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Solar-terrestrial example:      

solar magnetic activity -> solar wind -> magnetosphere  

                                   ->  space weather  

WAVES & TURBULENCE ! 



Analysis of polarization (He et al. 2011,2012; Podesta & Gary 2011):  
  

TWO ALFVENIC COMPONENTS AT  PROTON  KINETIC  SCALES :  

LH QUASI-PARALLEL (15 %) & (DOMINANT) RH QUASI-PERP  ALFVEN  (85%) 

He et al. (2011,2012) 

RECENT OBSERVATIONAL EVIDENCES FOR KAWs 

Follows MHD  

2D component? 

Follows MHD  

“slab” component? 



At small wave lengths we meet natural length scales 

reflecting plasma microstructure:  

 

 ion gyroradius i (reflects gyromotion and ion 

pressure effects);  

 ion gyroradius at electron temperature s (reflects 

electron pressure effects);  

 ion inertial length i (reflects effects due to ion 

inertia), and  

 electron inertial length e (reflects effects due to 

electron inertia).  

  kinetic theory  

 kinetic waves and wave-particle interactions  



Vlasov, A. A. – founder of the plasma kinetic theory. 

Author of concepts “collective interactions – Vlasov 

equation” and “plasma dispersion equation” (1938)    

Landau, L. D. – complemented Vlasov’s theory by 

“collisionless dissipation - Landau damping” (1946) 

Hasegawa, A. – kinetic theory of Alfvén modes at 

small perpendicular wavelengths – kinetic Alfvén 

waves (1974-1980)  

Alfvén, H. – theoretical prediction of magneto–

hydrodynamic waves – MHD Alfvén waves (1946) 

 



Vlasov equation (1938): 



Ion beams injected in a plasma generate there the return electron 

currents compensating the original beam current: 

COMPENSATED-CURRENT SYSTEMS DUE TO BEAMS 

A compensated-current system is formed with zero total: Je + Jb = 0. 

beam ions (Jb) 

bulk electrons (Je=- Jb)  

Typical examples: foreshocks in solar wind and supernova remnants. 



ION BEAMS IN TERRESTRIAL FORESHOCK 



ION BEAMS IN SOLAR WIND 

Tu et al. (2004)  



are formed by cosmic rays around supernova remnants. 

ION BEAMS AROUND SUPERNOVA REMNANTS 



BASIC ALGORITHM 



BASIC ALGORITHM 



BASIC ALGORITHM 



PLASMA MODEL 



WAVE EQUATION 

WAVE FORM   

WAVE DISPERSION   



WAVE EQUATION 



WAVE EQUATION 



WAVE EQUATION 



WAVE EQUATION 

This is our main equation.  



SOLUTION OF WAVE EQUATION 

This solution describe three unstable regimes:  

1. Reactive instability (when contribution of Im[𝐴𝑘] is small).  

2. Resonant instability (when Im[𝐴𝑘] is significant).  

3. Mixed resonant/reactive regime.  

 

 Remember: 𝐴𝑘 = Re[𝐴𝑘] + iIm[𝐴𝑘] !   



SOLUTION OF WAVE EQUATION 

1. Resonant instability:  

(i) driven by resonant particles;  

(ii) depends on local gradients ∂f/∂V in the velocity space;  

(iii) are defined by imaginary part Im[𝛿𝑓𝛼] of the particles 

response function;  

(iv) well-known example: bump-in-tail instability driven by 

inverse Landau damping.  

 

2. Reactive instability:  

(i) driven by all particles of the particular specie;  

(ii) depends on the bulk parameters of the velocity distribution 

function (bulk velocity, thermal velocity, density);  

(iii) are defined by the real part Re[𝛿𝑓𝛼] of the particles 

response function;  

(iv) well-known example: firehose instability.  

 



HOT ION BEAMS 



HOT ION BEAMS 



REACTIVE INSTABILITY 



Reactive instability: unstable wavenumber range (splits above some alpha) 

REACTIVE INSTABILITY 



REACTIVE INSTABILITY 

Reactive instability: growth rate as function of k (two peaks at large alpha) 



REACTIVE INSTABILITY 

Reactive instability: maximum growth rate in parameter space 



REACTIVE INSTABILITY 

Fig.3a. Reactive instability: unstable range in parameter space 



REACTIVE INSTABILITY 



RESONANT KINETIC INSTABILITY 

Fig.4a. Growth rate from our analytical solution  



Fig.4. Growth rate from numerical solutions by Gary (1985) 

RESONANT KINETIC INSTABILITY 



Fig.4b. Growth rate of kinetic instability: numerical calculations  

by Gary (1984) and our analytical expression fit each other 

  

RESONANT KINETIC INSTABILITY 



KINETIC RESONANT vs REACTIVE 

Fig.5. Contribution of the reactive (current-driven) instability to 

the total growth rate: analytical solution 



SUMMARY: THEORY 

We have a concise analytical solution describing parallel-

propagating Alfvénic modes in the compensated-current 

systems: 

Resonant instability has lower threshold for drifting-Maxwellian 

velocity distributions 

 

BUT 

 

reactive (current-driven) instability becomes dominant as soon 

as its threshold is exceeded.  



RELATION TO THE BELL INSTABILITY 

Our analytical solution is universal. It describes all 

regimes of the parallel-propagating Alfvénic mode and its 

instabilities in compensated-current systems.  

 

In the asymptotic over-threshold regime our solution 

becomes reactive (current-driven) and identical to the 

instability discovered by Bell (2004).  

 

As the system relaxes back to the near-threshold regime, 

its nature becomes mixed, reactive-kinetic. In this regime 

formalism by Bell (2004) is inapplicable.  

 



APPLICATION: QUASI-PARALLEL FORESHOCK 



Quasi-parallel wave propagation 𝜽𝒌𝑩 < 𝟒𝟓° in the terrestrial 

foreshock (Narita et al 2006) 



Bi-modal wave spectrum in the terrestrial foreshock 

(Narita et al 2006) 

? 


