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WA 1. Wavelet analysis, introduction 

• Computation of wavelet spectrum of the signal (time series) Q in the Y (“mother”) wavelet 
basis for each moment t and scale t: the family of analyzing wavelets  Y(t,t) may be 
compared to a mathematical microscope, for which Y characterizes the optics, t- is the 
resolution, t the position (in addition to the dilation, t, and  translation t, the wavelet 
transform may also imply a rotation) 

• The wavelet coefficients, C(t,t) from the continuous transform: 

(Torrence and Compo, 1997)  

C(30yr, 1900) 

C(15yr, 1900) 
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WA 2. Wavelets, general mathematical properties/conditions 

• Admissibility: 
 

• Similarity: the scale decomposition is obtained by the translation and dilation of only one mother wavelet 
   -> very good spatial resolution at small scales  
  -> very good  scale resolution at large scales (Farge, 1992) 

 

, , 

• Invertibility:  there should be at least one reconstruction possibility to recover the signal from its 
wavelet representation (Farge, 1992) 

• Regularity:  the wavelet should be concentrated in a finite spatial domain and be sufficiently regular 
(Farge, 1992).  

• Cancelations:  in addition to admissibility condition the , the wavelet should have vanishing moments 
up to order M (particularly for turbulence studies) 

• Wavelets can be real of complex 
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WA 3. Wavelets, (physics) motivation 

• Unfolding the space-time structure of a signal/measurement in complex/turbulent 
systems; provides meaningful analysis of spatial properties at each scale 
(Meneveau, 1991) 
 

• Quantitative estimation of the spatial spotiness and intermittency of the energy 
flux and transfer and identification of “active” scales 

• [Hydrodynamic turbulence] Quantitative estimation of the energy  flux and energy 
transfer rate between scales and/or between spatial regions of the investigated 
dynamical system 

• Direct estimation of the (spectral/scale) energy density by the wavelet 
coefficients, easy to intuitively visualise and interpret 

• Relevant tool for complexity and turbulence analysis as they are able to reveal the 
spatio-temporal structure of the dynamical coherent structures and their multi-
scale interaction/structure 
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WA 4. Continuous and Discrete wavelet transforms (Meneveau, 1991) 

Continuous Wavelet transform  (WT) Discrete Wavelet transform (DWT) 

Transform 
𝑊𝑓 𝑠, 𝑟 =

1

𝑟𝐶𝜓

 𝑓 𝑥 𝜓∗(
𝑥 − 𝑟

𝑠
)𝑑𝑥

+∞

− ∞

 
Discrete wavelet basis 

𝑔(𝑚)
[𝑖]

= 𝜓(𝑚)
[𝑖]

𝑥 =
1

𝑎0
𝑚
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2
𝜓 (
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with the property: 

 𝑔(𝑚) 𝑘 − 2𝑚𝑖 𝑔(𝑛) 𝑘 − 2𝑛𝑗 = 𝛿𝑖𝑗𝛿𝑚𝑛

∞

𝑘=−∞

 

wavelet coefficients  

𝑤(𝑚) 𝑖 =  𝑔(𝑚) 𝑖 − 2𝑚𝑗 𝑓 𝑗

∞

𝑗=−∞

 

Invertibility 
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∞

0
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∞
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∞
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Energy 
preserving 

 𝑓 𝑟 2𝑑𝑟 =
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∞

0

∞

−∞
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∞
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Parseval 
theorem 

𝑊𝑓 𝜉, 𝑟 =
1

2𝜋
  𝑓 𝜔

∞

−∞

𝜓 ∗
𝑠,𝑟 𝜔 𝑑𝜔  
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WA 5. Wavelet versus (windowed/short time) Fourier spectrum 

ST Fourier transform 

 
Φ𝛾 𝑢 = 𝑔𝜉,𝑡 𝑢 = 𝑒𝑖𝜉𝑢𝑔(𝑢 − 𝑡) 

 

𝑆𝑓 𝜉, 𝑡 =  𝑓 𝑢 𝑒−𝑖𝜉𝑢𝑔(𝑢 − 𝑡)𝑑𝑢
+∞

− ∞

 

 

Properties of g: 

- Usually real, and even function 

- Compact support 

- its energy is concentrated in the low-
frequency components,  

- it has unit energy, i.e. ∫ 𝑔 𝑢 2𝑑𝑢 = 1 

Wavelet transform 
 

Φ𝛾 𝑢 = 𝜓𝑠,𝑡 𝑢 =
1

𝑠
𝜓(

𝑢 − 𝑡

𝑠
) 

 

𝑊𝑓 𝑠, 𝑡 =  𝑓 𝑢
1

𝑠
𝜓∗(

𝑢 − 𝑡

𝑠
)𝑑𝑢

+∞

− ∞

 

 

Properties of 𝜓: 

- Compact support or fast decay 

- Zero mean (∫ 𝜓 𝑢 𝑑𝑡 = 0) 

- It has unit energy, i.e. ∫ 𝜓 𝑢 2𝑑𝑡 = 1 
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WA 7. Sample kernel function of WT in time and frequency space 

Dilated kernel function in time-
space 

Dilated kernel function in freq. 
space 

Morlet mother wavelet:  𝜓 𝑡 = 𝜋−
1
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WA 6. Wavelets, some examples 

Graphical illustration of a few examples of wavelets  
(from Daubechies, 1992)  

• Complex versus real valued wavelets : 
– Complex wavelets take complex values whose modulus gives the energy while the phase detects 

singularities and measures instantenous frequencioes> Ecamples : Morlet wavelet 
– Real valued wavelets examples: Haar, Maar wavelet (Mexican hat) 
  

• Reprezentation of wavelet coefficients: generally one takes a linear scale for the 
spatial ordinate and logarithmic scale for the scale coordinate, full color range for 
each scale, normalization if wavelet coefficients/energy at different scales need to 
be intercompared 

Wavelet spectrum (in Haar wavelets)  of Bz 

component of the magnetic field measured by 

Cluster-1. 

8 



WA 8. Example of a discrete WT transform (LMR mother) 

Lemarie, Meyer and Battle (LMR) wavelet: 

Sample signal illustrating different oscillations at 
different scales and positions and white noise at the 
right (from Meneveau, 1991) 

𝑤(𝑚) 𝑖  

Three-dimensional map of the wavelet 

coefficients 𝑤(𝑚) 𝑖  
 computed with the LMR mother 
wavelet (from Meneveau, 1991). 

𝒈 𝒊  𝝍 𝒙  
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WA 9. Wavelet analysis and the Local Intermittency Measure 
(LIM) 

• |C(t,t)|2 is a measure of the energy density of the field Q(t) at the given 

scale and position (when the Taylor hypothesis is satisfied in turbulence 

studies).  

 

• The Local Intermittency Measure (LIM) or normalized power is derived 

from wavelet coefficients (Farge et al., 1990) : 

• LIM(t,t) =  10 means that the point t contributes 10 times more than the 

<average over  the entire time interval of the Fourier energy spectrum> at 

scale t; the global wavelet energy spectrum corresponds to the Fourier 

energy spectrum smoothed by the wavelet spectrum at each scale (Farge et 

al., 1990) 
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WA 10. Local Intermittency Measure (LIM) of plasma complexity 
– examples from numerical simulations and auroral activity 

LIM of 2D MHD simulations, Haar 
base (Chang et al, 2006) 

 

LIM of auroral electric field from Haar 
wavelets decomposition (Chang et al, 
2006) 
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WA 11. Wavelet analysis of complexity from Cluster 
observations in the solar wind , 27/03/2002 

The Local Intemittency Measure (LIM) estimated 

with Haar wavelet analysis of Bz fluctuations 

measured by Cluster-1. 

Bz component of the magnetic field measured 

by Cluster-1 FGM. 
Windowed Fourier analysis (spectrogram) of Bz 

component of the magnetic field measured by Cluster-1. 

Wavelet spectrum (in Haar wavelets)  of Bz component 

of the magnetic field measured by Cluster-1. 



FRACTALS and complexity: definitions 
“Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark 

is not smooth, nor does lightning travel in a straight line.” 

     B. Mandelbrot (cited also by Sornette) 
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“Fractals are sets of points embedded in space  and having a particular, 
non-Euclidean topology described by a fractional dimension “(J. Feder). 

• Scaling law -  power law with a scaling exponent a describing the behavior of a quantity F 
as a function of a scale s, F(s) ~sa (for a large range of s) 

• Fractal system -  system characterized by a non-integer scaling exponent a 

• MultiFractal system -  system characterized by scaling laws with an infinite number of different 
fractal exponents; the scaling is valid for the same range of scale parameter 

• Crossover -  change point in scaling law (related to singularities in the dynamical description); one 
exponent applies for small scale parameters, another one applies for the large scales 

(Kantelhardt, in Springer Encyclopedia of Complexity and System Science, 2009) 

• Persistence – (in time series) a large/mall value is usually followed by a large/small value 

• Scaling properties are one of the key descriptors of dynamical complexity.   



Fractals, modern motivation/applications 

• Fractals can model complex disordered objects (clouds, stock market, …) and can 
reveal scale invariance and symmetry 
 

• Fractal objects are key element for models  of non-equilibrium growth (Laplace equation 
and electrical discharge, patterns of bacterial growth, viscous fingering) 

• Applications to scale-free networks of infinite dimensions, phase transitions in 
disordered media (e.g. magnetization of spins in Ising model)  

• Fractals are used to explain anomalous phenomena in condensed matter and solid 
state physics  

• Fractals are relevant for the analysis of processes characterized by scale invariance 
and leading to power law distributions; applications to time series analysis in 
turbulence, complexity, finance, geology, analysis of DNA sequences, path integrals 
of quantum theory of space-time. 

• Contribute to the study and understanding of nonlinear systems, strange attractors 
and chaos. 

• Many practical applications in, e.g.,  image compression, medicine, colloids and 
polymers 
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FRACTAL GEOMETRY 
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ANOTHER  FRACTAL EXAMPLE: THE CANTOR SET  
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INITIATOR : the unit length interval [0,1] 

GENERATOR : divide the interval into three equal parts and delete the open 

middle interval leaving its endpoints in the set 
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MULTIFRACTALS: multiplicative processes 

A process that generates populations through multiplicative sequences (e.g. eddies in turbulent flows) 
may exhibit multifractal properties that describe the relative abundance of the population on 

(fractal) subsets of the set.   
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Isotropic multiplicative process (Richardson cascade):  division continues to smaller and smaller 
scales (lognormal and b-models of turbulence) 

Break-down of isotropy: stretching and folding , the thickness and density of blobs results from 
“successive multipliers”(Meneveau and Sreenivasan, 1991) 



MULTIFRACTALS: multiplicative processes 
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The multiplicative process proceeds as follows : at each step  a new generation of the population is created from the 
previous generation by division  of the length interval by 2 -> at step n there are 2n cells of length 2-n. The 
population is described by the  measure of the set given by the “content” of each of the 2n cells, mi. 

 

N

N iim

( ) ( ) df

d
SM  


~

A subset is defined   as the set of Nn() segments that 
have the same measure m.  The fractal dimension 
of the subset is determined  from: 

 

By writing m = a one can compute the spectrum of mono-
fractal dimension for each a, the f(a) multifractal 
spectrum as the fractal dimension of the set of measure 
m; a is also known as the Lipschitz-holder exponent. 

 



AN EXAMPLE : the binomial multiplicative  (p) cascade 
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N
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The  unit mass is redistributed  at each multiplication: a fraction 
p goes to the left and (1-p) to the right 

(“space filling  and non-uniform energy transfer rate” – the p-
model of turbulence) 

 

The measure m(x) after 11 iterations 

Figure from Rudolf Reidi, Rice University 
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The f(a) multifractal spectrum 
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e defined for the binomial multiplicative process has not a clear useful 
significance . 

m=a   is expressed by definition as a function of a  the Lipschitz-

Holder exponent 

( )
( )

2ln

1ln)1(ln

ln

ln pp 






m
a



a has a one-to-one relationship with   

 -> the f(a) is derived directly from f() 

 f(a) is the fractal dimension of the set characterized by the 
singularity a, i.e. the power law behavior described by the Holder 
exponent, me=a 

Multifractal spectrum of p-model of  
Hydrodynamic model of turbulence 
(Meneveau and Sreenivasan, 1987). 

Space-filling, non-uniform energy 
transfer rate cascade of p-model 
(Meneveau and Sreenivasan, 1987) 

amax - amin = 
(multifractal) 
measure of 
intermitency 
(Macek & 
Wawrzaszek,  2009) 



Multiscale analysis with the Structure Function – Generalized Hurst 
exponent 

• The intermittent behaviour is analyzed in terms of high order moments of the PDFs : 
the structure function (SF) 

 

 

 

 

• For each SF Sq, we associate a fractal Hurst exponent q for a range of scales t 

 

 

 

• If q = 1q, the fractal properties of the fluctuating series are fully described by the 
value of 1 : mono-fractal/self-similar fluctuations. For intermittent turbulence  q is 
a non-linear function of q : multifractal case 

 

• SFs can be evaluated for any positive values of q but will generally diverge for q < 0 
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(Standard) Structure Function analysis 
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Moments of various orders of the probability distribution functions: 

𝑆𝑞 𝜏 = 𝛿𝐵(𝜏) 𝑞 =  𝛿𝐵(𝜏) 𝑞
𝛿𝐵𝑚𝑎𝑥

0

𝑃 𝛿𝐵, 𝜏 𝑑𝛿𝐵 

 Power law scaling: 

𝑺𝒒 𝝉  ~𝝉


𝒒 

• 
𝑞

= 𝑠𝑞, the process is self-similar/monofractal with fractal dimension (or Hurst exponent)  s.  

• The statistics and scaling of the structure function is dominated by the most numerous fluctuations.. 

B1
t1

 

Bt3
 

Bt2
 

Ulysses data 01/01 - 07/01/2007 
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Multifractal analysis with partition function 

1. define an “incremental measure” 

2. subdivide the total time interval T into M=T/t  segments with tk  and calculate the 

normalized scale-dependent “segmental measure” (i.e., the scale dependent measure that 

we seek to define) 

3. Assume that each such measure varies with the scale t in a singular manner as a power 

law, ta. We can now form the qth moment order of the coarse grained probabilities, 

traditionally called the “partition function” (Macek & Szczepaniak 2008) 

4. search for the dominant singular behavior of G(q,t) as characterized by a power law 

in t with exponent g(q) ,t g(q), for small t similar to that for the structure function 

analysis. In general, for each moment order, g(q) is a different number characterizing 

the particular fractal behavior of the subset of fluctuations, which dominates the 

(singular) scaling behavior of that particular moment order. 23 



The multifractal spectrum – different representations 
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Link to standard mathematical representation of multifractals: 

 
• generalized dimensions: Dq(q) = g(q)/(q-1) +1 

 

•The multifractal spectrum f(a):    f(a) = qa (q)-(q-1)/ Dq(q) 

                                                        a = d/dq[(q-1) Dq(q)] 

Top left Partition function exponent 

g(q) for a time series of the AE (auroral 

electrojet) index. 

  

Top right: Generalized dimension Dq 

for the same AE time series. Solid line 

is the best fit using the P-model.  

 

 

 

Bottom: Singularity spectrum  f(a) for 

the same AE time series obtained from 

the Legendre transform. 

 (from  Consolini et al 1996) 



Multifractal analysis of the radial evolution of the solar wind 
 intermittency 
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Multifractal spectrum f(α) as a function of 
singularity strength α (diamonds) determined for 
the magnetic field strength of the fast solar wind 
measured by Ulysses in 2007 at 2.46 AU, −79.22◦. 
Continuous line shows a theoretical two-scale 
model fitted with observations (Wawrzsasek et al., 
2015). 

Map of the degree of multifractality as a measure of intermittency determined for fast (a) 
and slow (b) solar wind during two solar minima (1997-1998 and 2007-2008) and a solar 
maximum (1999-2001), respectively. Color denotes the values of the parameter  
determined for data at different heliocentric distances and heliographic latitudes. 
(Wawrzsasek et al., 2015). 



Single-Parameter Scaling 

• Monofractal condition can be satisfied by a one-
parameter scaling with the parameter s [Chang et al., 
1973]: 

 One can show that   

• For monofractal fluctuations, the single-parameter 
scaling is able to provide a clear description of how 
the strength of the fluctuations varies with the time 
scale. 

(S. Tam, Workshop on Multifractal Turbulence, Brussels, 2010) 

( )0 0( , ) ( ) ( )s s

sP E P E t t t  t t 

1s H 1q q  



Rank-Ordered Multifractal Analysis (ROMA) 

• Technique introduced by Chang and Wu [2008] 

• Technique retains the spirit of structure function 
analysis and single-parameter scaling 

• Divide (Rank-Order) the domain of Y=|E|(t/t0)
-s(Y) 

   
 (Note: s=s(Y)) into separate ranges and, for each 

range, look for one-parameter scaling 

• Scaling function                                  and scale 
invariant Y 

( )( ) ( )

0 0( , ) ( ) ( )s Y s Y

sP E P E t t t  t t 
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0( ) ( , )s Y P Et t  t

(S. Tam, Workshop on Multifractal Turbulence, Brussels, 2010) 



To solve for s(Y), the scaling parameter s for the range 

       : 

• construct the range-limited structure functions with 

prescribed s 

• Look for the scaling behavior 

• The solution s will satisfy 

[ ,  ]low highY Y Y
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(S. Tam, Workshop on Multifractal Turbulence, Brussels, 2010) 



Rank-Ordered Multifractal Analysis (ROMA) 
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𝑃 𝛿𝐵, 𝜏 𝜏𝑠 = 𝑃𝑠

𝛿𝐵

𝜏𝑠
 

Y=|B|(t/t0)
-s(Y) 

ROMA 

𝑆𝑞 𝛿𝐵, 𝜏 = 𝛿𝐵(𝜏) 𝑞 =  𝛿𝐵(𝜏) 𝑞
𝑎2

𝑎1

𝑃 𝛿𝐵, 𝜏 𝑑 𝛿𝐵  

Range limited structure function: 

𝑎1 = 𝑌1𝜏𝑠 ,  𝑎2 = 𝑌2𝜏𝑠 

𝒂𝟏 

𝒂𝟐 

𝒂𝟏 

𝒂𝟐 

Divide (Rank-Ordering) at each scale the domain of fluctuations, B, in subsets Y ordered 

such that each subset is mono-fractal and has the fractal dimension s(Y), Chang and Wu, 

2008                   Y=|B|(t/t0)
-s(Y) 



Y=[0.19, 0.25], scales: 16 : 256  [sec],  surogate s1=0.35  

Rank-Ordered Multifractal Analysis (ROMA) 
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(q=4|s1=0.35) 

(q=3|s1=0.35) 

(q=-3|s1=0.35) 

ROMA solution 

s=0.35, q=3 

Y=[0.19,0.25] 

𝑆𝑞 𝛿𝐵, 𝜏 = 𝛿𝐵(𝜏) 𝑞 =  𝛿𝐵(𝜏) 𝑞
𝑎2

𝑎1

𝑃 𝛿𝐵, 𝜏 𝑑 𝛿𝐵  

Look for the scaling behavior: q = qs 

Range limited structure function: 

𝑎1 = 𝑌1𝜏𝑠 ,  𝑎2 = 𝑌2𝜏𝑠 

(q=3, s) for DY = [0.19, 0.25],  
fast solar wind from Ulysses, 01-07/01/2007 

Ulysses data 01-07/01/2007 



ROMA spectrum: Ulysses 01 – 07/01/2007 
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IR scales: 24 : 28 [points]/16 : 256 [sec]/ 12800 – 204800  [km]  



32 

A  Multi-Level Data Analysis Strategy 

In-situ Data 

Power Spectral 

Density 

Probability Distribution 

Functions, Wavelets 
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