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Solar-terrestrial example:
solar magnetic activity -> solar wind -> magnet?here

’ ’—> space weather
WAVES & TURBULENCE !




RECENT OBSERVATIONAL EVIDENCES FOR KAWS

Analysis of polarization (He et al. 2011,2012; Podesta & Gary 2011):

TWO ALFVENIC COMPONENTS AT PROTON KINETIC SCALES :
LH QUASI-PARALLEL (15 %) & (DOMINANT) RH QUASI-PERP ALFVEN (85%)
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At small wave lengths we meet natural length scales
reflecting plasma microstructure:

»1on gyroradius p; (reflects gyromotion and ion
pressure effects);

»1on gyroradius at electron temperature (reflects
electron pressure effects);

»ion inertial length (reflects effects due to ion
Inertia), and

>electron inertial Iength (reflects effects due to
electron inertia).

» -2 kinetic theory =

»Kkinetic waves and wave-particle interactions



Vlasov, A. A. — founder of the plasma kinetic theory.
Author of concepts “collective interactions — Vlasov

| equation” and “plasma dispersion equation” (1938)

Landau, L. D. — complemented Vlasov’s theory by
“collisionless dissipation - Landau damping” (1946)

Alfvén, H. — theoretical prediction of magneto—
hydrodynamic waves — MHD Alfvén waves (1946)

Hasegawa, A. — kinetic theory of Alfvén modes at
small perpendicular wavelengths — kinetic Alfvén

. waves (1974-1980)



Vlasov equation (1938):
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COMPENSATED-CURRENT SYSTEMS DUE TO BEAMS

lon beams injected in a plasma generate there the return electron
currents compensating the original beam current:

beam ions (Jb) >
< bulk electrons (Je=- Jb)

A compensated-current system is formed with zero total: Je + Jb = 0.

Nell ;o — Nplly

Typical examples: foreshocks in solar wind and supernova remnants.



ION BEAMS IN TERRESTRIAL FORESHOCK
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BASIC ALGORITHM

Consider a uniform, fully ionized hydrogen plasma (electrons ¢ and protons i)
immerced in the background magnetic field B,.
Use two fluctuating electromagnetic potentials, scalar ¢ and vector A that obey Ampére law

Y - 23
Y .= VA, # (A

and Poisson law

#(P

Vi = 4 Zeaﬁa.

i, = fia(0,A)and j, = j,(9,A)are the number density and current density perturbations
induced self-consistently by ¢ and A in the a-th species (e, is the particle’s charge).



BASIC ALGORITHM
Define VDF F(¢,1, V) as number of particles in the 6D velocity (V) and space (r) volume d°rd* V-
Ft, e V)dPrd®V = dN

Kinetic theory: /i, and fa have to be calculated using fluctuating parts /, of velocity distributions

Fo = F0+f,

J?=€JC[3VVJ}; 1’z=Jd3V/~‘.

Considering wave processes with timescales shorter than the Coulomb collisional timescales,
F satisfies the "collisionless’ Vlasov equation

dif =0, # (vlas)
where d;, Vlasov operator, is the full time derivative in the space of independent variables {X} :

o Yir i # (der)

Coefficients o.X;/0f obey the standard dynamic equations of particles’ motion in el-mag fields.

# (sys2)




BASIC ALGORITHM

We solve the Vlasov equation (ref: vlas) by use of perturbation theory, expanding 7 and d; as
F=F+f, # (pertF
di=d? +d*, # (pertd

where 0 and L are unperturbed and perturbed (linear in the wave amplitudes) parts.
The linear response has to be found from the linearized Vlasov equation

Bf +diF =0~ f = {d] P | # (Ireq

Evolution of function F°, affected by the wave-particles collisions, is determined by
averaging over fast (wave) time-scales,

AP +dF =0+ P = {dI]'7F. | # (qleg
Depending of F%(r = 0), waves can be generated or damped, and 7 is relaxed or modified.




PLASMA MODEL

All plasma components are modeled by the shifted Maxwellian velocity distributions

n, mevy  Mg(Vz—Ug)”
Jou = (27 Ta/my)>? “P (_ 3l ( 2T ) )’ i
where n,, T, and u, are the mean number density, temperature, and parallel bulk
velocity, respectively, m, is the particle mass, and v =(v,, v, v;) - velocity-space
coordinates. The species a can be background ions (i), background electrons (e),
and beam ions (b). The beam electrons (be) can be included if they exist. The
subscripts z and 1 indicate directions parallel and perpendicular to By. The total
charge of the plasma is zero.

The current neutrality is assumed to be satisfied,

e



WAVE EQUATION

—————————————————————

—————————————————————

In the form

————————————————————————————

WAVE FORM > i 0fg ~ exp(k 1 — 1), ! *

exist if the wave frequency o and the wave vector k = (k,,k,, k)

satisfy the following dispersion equation (e.g., Alexandrov,
Bogdankevich, & Rukhadze, 1984):

7
WAVE DISPERSION > |k*0; — kik; — “5-¢;1| = 0 #

2

42 | HF
where ¢; Is the dielectric tensor, and o is the Kronecker’s



WAVE EQUATION

For parallel-propagating modes withk || B, | z
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WAVE EQUATION

Function

ds(x) = xexp(—%) J‘; dtexp(%),

has been introduced by Alexandrov et al. (1984).
It has the following asymptotic expansions:

a2 A% . ¢ L . ol .
Jo(x) = x* +0(x*) z‘/;xexp( 2), x| < 1;

Ji(x) =1+ x% * O(-XIT) = i‘/gxexp(—xz—z), be| > 1.

Argument of J. is

= _ oO—kug + nwpy
gaan o 2

kz VTa

where wp, (03,) IS the plasma (cyclotron) frequency,
Vie = JTo/m, is the thermal velocity.




WAVE EQUATION

For parallel propagation, the dispersion equation (determinant)
splits into two independent equations

2
. ck
gxx —|__ lgxy — (T—) #

describing left-hand (sign -) and right-hand (sign +) polarised
waves. In what follows we consider the left-hand polarised Alfvén
waves destabilized by the compensated currents.

Taking into account quasineutrality »; + n, = n. and current
compensation, equation for Alfvén waves can be simplified to

( ) v - k:i s i k;llb . 0
O B; ko o p; @ p; o ko "0 B; |

where

F ® i kv ( o — k.up — op; )
ro = 1 + e :
| k.vrp, @ — k.up — @p;



WAVE EQUATION

A can be further expanded in small w/wp;: Ary = A + Ano/og;,
where coefficients

AkO s fiags () Bi J+(é:b); Akl - ( ) Bj )2(1 —J+(§b));

kv b kv
" —k up — @p;
ch = :

kv

which gives the second-order eigenmode equation Alfvén waves:

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

*
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This i1s our main equation.



SOLUTION OF WAVE EQUATION

Remember: A;, = Re[A;] + ilm[A4;] !
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This solution describe three unstable regimes:

1. Reactive instability (when contribution of Im[A4,] is small).
2. Resonant instability (when Im[A4;] Is significant).

3. Mixed resonant/reactive regime.



SOLUTION OF WAVE EQUATION

1. Resonant instabllity:

() driven by resonant particles;

(i) depends on local gradients df/dV in the velocity space;
(i) are defined by imaginary part Im[6f,] of the particles
response function;

(iv) well-known example: bump-in-tail instability driven by
Inverse Landau damping.

2. Reactive instability:

() driven by all particles of the particular specie;

(i) depends on the bulk parameters of the velocity distribution
function (bulk velocity, thermal velocity, density);

(i) are defined by the real part Re[6f,] of the particles
response function;

(iv) well-known example: firehose instability.



HOT ION BEAMS

Under "very hot" beams we mean the beams with velocities ordering
Vi, S> Ui > Vi

For such beams, and with additional assumption .vz/wg; > 1 (it can be
checked posteriory), we can use the small argument expansion of
J.(&¢»). Then the solution can be simplified to

2
O o My | 1 e o (kv N mpus (kv
@Bi 2no 21y (W Bi nov4 \ WBi




HOT ION BEAMS

The maximum growth rate
Y max - l b Up
() B; N §H_J<

k:VTb o Lab
(W Bi 2

where we introduce the cumulative destabilizing parameter

————————————————————————————

IS achieved at

————————————————————————————



REACTIVE INSTABILITY

Let us present the growth rate (ref: g) in the following useful form:

Yk Vi Vi ( Vias Ax )2
) b prJ Vi Vi 2 kpm

From (ref: g0), the instability condition is

b V‘?i S (1_ Vi adp Ak )u.
V‘;} szy 2 kszb

}’maxz._l_”be I_Vi is _a_gthi ]
Oi 2 noVy V3 5 :

klzinb R~ % 53 Vy 2 (l—zl/;i)

The maximum of y;,

occurs at

#(gm)
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Fig. 4. Unstable wavenumber ranges in the (a}, k.) plane for V,/V,, = 0.9. The outer boundary is defined I?z
the left-hand side and the inner boundary by the right-hand side of the condition (17). It is seen that below a;

there is no instability, at o < a; < a;™" there is a single unstable range of k., and above a;™" there are two
unstable ranges.

Reactive instability: unstable wavenumber range (splits above some alpha)



REACTIVE INSTABILITY
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Fig. 5. Wavenumber dependence of the instability growth rate driven by super-Alfvénic ion beams with

Vi/V, = 0.9 for three values of a;: @, = 6, 8, and 10. For larger a;, the unstable area and the maximum
growth rate extend to larger k_prp.

Reactive instability: growth rate as function of k (two peaks at large alpha)



REACTIVE INSTABILITY
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Fig. 6. Normalized growth rate yma /wg; as function of n,/ng and Vi /Vy for hot beam with Vi /Vy = 10°.
¥max 1s regularly increasing with both n,/ng and V;,/ V4 once the threshold is exceeded.

Reactive instability: maximum growth rate in parameter space



REACTIVE INSTABILITY
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Fig.3a. Reactive instability: unstable range in parameter space



REACTIVE INSTABILITY

The unstable wavenumber range is

————————————————————————

————————————————————————

———————————————————

———————————————————

For well super-Alfvén beams, u, > 2v,, ap > 2.5.



RESONANT KINETIC INSTABILITY
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RESONANT KINETIC INSTABILITY

Fig.4. Growth rate from numerical solutions by Gary (1985)
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RESONANT KINETIC INSTABILITY
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Fig.4b. Growth rate of kinetic instability: numerical calculations
by Gary (1984) and our analytical expression fit each other
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KINETIC RESONANT vs REACTIVE
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Fig.5. Contribution of the reactive (current-driven) instability to
the total growth rate: analytical solution



SUMMARY: THEORY

We have a concise analytical solution describing parallel-
propagating Alfvénic modes in the compensated-current
systems:

O _ ”_b(Am _ feus A”)

@ B; 2]’20 @ B;

k.up * kv %  np k.up
J[z o (A T g A”)] * ( (01;) _WAM) ®p; -

Resonant instability has lower threshold for drifting-Maxwellian
velocity distributions

BUT

reactive (current-driven) instability becomes dominant as soon
as its threshold is exceeded.



RELATION TO THE BELL INSTABILITY

Our analytical solution is universal. It describes all
regimes of the parallel-propagating Alfvénic mode and its
Instabilities in compensated-current systems.

In the asymptotic over-threshold regime our solution
becomes reactive (current-driven) and identical to the
Instability discovered by Bell (2004).

As the system relaxes back to the near-threshold regime,
Its nature becomes mixed, reactive-kinetic. In this regime
formalism by Bell (2004) is inapplicable.



APPLICATION: QUASI-PARALLEL FORESHOCK

Diffusive ion beams in quasi-parallel foreshock region:
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Quasi-parallel wave propagation@in the terrestrial
foreshock (Narita et al 2006)

g—para shock g—perp shock
LU ]
g {10
I3 S p e T
-
(l) - -
% Dn A Dn A
U~
5
5 L] [one
Q
&£
O 90 180 O 90 180
Ove (deg) Oe (deg)

Figure 13. Histogram of angles between the wave vector
and the background magnetic field. Panel format 1s same as



Bi-modal wave spectrum in the terrestrial foreshock
(Narita et al 2006)
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Figure 7.



