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Summary
1. The basic knowledge of data
● Know your data
● Stationarity, Ergodicity and the Taylor hypothesis
● The autocorrelation function
● The energy spectrum
● The relevant scales

2. Tools for intermittency
● Scaling of PDFs
● Structure functions
● Multifractal analysis
● Identification of structures



  

Turbulent measurements
● Typical measurements of space plasma turbulence include velocity, density, 

temperature, magnetic field, composition, particle VDFs and other quantities. 

● The usual data are time series v(ti) taken with sampling time t by some 
instrument, at a given point (Eulerian), or following a trajectory (Lagrangian).

Search coil magnetometer used on 

Cluster and THEMIS spacecrafts



  

Know your data
All measurements have approximations and caveats.

Know as much as possible about data before the analysis.

Analogue response of the three sensors 
of the one of the vector fluxgate 

magnetometers on Cluster spacecraft.

● Study instrumentation and data characteristics and the 
available literature (manuals, publications...). Talk to PIs 
and instrument teams.

● Have clear the geometry of the system (coordinate 
system, units, etc.).

● Be aware of the possible artifacts: instrumental 
(resolution, noise, digitization, etc.); human (calibration, 
reduction, manipulation - e.g. VDF moments); spacecraft 
or telemetry (spurious frequencies, data rate, etc.).

Pioneer 11 magnetic data: the 
peaks are not waves but spurious 

frequencies from spacecraft 
(wavelet analysis shows the 

periodic appearance of power)



  

Know your data/2
All measurements have approximations and caveats.

Know as much as possible about data before the analysis.

WIND spacecraft velocity components: missing data 
points replaced by 0 show up in the radial component 

(not visible, but present in the other components)

Deal with bad data: PLOT THE DATA!

• Check for data gaps and bad points. Fill/replace (linear, spline fit; synthetic data…) or 
skip? It depends on the analysis…

• Check for synchronization problems: regularise time if needed (in particular for combined 
data analysis – e.g. velocity and magnetic field).

• De-trend? Trends might go into fake low frequency power or scale-dependent fluctuations.

• Normalize when needed (e.g.: solar wind density ~ R-2).

• Remove the mean if needed.

Analysis Methods for Multi-Spacecraft Data, ed. 
G. Paschmann and P. W. Daly, ISSI, Bern, 1998



  

Know your data/3
All measurements have approximations and caveats.

Know as much as possible about data before the analysis.

Compute basic quantities: data distribution function, average, standard deviation...
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The Taylor hypothesis
Theoretical results on fluid turbulence are mainly in the space (wavevector) 

domain, rather than in time (frequency) domain. When dealing with turbulent time 
series, the Taylor “frozen-in” hypothesis must be valid to switch from time to space.

If turbulent fluctuations are small with respect to the mean flow, it is possible to neglect 
the (slow) time variations and assume that the field is “frozen” while it spans the probe.

r  v0t

v/v0 << 1



  

The Taylor hypothesis/2
In space plasmas there are complications (waves). A more formal version:

Frequency in the spacecraft frame w
s/c

 is the combination of the plasma frame 

frequency w and the plasma frame wave-vector k advected by the bulk flow V
SW

:

In SW turbulence, the typical wave mode is the Alfvén mode, for which 

However, in other environments like the Earth’s magnetosheath  

In typical  Alfvénic turbulence

Taylor is valid if 

Taylor is valid if 

Stawartz et al., JGR 121, 21 (2016); Perri et al., APJS 231, 4 (2017)



  

Statistical meaningfulness
Most of the statistical tools for turbulent data assume ergodicity and stationarity. 

Although often verified in space plasmas, this is not always the case and should be checked.

Stationarity
All statistical properties of a time series 
must be independent of time. 
It corresponds to homogeneity of 
turbulence, via the Taylor hypothesis. 
Weak stationarity tests are often used: the 
mean is constant and the autocorrelation 
function only depends on time lag. 
Example: mixing fast and slow solar wind 
streams may lead to non-stationarity.

Most of the statistical tools for turbulent data assume ergodicity and stationarity. 
Although often verified in space plasmas, this is not always the case and should be checked.

Most of the statistical tools for turbulent data assume ergodicity and stationarity. 
Although often verified in space plasmas, this is not always the case and should be checked.

Example: magnetic field component By 
from WIND: a non-stationary sample.

Examples of non-stationary time series 
[https://stats.stackexchange.com]



  

Statistical meaningfulness/2

“...variances, correlation functions, and power spectra can be 
meaningfully evaluated from appropriately selected finite data intervals.”

Or: not all solar wind samples are stationary. (i) They should be long 
enough or short enough; (ii) Check for shocks and cross-sector 

boundaries; etc. (read the paper).



  

Statistical meaningfulness/3

“...the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes 
to 1 day is reasonably satisfied in fast and uniform solar wind flows, but in mixed, interacting 

fast, and slow solar wind streams the assumption is frequently only marginally valid.”

Or: not all solar wind samples are stationary. (i) Hardly below 10 min samples (see also 
ergodicity issues); (ii) avoid very long samples; (iii) slow wind has to be checked more 

carefully; (iv) better not mix fast and slow wind together; etc. (read the paper).



  

Statistical meaningfulness/4
Most of the statistical tools for turbulent data assume ergodicity and stationarity. 

Although often verified in space plasmas, this is not always the case and should be checked.

Ergodicity
The assumption that the properties of a finite 
sample (time series) converge to the properties 
of the process as the sample size increases 
(it’s true for all stationary data). 
In turbulent time series, ergodicity is usually 
satisfied if the sample length includes several 
eddy-turnover times. 
Example: short time series such as Cluster 
samples (~30 min in the solar wind) are not 
ergodic.

Note: 
* Ergodicity requires long time series; 
* Stationarity requires to avoid long time series;
→ in solar wind, there is need to find the right 
balance between these requirements. 

If ergodicity, stationarity or the Taylor hypothesis are not holding, then the analysis could be 
biased: quantitative results cannot be interpreted in terms of theoretical models of turbulence.

Most of the statistical tools for turbulent data assume ergodicity and stationarity. 
Although often verified in space plasmas, this is not always the case and should be checked.

Most of the statistical tools for turbulent data assume ergodicity and stationarity. 
Although often verified in space plasmas, this is not always the case and should be checked.

NASA/JPL/SwRI/MSSS/Gerald Eichstädt/Alexis Tranchandon/Solaris



  

Autocorrelation

The correlation time (different possible operational definitions) 
gives information about the “memory range” of the system.

Most information about the statistical 
properties of a turbulent signal is included 
in the autocorrelation function

Cv( τ )=
⟨[ v ( t+τ )−v0 ][ v ( t )−v0 ]⟩
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correlation time #2: C=0

correlation time #1: C=1/e



  

Autocorrelation/2

The Taylor microscale can also be estimated using the autocorrelation function as the 
curvature radius near the origin (fig. from Bruno & Carbone Liv. Rev. Sol. Phys., 2013). 

Not easy in space plasma data.



  

Power Spectral Density
Similar information is carried by the power 
spectral density (PSD), in the frequency 
domain. 

Various techniques can be used to 
estimate it: Fourier Transform, FFT, 
Fourier transform of the autocorrelation 
function (via the Wiener-Kinchine 
theorem, good for data with gaps), 
“multitaper” techniques, etc.

Ev( f )=|v̂ ( f )|
2=∫−∞

∞
Cv (τ )e

−2 π if τdτ

The highest measured frequency is the 
Nyquist frequency, f

N
=f

s
/2. 

To access higher frequencies, must use 
higher time resolution data. No way around.

The lowest measured frequency is f
1
 = 1/T 

To access lower frequencies, must use 
longer data set. No way around.

Parseval’s theorem: 
The total variance of the time series is the 
sum of the squares of the Fourier
coefficients. 
Therefore, with the Fourier transform we 
can identify the variance in the signal at 
different frequencies



  

Power Spectral Density/2
A few caveats:

* For most estimators, signal must be stationary and “periodic”. 

* Most of the FFT routines require power of 2 data points: use windows not to waste data.

* To increase PSD quality and reduce spurious fluctuations (noise), make abundant use of 
windowing (various types: Hamming, Hanning...). It also reduces the effects of 
discontinuities at the sample boundaries. It comes at the costs of losing low frequencies.

* Don’t forget to consider aliasing: power outside the accessible range will be distributed in 
the spectrum.

* Evaluation of error: for example use sub-samples to estimate convergence. Or use 95% 
confidence level (variance of PSD is c2 distributed).

Example: PSD of the magnetic field 
component Bx from the same MMS data 

in the magnetosheath. 

Left: no windowing; Right: 8 windows.



  

Power Spectral Density/3
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Kolmogorov 1941 phenomenology of turbulence predicts the 
power-law scaling of the PSD in the inertial range, representing 
the energy cascade across scales (the Richardson cascade):

Energy injection () 
at integral scale L

Non-linear energy 
transfer () in the 

inertial range

Energy dissipation 
() at small scale

Taylor

The PSD scaling exponent may give insight on the phenomenology



  

Power Spectral Density/4
In Navier-Stokes turbulence, three fundamental scales can be introduced: the 

integral scale L (the eddy-turnover time, usually corresponding to the correlation 
scale); the Taylor microscale l, representing the typical size of the intermittent 

structures; and the dissipation scale h. These can be identified in the spectrum:
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In plasmas: more physical scales exist (e.g. the Alfvén time-scale, the typical 
ion and electron scales, etc.) and can often be identified through the PSD.



  

Power Spectral Density/5
In solar wind turbulence spectra are more complex (more about this tomorrow)



Universal feature of turbulence: intermittency

Energy dissipation is more efficient when it occurs in 
vortices distributed inhomogeneously in space.

Experimental observation of intermittent, bursty, 
multifractal dissipation fields.
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Turbulent dissipation in numerical simulations 

Intermittency: high order statistics



  

Intermittency: velocity increments
Turbulent fluctuations studied through the analysis of velocity differences at different time lags
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This variable describes the field 
fluctuations at a given scale, providing 
information about scale distribution of 

turbulent structures (e.g. vortices).

Correnspondence between the scale t 
and the spectral  frequency f.



  

Intermittency: velocity increments/2

Increasing scalesVelocity increments at 3 different scales

Small scale: 
spikes

Large scale: 
random signal

h1 h2

Statistical properties are increasingly inhomogeneous as the scale decreases.
Second-order statistics (variance, spectrum) are not enough to describe the statistics: 

the whole PDF, or its high-order moments, are necessary.



  

Intermittency: PDFs
Probability Density Functions (PDFs) are usually computed as normalized histogram of data 

Pi( δv τ )≡
N i (δv τ )

N tot A i
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A
i
 is the size of the interval (bin).

N
tot

 is the total number of data used 

to compute the PDF.•* Fix number and size of bins, and variation range (in terms of 
sample standard deviations  to ensure significant statistics in 
each bin (at least ~10 points).
* Estimate error bars of the histogram as standard Poissonian 

deviation (N), then propagate to the PDF.
* Plot Log(P), since it enhances tail details.
* To compare different scales and/or different databases, 

standardize the variables: 
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Intermittency: PDFs/2

Example from plasmas: PDF of solar wind magnetic field increments at 3 different scales

Large scale: 
nearly Gaussian

Small scale:  
high tails

All the statistical information is contained in the PDFs

Large values of 
b are more 

probable than for 
Gaussian fields: 

intermittency



  

Intermittency: moments
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Alternative information can be extracted from PDFs through the 
estimation of the p-th order moments, called structure functions.

Order 3 hyperflatness

Tips: 
* Do not standardize variables when 
computing structure functions.
* Often necessary to use absolute 
value of fluctuations.
* Computation needs to be done 
very carefully (e.g.: sort data for 
summing; consider removing 
outliers, etc.).
* Check convergence (next slide).
* Try to estimate errors, e.g. by 
using sub-ranges.



  

Intermittency: moments/2
For turbulent flows, power-law scaling is observed in the inertial range: Sp(v) ~ (p).

• For self-similar (Gaussian) PDFs Sp(v)~p/3

•Intermittency: anomalous scaling  Spv
p

Intermittency effects can be 
quantified through the study of the 

structure function scaling exponents. 
Many models predict the anomalous 
scaling, and can be tested on data



  

Intermittency: moments/3
The problem of moments convergence

The estimate of structure functions is difficult for high orders p. Large datasets are 
required for statistical convergence. This needs to be checked (see also next slide).

Plot the function to be integrated: xpP(x) 
and observe its convergence at different p.

Rule of thumb: 
pmax ~ log10(Ntot)

In solar wind turbulence, 
need to find a balance 
between stationarity, 

ergodicity, and statistical 
significance of moments



  

Intermittency: moments/4
The problem of moments convergence

Given the data time series, the plot of the ranked data shows 
power-law behavior (with exponent -) near larger values. 
Convergence of the structure function is ensured up to the 
order qmax, where:

original data

ranked data

fit k



  

Intermittency: moments/4
The problem of moments convergence

It may be useful to remove the most extreme values, which control the high-order 
moments but could lack statistical significance. Convergence depends on the 

dataset, but is generally achieved remving 0.5-0.1% of data.



  

Intermittency: moments/5
The problem of moments convergence

If, despite all cares, moments still do not have good power-law ranges, go magic and use 
Extended Self-Similarity (ESS), based on the linear Kolmogorov 4/5 exact law S3()= 4/5.
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R. Benzi et al., Phys. Rev. E 48, 29 (1993).



  

Intermittency: kurtosis (or flatness)
A practical tool for quantitative analysis of intermittent turbulence: the scaling of the 

normalized fourth-order moment, the flatness: F()=S4()/S2
2().

For Gaussian PDF F()=3, so that Kurtosis is often used K()=F()-3. 
Deviation from F()=3 is used as indication of intermittency. 

“A random function is intermittent at small scales if the flatness 
grows without bound at smaller and smaller scales” (Frisch, 1995)

2
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For good dataset, nth-order (n>2) 
hyperflatness can also be used: 

(Don’t even think about it in solar wind data)

The flatness has usually power-
law scaling in the inertial range, 
with exponent ~0.1. In the solar 
wind, exponent is larger and not 
universal (strongly dependent 

on shocks and other structures)



  

Intermittency: models
None of the above is useful unless there are models to describe the physics.

ζ p
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p
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−log2 ⟨ β

1−p /3
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ζ p
(MF )=inf

h
[ ph+3−D (h ) ]

ζ p
(SL )

=
p
9
+2 [1−(2/3 )p /3 ]

D(h) being the multifractal dimensions

She-Leveque

Random-b (Frisch et al.)

Lognormal (Frisch)

Multifractal (Parisi & Frisch)

P-model (Meneveau & Sreenivasan)

P-model

Parameter P gives quantitative measure of intermittency

SL

LN
K41



  

Wavelets?
Almost all of the above is best done using wavelet transform, which 

add local information (trade-off with frequency accuracy though). 
Scalograms are useful.



  

Summary

● Know your data.
● Be careful with any data analysis tools.
● Possibly avoid black-box packages where you don’t control the tools.
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