén velocity and c is the random velocity.
The transport equation is therefore

∂f

∂t
+ (Ui + σVAi + ci)

∂f

∂xi

+

[
e

mp

(E + U × B)i

+
e

mp

(c × B)i − ∂Ui

∂t
− (Uj + σVAj + cj )

∂Ui

∂xj

− σ

(
∂VAi

∂t
− σ (Uj + σVAj + cj )

∂VAi

∂xj

)]
∂f

∂ci

= δf

δt

∣∣∣∣
c

.

(12)

The velocity U is still unspecified, so we choose U such that
E′ ≡ E + U × B = 0. This assumption corresponds to choosing

U⊥ = U − U‖ = E × B
B2

≡ U, (13)

since we choose U‖ = 0 (U‖ is parallel to B and therefore
arbitrary). This corresponds to expressing (10) in the guiding
center frame. The transformation to the velocity U then yields

∂f

∂t
+ (Ui + ci)

∂f

∂xi

+

[
e

mp

(c × B)i − ∂Ui

∂t

− (Uj + cj )
∂Ui

∂xj

]
∂f

∂ci

= δf

δt

∣∣∣∣
c

, (14)

after setting the cross-helicity σ = 0. By taking moments
of (14), we can derive the evolution equations for the macro-
scopic PUI variables, such as the number density np = ∫

f d3c,
velocity npupi

= ∫
cif d3c, and so on. Although unspecified

for now, we shall assume that moments of the collisional term
δf/δt |c are zero. This can be checked against the particular
scattering model that we use below. The zeroth moment of (14)
yields the continuity equation for PUIs,

∂np

∂t
+

∂

∂xi

(np(Ui + upi
)) = 0, (15)

4
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where up is the PUI bulk velocity in the guiding center frame.
For the first moment, we multiply (14) by cj and integrate over
velocity space. This yields, after a little algebra,

∂

∂t
(np(Uj + upj

)) + ∇ · [npU(Uj + upj
) + npupUj ]

+
∂

∂xi

∫
cicjf d3c = e

mp

npεjklupk
Bl, (16)

where εijk is the Levi–Civeta tensor.
To close Equation (16), we need to evaluate the PUI distribu-

tion function f, which requires that we solve (14). In solving (14),
we assume (1) that the PUI distribution is gyrotropic, and (2)
that scattering of PUIs is sufficiently rapid to ensure that the PUI
distribution is nearly isotropic. We can therefore average (14)
over gyrophase, obtaining the so-called focused transport equa-
tion for non-relativistic particles (Isenberg 1997). Details of
the derivation can be found in Chapter 5 of Zank (2013), and
the explicit expression is given in Appendix A. To solve the
gyrophase-averaged transport equation requires that we spec-
ify the scattering or collisional operator. We make the simplest
possible choice, which is the isotropic pitch-angle diffusion
operator,

∂

∂μ

(
νs(1 − μ2)

∂f

∂μ

)
, (17)

where μ = cos θ is the cosine of the particle pitch-angle θ
and νs = τ−1

s is the scattering frequency. The form of the
scattering operator (17) allows us to solve the focused transport
equation (A1) using a Legendre polynomial expansion of the
distribution function f. This is summarized in Appendix A
and details can be found in Chapter 5 of Zank (2013). The
first-order correct solution to the gyrophase-averaged form of
Equation (14), i.e., (A1), is

f � f0 + μf1; (18)

f0 = f0(x, c, t); (19)

f1 = −cτs

3
bi

∂f0

∂xi

+
DUi

Dt

τs

3
bi

∂f0

∂c
, (20)

where c = |c| is the particle random speed, b ≡ B/B is
a directional unit vector defined by the magnetic field, and
D/Dt ≡ ∂/∂t + Ui∂/∂xi is the convective derivative. Both f0
and f1 are functions of position, time, and particle random speed
c, i.e., independent of pitch-angle μ (and of course gyrophase
φ). Of particular importance is the retention of the large-scale
velocity U acceleration and shear terms. These terms are often
neglected in the derivation of the transport equation describing
f0 (for relativistic particles, the transport equation is the familiar
cosmic ray transport equation). Thus, the second term in (20)
is typically neglected, although it is known as the relativistic
heat inertia term in the relativistic transport theory of cosmic
rays (Webb 1985, 1987, 1989). As will be seen below, retaining
these terms is absolutely essential to derive the correct multi-
fluid formulation for PUIs. By introducing∫

cicjf d3c =
∫

(ci − upi
)(cj − upj

)f d3c + npupi
upj

≡
∫

c′
ic

′
j f d3c + npupi

upj

�
∫

c′
ic

′
j (f0 + μf1)d3c + npupi

upj
,

we can show that

∂

∂xi

∫
c′
ic

′
j f0d

3c = 1

mp

∂

∂xi

(δijPp), and

∫
c′
ic

′
jμf1d

3c = 0, (21)

where

Pp ≡ mp

4π

3

∫
c′2f0c

′2dc. (22)

Consequently, the PUI stress tensor is identically zero at first-
order and there exists only an isotropic pressure tensor δijPp.
We show in the following section that retaining the second-
order terms in the Legendre polynomial expansion of the
gyrophase-averaged equation (A2) does in fact yield a non-
zero collisionless stress tensor. The PUI momentum equation to
first-order can therefore be expressed as

∂

∂t
(np(Uj + upj

)) +
∂

∂xi

[
np(U + up)(Uj + upj

) +
1

mp

δijPp

]

= e

mp

npεjklupk
Bl. (23)

To derive the transport equation for Pp, we multiply (14) by
(1/2)c2 and integrate over d3c. We then use (18)–(20) to evaluate
the various integrals. Introducing c′ ≡ c − up as before, we find

∫
1

2
c2f0d

3c = 3

2

1

mp

Pp +
1

2
npu2

p,

for example. Similarly, we find that the heat flux q(x, t) can be
expressed as

qi(x, t) ≡
∫

1

2
c′2c′

if d3c′ = 1

2

∫
c2cif d3c

− 5

2

1

mp

upi
Pp − 1

2
npu2

pupi
. (24)

It then follows that∫
1

2
c′2c′

if0d
3c = π

∫
c′3μbif0c

′2dc′ = 0,

and ∫
1

2
c′2c′

iμf1d
3c′ = −2π

3

∫
c′2κij

∂f0

∂xj

c′2dc′

= −1

2
Kij

∂Pp

∂xj

= qi(x, t). (25)

In (25), we introduced the spatial diffusion coefficient

κij ≡ bi

c2τs

3
bj , (26)

together with PUI speed-averaged form Kij. The collisionless
heat flux for PUIs is therefore described in terms of the
PUI pressure gradient and consequently the averaged spatial
diffusion introduces a PUI diffusion time and length scale
into the multi-fluid system. The diffusion coefficient, i.e., the
coefficient for the PUI heat flux, is proportional to the particle
scattering time τs , and therefore a function of the background
turbulent intensity. A separate calculation, possibly based on

5
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quasi-linear theory for the parallel diffusion coefficient or the
nonlinear guiding center theory for the perpendicular diffusion
coefficient, is necessary to obtain reasonable estimates of the
scattering time (Matthaeus et al. 2003; Zank et al. 2004).

The remaining terms are straightforwardly evaluated. We find

e

mp

εijkBk

∫
1

2
c2cj

∂f

∂ci

d3c = − e

mp

εijknpupi
Bkupj

;

− DUi

Dt

∫
1

2
c2 ∂f

∂ci

d3c = npupi

DUi

Dt
;

∂Ui

∂xj

∫
1

2
c2cj

∂f

∂ci

d3c = 5

2
Pp

∂Ui

∂xi

+
1

2
npu2

p

∂Ui

∂xi

+ npupi
upj

∂Ui

∂xj

.

On combining these results, we obtain, after some algebra, the
transport equation for the PUI pressure

∂Pp

∂t
+ (up + U) · ∇Pp +

5

3
Pp∇ · (up + U) = 1

3
∇ · (K · ∇Pp),

(27)

illustrating that the PUI heat flux yields a spatial diffusion term
in the PUI equation of state. The PUI system of equations is
properly closed and correct to the first-order. The second-order
correct PUI equations, which includes the PUI stress tensor, is
given in the following subsection. For completeness, the PUI
total energy equation has the form

∂

∂t

(
3

2
Pp +

1

2
np(up + U )2

)
+

∂

∂xi

[
1

2
np(up + U )2(upi

+ Ui)

+
5

2
Pp(upi

+ Ui) − 1

2
Kij

∂Pp

∂xj

]
= e

mp

εijknpupj
Bk(upi

+ Ui).

(28)

The full system of PUI equations is given by (15), (23), and (27)
or (28). It is not particularly illuminating to work in the guiding
center frame, and we may simplify (15), (23), and (27), (28), by
letting

Up = up + U.

The right-hand side (RHS) of Equations (23) and (28) is
proportional to up × B, which becomes(

Up − U
) × B = E + Up × B,

since E was perpendicular to B by construction initially. Hence
the PUI fluid equations can be written in the more familiar form

∂np

∂t
+ ∇ · (npUp) = 0; (29)

∂

∂t
(npUp) + ∇ · [npUpUp + IPp] = e

mp

np(E + Up × B);
(30)

∂

∂t

(
3

2
Pp +

1

2
npU 2

p

)
+ ∇ ·

[
1

2
npU 2

pUp +
5

2
PpUp

− 1

2
K · ∇Pp

]
= e

mp

npUp · (E + Up × B), (31)

which is the form we use below. Similarly, we have

∂Pp

∂t
+ Up · ∇Pp +

5

3
Pp∇ · Up = 1

3
(∇ · K · ∇Pp). (32)

The full thermal electron-thermal proton–PUI multi-fluid
system is therefore given by Equations (4)–(9) and (29)–(31)
or (32), together with Maxwell’s equations

∂B
∂t

= −∇ × E; (33)

∇ × B = μ0J; (34)

∇ · B = 0; (35)

J = e(nsus + npUp − neue), (36)

where J is the current and μ0 the permeability of free space.

2.2. Second-order Correct Multi-fluid Model: the Stress Tensor

As shown above, the zeroth- and first-order solutions for the
pressure tensor yields an isotropic scalar pressure Pij = Ppδij

only. Consider now the second-order Legendre polynomial
expansion of f,

f � f0 + μf1 +
1

2
(3μ2 − 1)f2. (37)

As before, we need to evaluate
∫

cicjf d3c =
∫

c′
ic

′
j

(
f0 + μf1 +

1

2
(3μ2 − 1)f2

)

× d3c′ + npupi
upj

,

from which we find∫
c′
ic

′
j f0d

3c′ = 1

mp

Ppδij ;
∫

c′
ic

′
jμf1d

3c′ = 0.

Although not discussed explicitly above, since the PUI pressure
is defined in the frame of the bulk PUI velocity up, the
distribution function over which the integral is taken needs to
evaluated in this frame. Since the expression (A7) for f2 is a
function of the guiding center velocity U, we need to transform
to the frame U′ = U + up. On using the solution (A7) for f2, we
obtain∫

c′
x

2 1

2
(3μ2 − 1)f2d

3c′ =
∫

c′
y

2 1

2
(3μ2 − 1)f2d

3c′

= η

15

(
bibj

∂U ′
j

∂xi

− 1

3

∂U ′
i

∂xi

)
; (38)

∫
c′
z

2 1

2
(3μ2 − 1)f2d

3c′ = −2η

15

(
bibj

∂U ′
j

∂xi

− 1

3

∂U ′
i

∂xi

)
; (39)

6
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∫
c′
ic

′
j

1

2
(3μ2 − 1)f2d

3c′ = 0, (i �= j ), (40)

where the coefficient of viscosity η is defined as

η ≡ 4π

15

∫
∂

∂c′ (c
′4cτs)f0dc′ (41)

� 4π

3

∫
c′2τsf0c

′2dc′ (42)

� Ppτs

mp

. (43)

Equation (41) is the formal definition of the coefficient of
viscosity for the PUI gas. If we assume (probably reasonably)
that |c| � |up|, then we obtain (42), which may be regarded as
a PUI pressure moment weighted by the PUI scattering time.
Finally, if we assume that τs is independent of c, we then
obtain the “classical” form (43) of the viscosity coefficient.
The pressure tensor may therefore be expressed as

(Pij ) = Pp(δij ) +

(
1 0 0
0 1 0
0 0 −2

)
η

15

(
bkb�

∂U ′
k

∂x�

− 1

3

∂U ′
m

∂xm

)
.

(44)
The pressure tensor may be written in a more revealing form

if we introduce a “viscosity matrix,”

(Mk�) ≡ (ηk�) =
( η

15
bkb�

)
�

(
1

15

Ppτsbkb�

mp

)
, (45)

and note that ηij = ηji and η/15 = η11 + η22 + η33 = ηij δij

(since b2 = 1). Then

η

15

(
bkb�

∂U ′
k

∂x�

− 1

3

∂U ′
m

∂xm

)
= ηk�

2

(
∂U ′

k

∂x�

+
∂U ′

�

∂xk

)

− 1

3
ηk�δk�

∂U ′
m

∂xm

= ηk�

2

(
∂U ′

k

∂x�

+
∂U ′

�

∂xk

− 2

3
δk�

∂U ′
m

∂xm

)
, (46)

which yields the pressure tensor as the sum of an isotropic scalar
pressure Pp and the stress tensor, i.e.,

(Pij ) = Pp(δij ) +

(
1 0 0
0 1 0
0 0 −2

)
ηk�

2

×
(

∂U ′
k

∂x�

+
∂U ′

�

∂xk

− 2

3
δk�

∂U ′
m

∂xm

)
≡ PpI + Πp. (47)

The stress tensor is a generalization of the “classical” form
in that several coefficients of viscosity are present, and of
course the derivation here is for a collisionless charged gas
of PUIs experiencing only pitch-angle scattering by turbulent
magnetic fluctuations. Use of the pressure tensor (47) yields
a “Navier–Stokes”-like modification of the PUI momentum
equation,

∂

∂t
(npUp) + ∇ ·

[
npUpUp +

1

mp

IPp

]
= e

mp

np(E + Up × B)

− 1

mp

∇ ·
(

1 0 0
0 1 0
0 0 −2

)
ηk�

2

(
∂Upk

∂x�

+
∂Up�

∂xk

− 2

3
δk�

∂Upm

∂xm

)
= e

mp

np(E + Up × B) − 1

mp

∇ · Πp, (48)

where we used Up = up+U ≡ U′ as before. The full momentum
equation with the second-order stress tensor correction is
included for completeness but in the linearized wave analysis
below, we use only the first-order correct equations, i.e., only
the heat conduction term is included.

2.3. Reduced “Single-fluid” Model

For some problems, such as the investigation of turbulence in
the outer heliosphere, IHS, or VLISM, the full multi-fluid model
is far too complicated to solve. By making the key assumption
that Up � us , we can reduce the multi-fluid system above to an
MHD-like set of model equations. The assumption that Up � us

is quite reasonable since (1) the bulk flow velocity of a plasma
is always dominated by the protons, and (2) the pick-up process
itself forces newly created PUIs to essentially co-move with the
background plasma flow. Accordingly, we let Up � us = Ui be
the overall proton (i.e., thermal background protons and PUIs)
velocity. The thermal proton and PUI continuity and momentum
equations are therefore trivially combined as

∂ni

∂t
+ ∇ · (niUi) = 0; (49)

mpni

(
∂Ui

∂t
+ Ui · ∇Ui

)
= − ∇(Ps + Pp) + eni (E + Ui × B)

− ∇ · Πp, (50)

where ni = ns+np. Since the PUIs are not thermally equilibrated
with the background plasma (Ts �= Tp), we need to deal
separately with the Ps and Pp equations. These become

∂Ps

∂t
+ Ui · ∇Ps + γsPs∇ · Ui = 0; (51)

∂Pp

∂t
+ Ui · ∇Pp + γpPp∇ · Ui = 1

3
∇ · (K · ∇Pp). (52)

By combining the proton Equations (49)–(52) with the electron
Equations (4)–(6), we can obtain an MHD-like system of
equations. On defining new macroscopic variables,

ρ ≡ mene + mpni;
q ≡ − e(ne − ni);

ρU ≡ meneue + mpniUi;
J ≡ − e (neue − niUi) , (53)

we can express

ne = ρ − (mp/e)q

mp(1 − ξ )
� ρ/mp;

ni = ρ + ξ (mp/e)q

mp(1 + ξ )
� ρ/mp;

ue = ρU − (mp/e)J
ρ − (mp/e)q

� U − mp

e

J
ρ

;

ui = ρU + ξ (mp/e)J
ρ + ξ (mp/e)q

� U, (54)

where the smallness of the mass ratio ξ ≡ me/mp � 1 has been
exploited. Use of the approximations (54) allows us to combine

7
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The full thermal electron–thermal proton–PUI multi-
fluid system is therefore given by Eqs. (2)–(4) and (31)–
(33) or (30), together with Maxwell’s equations,

where J is the current and µ0 the permeability of free 
space. The diffusion tensor is assumed to be of a simple 
diagonal form (i.e., we do not include the off-diagonal 
terms associated with drift and curvature–see the discus-
sion in Zank (2014) and we specify

We parametrize the perpendicular component of the 
heat conduction tensor by a term η < 1. In estimating the 
diffusion coefficients (38) from (29), we choose a charac-
teristic PUI speed for the region of interest and assume 
that the scattering time can be approximated by a time 
scale greater than the corresponding gyroperiod.

Single‑fluid‑like model
For many problems, the complete multi-component 
model derived above is far too complicated to solve. The 
multi-fluid system (2)–(4) and (31)–(33) or (30), together 
with Maxwell’s equations can be considerably reduced in 
complexity by making the key assumption that Up ≃ us . 
The assumption that Up ≃ us is quite reasonable since 
(i) the bulk flow velocity of the plasma is dominated by 
the background protons since the PUI component scat-
ters off fluctuations moving with the background plasma 
speed and (ii) the large-scale motional electric field forces 
newly created PUIs to essentially co-move with the back-
ground plasma flow perpendicular to the mean magnetic 
field. Accordingly, we let Up ≃ us = Ui be the bulk pro-
ton (i.e., thermal background protons and PUIs) velocity. 
The thermal proton and PUI continuity and momentum 
equations are therefore trivially combined as

(34)
∂B

∂t
= −∇ × E;

(35)∇ × B = µ0J;

(36)∇ · B = 0;

(37)J = e
(

nsus + npUp − neue
)

,

(38)

K =





κ⊥ 0 0

0 κ⊥ 0

0 0 κ�



; κ⊥ = η
1

3�p
C2
0 , κ� =

1

3�p
C2
0 .

(39)
∂ni

∂t
+∇ · (niUi) = 0;

(40)

mpni

(

∂Ui

∂t
+Ui · ∇Ui

)

= −∇(Ps + Pp)

+ eni(E+Ui × B)−∇ ·�p,

where ni = ns + np. Since the PUIs are not thermally 
equilibrated with the background plasma (Ts �= Tp), we 
need to deal separately with the Ps and Pp equations. 
These become

We can combine the proton Eqs. (39)–(42) with the elec-
tron Eqs. (2)–(4) to obtain an MHD-like system of equa-
tions. On defining the macroscopic variables,

we can express

where the smallness of the mass ratio ξ ≡ me/mp ≪ 1 
has been exploited. Use of the approximations (44) allows 
us to combine the continuity and momentum equations 
in the usual way and to rewrite the thermal electron and 
proton pressure in terms of the single-fluid macroscopic 
variables. Thus,

where

Since we may assume that the current density is much 
less than the momentum flux, i.e., |J| ≪ |ρU|, we can 
simplify (48) further by neglecting the RHS. By assuming 

(41)
∂Ps

∂t
+Ui · ∇Ps + γsPs∇ ·Ui = 0;

(42)

∂Pp

∂t
+ Ui

∂Pp

∂xi
+

5

3
Pp

∂Ui

∂xi
=

1

3

∂

∂xi

(

Kij
∂Pp

∂xj

)

−
2

3
�ij

∂Uj

∂xi
.

(43)

ρ ≡ mene +mpni; q ≡ −e(ne − ni);

ρU ≡ meneue +mpniUi; J ≡ −e(neue − niUi),

(44)

ne =
ρ − (mp/e)q

mp(1− ξ)
≃ ρ/mp; ni =

ρ + ξ(mp/e)q

mp(1+ ξ)
≃ ρ/mp;

ue =
ρU − (mp/e)J

ρ − (mp/e)q
≃ U −

mp

e

J

ρ
; ui =

ρU + ξ(mp/e)J

ρ + ξ(mp/e)q
≃ U,

(45)
∂ρ

∂t
+∇ · (ρU) = 0;

(46)

ρ

(

∂U

∂t
+U · ∇U

)

= −∇(Pe + Ps + Pp)+ J× B−∇ ·�;

(47)
∂Ps

∂t
+U · ∇Ps + γsPs∇ ·U = 0;

(48)

∂Pe

∂t
+U · ∇Pe + γePe∇ ·U =

mp

eρ
J · ∇Pe +

γemp

e
Pe∇ ·

(

J

ρ

)

,

�kℓ =





1 0 0

0 1 0

0 0 − 2





ηkℓ

2

�

∂Uk

∂xℓ
+

∂Uℓ

∂xk
−

2

3
δkℓ

∂Um

∂xm

�

.
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that γe = γs = γ, we can combine the thermal proton and 
electron equations in a single thermal plasma pressure 
equation with P ≡ Pe + Ps,

Note that at this point, no assumptions about either the 
thermal electron or proton pressures (or temperatures) 
have been made.

Finally, we need an equation for the electric field E . 
To do so, we multiply the respective momentum equa-
tions by the electron or proton charge, sum, and use the 
approximations (44) to obtain

The generalized Ohm’s law is therefore

where we have retained the PUI pressure since in prin-
ciple it can be a high-temperature component of the 
plasma system and ξPp may be comparable to the Pe 
term. For typical cases of interest, however, the Pp term 
can be neglected in Ohm’s law (50). Neglect of the elec-
tron pressure and Hall current term then yields the usual 
form of Ohm’s law.

The reduced single-fluid model equations may there-
fore be summarized as

The single-fluid description (51)–(55) differs from the 
standard MHD model in that a separate description for 

(49)
∂P

∂t
+U · ∇P + γP∇ ·U = 0.

ξ

(mp

e

)2 1

ρ

[

∂J

∂t
+ ∇ · (JU +UJ)

]

=
mp

eρ

(

∇Pe − J× B− ξ∇(Ps + Pp)

−ξ∇ ·�)+ E+U × B.

(50)E = −U × B−
mp

eρ

(

∇Pe − J× B− ξ∇Pp
)

,

(51)
∂ρ

∂t
+∇ · (ρU) = 0;

(52)ρ

(

∂U

∂t
+U · ∇U

)

= −∇(P + Pp)+ J× B− ∇ ·�;

(53)

∂

∂t

(

1

2
ρU2 +

3

2
(P + Pp)+

1

2µ0

B2

)

+∇ ·

[

1

2
ρU2

U +
5

2
(P + Pp)U

+
1

µ0

B2
U −

1

µ0

U · BB+� ·Up −
1

2
K · ∇Pp

]

= 0;

(54)
∂P

∂t
+U · ∇P + γP∇ ·U = 0;

(55)

E = −U × B;
∂B

∂t
= −∇ × E; µ0J = ∇ × B; ∇ · B = 0.

the PUI pressure is required. Instead of the conserva-
tion of energy Eq. (53), one could use the PUI pressure 
Eq. (42) for continuous flows. PUIs introduce both a col-
lisionless heat conduction and viscosity into the system.

The model Eqs. (51)–(55), despite being appropriate to 
non-relativistic PUIs, are identical to the so-called two-
fluid MHD system of equations used to describe cosmic 
ray-mediated plasmas (Webb 1983). However, the deri-
vation of the two models is substantially different in that 
the cosmic ray number density is explicitly neglected in 
the two-fluid cosmic ray model and a Chapman–Enskog 
derivation is not used in deriving the cosmic ray hydro-
dynamic equations. Nonetheless, the sets of equations 
that emerge are the same indicating that the cosmic ray 
two-fluid equations do in fact include the cosmic ray 
number density explicitly.

The single-fluid-like model may be extended to include, 
e.g., anomalous cosmic rays (ACRs) as well as PUIs. In 
this case, the ACRs are relativistic particles. The same 
analysis carries over, and one has an obvious extension of 
the model Eqs. (51)–(55) with the inclusion of the ACR 
pressure. Thus, the extension of (51)–(55) is

where we have introduced the ACR pressure PA, the 
corresponding stress tensor �A, the ACR diffusion ten-
sor KA and adiabatic index γA (4/3 ≤ γA ≤ 5/3). The 
coupled system (56)–(61) is the simplest continuum 
model to describe a non-equilibrated plasma compris-
ing a thermal proton–electron plasma with suprathermal 

(56)
∂ρ

∂t
+∇ · (ρU) = 0;

(57)

ρ

(

∂U

∂t
+U · ∇U

)

= −∇(P + Pp + PA)+ J× B

− ∇ ·�p − ∇ ·�A;

(58)
∂P

∂t
+U · ∇P + γP∇ ·U = 0;

(59)

∂Pp

∂t
+U · ∇Pp + γpPp∇ ·U

=
1

3
∇ ·

(

Kp · ∇Pp
)

− (γp − 1)�p : (∇U);

(60)

∂PA

∂t
+U · ∇PA + γAPA∇ ·U

=
1

3
∇ · (KA · ∇PA)− (γA − 1)�A : (∇U);

(61)

E = −U × B;
∂B

∂t
= −∇ × E; µ0J = ∇ × B; ∇ · B = 0,
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particles (e.g., PUIs or even solar energetic particles) and 
relativistic energy (anomalous) cosmic rays. The system 
includes both the collisionless heat flux and viscosity 
associated with the suprathermal and relativistic particle 
distributions.

On reverting to Eqs. (51)–(55), we can recover the 
standard form of the MHD equations if we set the heat 
conduction spatial diffusion tensor K = 0 and the coef-
ficient of viscosity (ηkl) = 0, which corresponds to 
assuming τs → 0. If the total thermodynamic pressure 
Ptotal = P + Pp is introduced, then we recover the stand-
ard MHD equations (dropping the subscript “total”), i.e.,

with an equation of state e = αnkBT/(γ − 1). The choice 
of α = 2 (or greater if incorporating the contribution of 
cosmic rays, etc.) corresponds to a plasma population 
comprising protons and electrons.

In setting K = 0 and (ηkl) = 0, we have implicitly 
assumed that PUIs are completely coupled to the thermal 
plasma. With K �= 0, heat conduction reduces the effec-
tive coupling of energetic particles to the thermal plasma, 
and their contribution to the total pressure is not as 
large. This will have important consequences for numeri-
cal models of, e.g., the large-scale heliosphere since they 
incorporate PUIs into the MHD equations, without dis-
tinguishing PUIs from thermal plasma and therefore 
neglect heat conduction. Consequently, the total pressure 
is over-estimated.

Conclusions
Observations by Voyager 1 and 2 and the IBEX spacecraft 
indicate that plasma in the outer heliosphere (the super- 
and subsonic solar wind) and the VLISM possesses 
characteristics of a multi-component plasma, being 
essentially a non-equilibrated distribution of background 
thermal protons and electrons and PUIs of various ori-
gins. Limitations of space prevent discussion of all the 
observational threads that lead to this conclusion, and we 
list and discuss above only a few. In the supersonic solar 

(62)
∂ρ

∂t
+∇ · (ρU) = 0;

(63)ρ
∂U

∂t
+ ρU · ∇U + (γ − 1)∇e + (∇ × B)× B = 0;

(64)

∂

∂t

(

1

2
ρU2 + e +

B2

2µ0

)

+∇ ·

[(

1

2
ρU2 + γ e

)

U

+
1

µ0

B× (U × B)

]

= 0;

(65)
∂B

∂t
= ∇ × (U × B); ∇ · B = 0,

wind region of the outer heliosphere, the anomalous 
heating of the solar wind (Williams et al. 1995) has been 
interpreted in terms of the dissipation of PUI-driven 
turbulence that leads to the heating of the solar wind 
plasma (Zank et  al. 1996; 2012; Matthaeus et  al. 1996, 
1999; Smith et  al. 2001; Adhikari et  al. 2015a). In the 
inner heliosheath and the VLISM, the observed plasma 
characteristics of the HTS (Zank et al. 1996; Richardson 
2008; Richardson et al. 2008) and the ENA observations 
made by IBEX (Zank et al. 2010; Desai et al. 2012, 2014; 
Zirnstein et  al. 2014) have been similarly interpreted in 
terms of a multi-component plasma distribution com-
prising various PUI populations. Estimates of the col-
lisional frequency between thermal plasma components 
and PUIs in the outer supersonic solar wind (> ∼10 
AU), IHS, and VLISM show that equilibration cannot be 
achieved in these regions. Illustrated in Fig. 4 is a sche-
matic of the solar wind–LISM interaction region with 
colors indicating regions that have to be described in 
terms of a multi-component plasma. The three colors for 
the different regions indicate that each region has a dis-
tinct multi-component plasma description reflecting the 
different origins of the PUI population for each. In the 

Fig. 4  Schematic of the solar wind–LISM interaction showing the 
boundaries. The colored regions require a non-equilibrated multi-
component plasma description. The different colors indicate that the 
non-equilibrated PUI component(s) originates from different physical 
processes. The region in white surrounding the Sun corresponds to 
the ionization cavity where PUIs are not present in sufficient numbers 
to effectively mediate the plasma. See text and Table 1 for details
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