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Luca Sorriso-Valvo

Nanotec/CNR, Rende, Italy

@ NAND




Summary

1. The basic knowledge qf Qata

r '
A \'f" : v
” ’ ¥ ‘- gl ."‘*_erf v

Know your data 7, ':
Stationarity, Ergodicity and the \‘ar" ]

The autocorrelation function |\t % &
The energy spectrum ﬂ%‘ R

The relevant scales ...

2. Tools for ir ?* ,

Scaling of PDFs 3‘; :
Structure functions
Multlfractal analysis

°
Q
D
>
—
=h
O
=
@)
>
@)
—
2]
—t
=
c
O
—t
c
=
CD



Turbulent measurements

* Typical measurements of space plasma turbulence include velocity, density,
temperature, magnetic field, composition, particle VDFs and other quantities.

 The usual data are time series v(t;) taken with sampling time At by some
instrument, at a given point (Eulerian), or following a trajectory (Lagrangian).
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Know your data
All measurements have approximations and caveats.
Know as much as possible about data before the analysis.
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available literature (manuals, publications...). Talk to Pls
Be aware of the possible artifacts: instrumental
(resolution, noise, digitization, etc.); human (calibration,
reduction, manipulation - e.g. VDF moments); spacecraft
or telemetry (spurious frequencies, data rate, etc.).
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Know your data/2

All measurements have approximations and caveats.
Know as much as possible about data before the analysis.

Deal with bad data: PLOT THE DATA!

» Check for data gaps and bad points. Fill/replace (linear, spline fit; synthetic data...) or
skip? It depends on the analysis...

» Check for synchronization problems: regularise time if needed (in particular for combined
data analysis — e.g. velocity and magnetic field).

» De-trend? Trends might go into fake low frequency power or scale-dependent fluctuations.
 Normalize when needed (e.g.: solar wind density ~ R™).

* Remove the mean if needed.
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Know your datal3

All measurements have approximations and caveats.
Know as much as possible about data before the analysis.

Compute basic quantities: data distribution function, average, standard deviation...
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The Taylor hypothesis

Theoretical results on fluid turbulence are mainly in the space (wavevector)
domain, rather than in time (frequency) domain. When dealing with turbulent time
series, the Taylor “frozen-in” hypothesis must be valid to switch from time to space.

If turbulent fluctuations are small with respect to the mean flow, it is possible to neglect
the (slow) time variations and assume that the field is “frozen” while it spans the probe.
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Fig. 1.4 lllustration of Taylor's hypothesis. (a) An eddy thatis 100 min
diameter has a 5 ° C temperature difference across it. (b) The
same eddy 10 seconds later is blown downwind at a wind speed

of 10 my/s. fom. St 1988




The Taylor hypothesis/2

In space plasmas there are complications (waves). A more formal version:

Frequency in the spacecraft frame w__is the combination of the plasma frame
frequency w and the plasma frame wave-vector k advected by the bulk flow V_

ws/c:w+k'sz

In SW turbulence, the typical wave mode is the Alfvén mode, for which |w| ~ k V

Viw ~ 400-500 km s~
Vi~ 50kms™!

However, in other environments like the Earth’'s magnetosheath Uims ~ V)

w~k-vy=FkV,cosb
‘ Taylor is valid if cos < cos @
k * VmS — ]{UTTES COSCb

In typical Alfvénic turbulence @) ~ 7m/2 mmE) Taylor is valid if COS @~ 1

Stawartz et al., JGR 121, 21 (2016); Perri et al., APJS 231, 4 (2017)




Statistical meaningfulness

Most of the statistical tools for turbulent data assume ergodicity and stationarity.
Although often verified in space plasmas, this is not always the case and should be checked.

Stationarity Examples of non-stationary time series
.. . . . [https://stats.stackexchange.com]
All statistical properties of a time series
must be independent of time. Stationary Series Non-Stationary Series
It corresponds to homogeneity of

turbulence, via the Taylor hypothesis. - o Bl e
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Statistical meaningfulness/2

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87, NO. A12, PAGES 10,347-10,354, DECEMBER 1, 1982

Stationarity of Magnetohydrodynamic Fluctuations in the Solar Wind

WiLLiAM H. MATTHAEUS AND MELVYN L. GOLDSTEIN

“...variances, correlation functions, and power spectra can be
meaningfully evaluated from appropriately selected finite data intervals.”

Or: not all solar wind samples are stationary. (i) They should be long
enough or short enough; (i) Check for shocks and cross-sector
boundaries; etc. (read the paper).
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Fig. 3. The variance of the means (A[B,];) for the x, y, and z

TIME (SEC) % 108

Fig. 7. The tangential (y) component of the magnetic field (in field components of the 621 day interval are calculated for intervals
gammas) from the ISEE 3 magnetometer. The interval begins on of duration T and plotted as functions of T /T, where T. is the total
January 7, 1979, and spans 92 days. A regular sector structure is correlation time. The variance of the means are normalized by o.>.

evident. Convergence of the estimates is evident.



Statistical meaningfulness/3

THE ASTROPHYSICAL JOURNAL, 714:937-943, 2010 May 1
STATIONARITY IN SOLAR WIND FLOWS

S. PERRI! AND A. BaLogH! 2

“...the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes
to 1 day is reasonably satisfied in fast and uniform solar wind flows, but in mixed, interacting
fast, and slow solar wind streams the assumption is frequently only marginally valid.”

Or: not all solar wind samples are stationary. (i) Hardly below 10 min samples (see also
ergodicity issues); (ii) avoid very long samples; (iii) slow wind has to be checked more
carefully; (iv) better not mix fast and slow wind together; etc. (read the paper).
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Figure 6. Autocovariance function of the 8 B/ By ratio as a function of time at 100 150
three different time lags t during a 182 day period in fast wind in 1994. For Day number 1994
comparison, both the solar wind speed (black line) and the O7* /O®* ratio (red

line) are shown in the bottom panel.
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Statistical meaningfulness/4

Most of the statistical tools for turbulent data assume ergodicity and stationarity.
Although often verified in space plasmas, this is not always the case and should be checked.

Ergodicity

The assumption that the properties of a finite
sample (time series) converge to the properties
of the process as the sample size increases
(it's true for all stationary data).

In turbulent time series, ergodicity is usually
satisfied if the sample length includes several
eddy-turnover times.

Example: short time series such as Cluster
samples (~30 min in the solar wind) are not
ergodic.

Note:

* Ergodicity requires long time series;

* Stationarity requires to avoid long time series;
— In solar wind, there is need to find the right
balance between these requirements.

e RO

NASA/JPL/SWRI/MSSS/Gerald Eichstadt/Alexis Tranchandon/Solaris

If ergodicity, stationarity or the Taylor hypothesis are not holding, then the analysis could be
biased: quantitative results cannot be interpreted in terms of theoretical models of turbulence.



Autocorrelation

Most information about the statistical <[ \Y ( [+T )— Vg ][ V ( t )_ Vo ]>
properties of a turbulent signal is included Cv( T) = >

in the autocorrelation function 0] v

Wind Velocity Autocorrelation
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The correlation time (different possible operational definitions)
gives information about the “memory range” of the system.



Autocorrelation/2

Comrelation function R(r)
'6.

The Taylor microscale can also be estimated using the autocorrelation function as the
curvature radius near the origin (fig. from Bruno & Carbone Liv. Rev. Sol. Phys., 2013).
Not easy in space plasma data.



Power Spectral Density

Similar information is carried by the power
spectral density (PSD), in the frequency
domain.

Various techniques can be used to
estimate it: Fourier Transform, FFT,
Fourier transform of the autocorrelation
function (via the Wiener-Kinchine
theorem, good for data with gaps),
“multitaper” technigues, etc.

The highest measured frequency is the
Nyquist frequency, f =f /2.

To access higher frequencies, must use

higher time resolution data. No way around.

The lowest measured frequency is f = 1/T

To access lower frequencies, must use
longer data set. No way around.

E,(f )=

if)i=],c e e

Parseval’s theorem:

The total variance of the time series is the
sum of the squares of the Fourier
coefficients.

Therefore, with the Fourier transform we
can identify the variance in the signal at
different frequencies

N—-1 1 N—-1
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PSD

Power Spectral Density/2

A few caveats:

* For most estimators, signal must be stationary and “periodic”.

* Most of the FFT routines require power of 2 data points: use windows not to waste data.
* To increase PSD quality and reduce spurious fluctuations (noise), make abundant use of
windowing (various types: Hamming, Hanning...). It also reduces the effects of

discontinuities at the sample boundaries. It comes at the costs of losing low frequencies.

* Don’t forget to consider aliasing: power outside the accessible range will be distributed Iin
the spectrum.

* Evaluation of error: for example use sub-samples to estimate convergence. Or use 95%
confidence level (variance of PSD is x° distributed).

10t - 10
10° 10°
Example: PSD of the magnetic field
107t component Bx from the same MMS data
in the magnetosheath.

107%
Left: no windowing; Right: 8 windows.

PSD [nT?/Hz]

lOO.OOl 0.01 0.1 1 10 1OO.OOl 0.01 0.1 1 10
Frequency [Hz] Frequency [Hz]



Power Spectral Density/3

Kolmogorov 1941 phenomenology of turbulence predicts the
power-law scaling of the PSD in the inertial range, representing
the energy cascade across scales (the Richardson cascade):

Non-linear energy = 102}
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The PSD scaling exponent may give insight on the phenomenology
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Power Spectral Density/4

In Navier-Stokes turbulence, three fundamental scales can be introduced: the
integral scale L (the eddy-turnover time, usually corresponding to the correlation
scale); the Taylor microscale A, representing the typical size of the intermittent

structures; and the dissipation scale ». These can be identified in the spectrum:

Integral scale

_[HkEwyk
B [HkEM)

Taylor microscale

| | [HkEw)
| & kaEM)

Dissipative scale

? v
2 1| i~ R A Y L R 1 I (I ) 1 Lty | L1 l- 77 — -
1073 102 107! 10° 10! 102 £

k (cm™)

In plasmas: more physical scales exist (e.g. the Alfvén time-scale, the typical
lon and electron scales, etc.) and can often be identified through the PSD.



Power Spectral Density/5

In solar wind turbulence spectra are more complex (more about this tomorrow)

A~ 100 km p.~10% km
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Khurom H. Kiyani et al. Phil. Trans. R. Soc. A
2015;373:20140155



Intermittency: high order statistics

Turbulent dissipation in numerical simulations

Universal feature of turbulence: intermittency

Energy dissipation is more efficient when it occurs in
vortices distributed inhomogeneously in space.

Experimental observation of intermittent, bursty,
multifractal dissipation fields.

wind speed (ms™)

0 1000 2000 3000 4000  S000 6000 FOOO 8000 9000 10000 l l l
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L eeil e NeR AN @
| 14 M

: al i L 1 J‘IIJ ‘\‘ il |{| L a1 l | 1 ° bhd e °° °
2000 3000 4000 5000 5000 TO00 28000 9000 10000
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Energy dissipation rate




Intermittency: velocity increments

Turbulent fluctuations studied through the analysis of velocity differences at different time lags

oV, =v(t +7)- v(t) V(t\)e\ v{t)

This variable describes the field
fluctuations at a given scale, providing
Information about scale distribution of

turbulent structures (e.g. vortices).

elocity (m/s)
[=3]
I

Correnspondence between the scale t
and the spectral frequency f.

Streamwise v




Intermittency: velocity increments/2
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Statistical properties are increasingly innomogeneous as the scale decreases.
Second-order statistics (variance, spectrum) are not enough to describe the statistics:
the whole PDF, or its high-order moments, are necessary.



Intermittency: PDFs

Probability Density Functions (PDFs) are usually computed as normalized histogram of data

'II' l!'_

* Fix number and size of bins, and variation range (in terms of
sample standard deviations o) to ensure significant statistics in
each bin (at least ~10 points).

* Estimate error bars of the histogram as standard Poissonian
deviation (VN), then propagate to the PDF.

* Plot Log(P), since it enhances tail details.

* To compare different scales and/or different databases,

standardize the variables:
v, (6)- (v, (1))

O sy

ov,(t) =

T

Ni <5VT)
NtotAi

N.(Av ) is the number of fluctuations

in the I-th bin [Av -A/2, Av +A/2].

P.(év )=

A is the size of the interval (bin).

Ntot is the total number of data used
to compute the PDF.




Intermittency: PDFs/2

All the statistical information is contained in the PDFs

Example from plasmas: PDF of solar wind magnetic field increments at 3 different scales

Small scale:
high tails

Large values of
db are more
probable than for
Gaussian fields:
intermittency

Large scale:
nearly Gaussian
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Moment

L

2
3
4
5
6

Negative

Intermittency: moments

Alternative information can be extracted from PDFs through the
estimation of the p-th order moments, called structure functions.

Name
mean
variance
skewness

flatness (kurtosis+3)

Order 3 hyperflatness

Skewness

/‘—\ Positive

Gaussian value
0

02

302
0
1502

Kurtosis

Positive

S,(x) = ﬁoxpP(x)dx %<xp>

Tips:

* Do not standardize variables when
computing structure functions.

* Often necessary to use absolute
value of fluctuations.

* Computation needs to be done
very carefully (e.g.: sort data for
summing; consider removing
outliers, etc.).

* Check convergence (next slide).
* Try to estimate errors, e.g. by
using sub-ranges.
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Intermittency: moments/2

For turbulent flows, power-law scaling is observed in the inertial range: S (6v,) ~ T=®.
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For self-similar (Gaussian) PDFs S (dv,)~t*"
Intermittency: anomalous scaling S (dv)~t-®

Intermittency effects can be
guantified through the study of the
structure function scaling exponents.
Many models predict the anomalous
scaling, and can be tested on data
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Intermittency: moments/3

The problem of moments convergence

The estimate of structure functions is difficult for high orders p. Large datasets are
required for statistical convergence. This needs to be checked (see also next slide).
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Intermittency: moments/4

The problem of moments convergence

PHYSICAL REVIEW E 70, 055302(F) (2004)

Can high-order moments be meaningfully estimated from experimental turbulence measurements?

T. Dudok de Wit™*

Given the data time series, the plot of the ranked data shows original data
power-law behavior (with exponent -y) near larger values. b 1,
Convergence of the structure function is ensured up to the
order q,,.,., Where:




Intermittency: moments/4

The problem of moments convergence

PHYSICAL REVIEW E 74, 051122 (20006)

Extracting the scaling exponents of a self-affine, non-Gaussian process
from a finite-length time series

K. Kiyani,* S. C. Chapman, and B. Hnat

It may be useful to remove the most extreme values, which control the high-order
moments but could lack statistical significance. Convergence depends on the
dataset, but is generally achieved remving 0.5-0.1% of data.

4.5t o 1 0%
* (2 | ——0.001%
4t ] 8
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Intermittency: moments/5

The problem of moments convergence

If, despite all cares, moments still do not have good power-law ranges, go magic and use
Extended Self-Similarity (ESS), based on the linear Kolmogorov 4/5 exact law S,(t)= 4/5¢r.

Sp(T) oc 7P = Sp(SS) oc SBE(P)
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R. Benzi et al., Phys. Rev. E 48, 29 (1993).



Intermittency: kurtosis (or flathess)

A practical tool for quantitative analysis of intermittent turbulence: the scaling of the
normalized fourth-order moment, the flatness: F(t)=S,(t)/S.,*(t).

For Gaussian PDF F(t)=3, so that Kurtosis is often used K(t)=F(t)-3.
Deviation from F(t)=3 is used as indication of intermittency.

“A random function is intermittent at small scales if the flatness
grows without bound at smaller and smaller scales” (Frisch, 1995)

The flatness has usually power-
law scaling in the inertial range,
with exponent ~0.1. In the solar
wind, exponent is larger and not
universal (strongly dependent
on shocks and other structures)

25 4

20 -

154

Flathess

For good dataset, nth-order (n>2)
hyperflatness can also be used:

H,(7) =S,,(0)/(S, )y

scale t [sec] (Don't even think about it in solar wind data)




Intermittency: models

None of the above is useful unless there are models to describe the physics
Lognormal (Frisch)

)_P, H
(," =5 +75(3p=p7)

Random-{ (Frisch et al.)

¢\ )=§—logz<ﬁ1“”3>

0,trare

She-Leveque

ISt = §+2[ 1-(2/3)""]

1 I I 2 I I I I 3 I 4 _’Ia P
Multifractal (Parisi & Frisch) T T T T T T
(MF)_ - P-model &
¢, '=inf[ ph+3—D(h)] .
h
D(h) being the multifractal dimensions

P-model (Meneveau & Sreenivasan)

C(m) = 1-log, (P + (1 - p™)

Parameter P gives quantitative measure of intermittency




Wavelets?

Almost all of the above is best done using wavelet transform, which
add local information (trade-off with frequency accuracy though).
Scalograms are useful.

MEASUREMENT; Cluster; FGM; CSA; C1_CP_FGM_SPIN__20030205_000000_20030206_000000_V140305.cdf

2
Eo - J _
3 : e
- M ] ] ]
05.02.2003T10:42:20.117 05.02.2003T12:47:00618 05.02.2003T14:51:50.118 05.02.2003716:56:30.618 05.02.2003T19:01
Time [dd.mm.yyyyTHH:MM:SS.FFF]
Scalogram (db1-1:0.02 : 12)

n

A— w:
05.02.2003T15:09:49.075 05.02.2003T18:30:22.051

05.02.2003711:48:16.088
Time [dd.mm.yyyyTHH:MM:SS.FFF]

ti=05.02.2003T10:42:28.877, tf =05.02.2003719:01:11.301; dt=4.0110s; |=7461pts; Bx[nT] standardized



Summary

« Know your data.
« Be careful with any data analysis tools.
» Possibly avoid black-box packages where you don’t control the tools.
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