Turbulence Observations in Heliospheric Space Plasmas

2. Overview on solar wind

Luca Sorriso-Valvo Nanotec/CNR, Rende, Italy

Why study Solar Wind turbulence?

Has effect on the Earth: Space Weather

Triggers reconnection, substorms, aurorae, ...

Helps understanding solar processes

• Signature of coronal heating, ...

Relevant for energetic particle transport and acceleration

- Controls cosmic rays throughout the solar system
- Helps understanding astrophysical plasmas
- Stellar formation, jets, intergalactic medium, ...

Relevant for laboratory plasmas

- Reduces confinement in fusion devices
- Turbulence as a universal phenomenon
- Comparison with hydrodynamics and complex flows

Fundamental plasma processes

Dissipation of energy, magnetic reconnection, propagation of waves, .

Bruno & Carbone, Liv. Rev. Solar Phys., 2005/2013; Alexandrova et al., Space Sci. Rev., 2013; Matthaeus & Velli, Space Sci. Rev., 2011

The solar wind as a wind tunnel

Early results: solar wind heating

Measured solar wind temperature decreases radially less than expected from adiabatic expansion: something is heating the plasma.A candidate: dissipation of energy at the bottom of a turbulent cascade. Just one of many observations motivating the study of turbulence.

Autocorrelation function

Examples of Autocorrelation function in the solar wind

Vela 2 and Vela 3 data, 1964-1967

Fig. 2. Autocorrelation of the solar-wind flow speed for the interval July 1964 to December 1967 using daily averages (upper curve) and 3hour averages (lower curve).

Autocorrelation function/2

Examples of Autocorrelation function in the solar wind

PRL 95, 231101 (2005)

PHYSICAL REVIEW LETTERS

week ending 2 DECEMBER 2005

Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements

W. H. Matthaeus,¹ S. Dasso,² J. M. Weygand,³ L. J. Milano,¹ C. W. Smith,⁴ and M. G. Kivelson³

Combined dataset from ACE and Wind at different distances (lags)

TABLE I. Summary of data intervals used for this analysis.

Data set	Separation (R_E)	Length	Number
ACE-Wind	20-350	2 d	264
Cluster (I)	0.44 - 1.21	2–16 h	30
Cluster (II)	0.024-0.042	1-35 h	102

$$R_m^{\rm eff} = \left(\frac{\lambda_c}{\lambda_T}\right)^2 \approx 230\,000.$$

FIG. 1. Estimates of correlation function R(r) from 264 ACE-Wind samples, for separation distances 20–350 R_E . A fit to a constrained $[R_{bb}(0) = 1]$ exponential (dashed line) gives correlation scale $\lambda_c = 186R_E$.

Autocorrelation function/3

Examples of Autocorrelation function in the solar wind (WIND data) and in the magnetosheath (MMS data)

Panebianco, in preparation

Spectra

Magnetic spectra: turbulent solar wind (f^{-5/3}). Evidence of radial evolution in Fast wind. 1/f range: uncorrelated (Alfvénic?) fluctuations?

Spectra/2

Variety of spectral indexes are observed: sensitivity to "junk" fluctuations? Physics of the cascade?

WIND, 2004-2009; Chen et al., 2013

Spectra/3

....and they depend on SW parameters

Figure 5. Dependence of spectral indices on (a) solar wind speed v_{sw} , (b) magnitude of imbalance $|\sigma_c|$, (c) collisional age A_c , and (d) fluctuation amplitude $\delta B/B$. The error bars represent 2 standard errors of the mean. The black dotted lines correspond to different spectral index predictions. (A color version of this figure is available in the online journal.)

Spectra/4: anisotropy

Unlike neutral flows, MHD turbulence is anisotropic (B). Components transverse to the mean magnetic field have more power, and spectral exponents depend on the k-B₀ angle. Also predicted by MHD simulations: convection of Alfvénic fluctuations decorrelates and inhibits the nonlinear interactions in the || direction. Not sufficient to explain observed anisotropy (see e.g. Oughton, 1994)

Power Spectrum of IMF components

Spectra/5: anisotropy

Critical balance [Goldreich & Sridhar, 1995]: $\tau_A \approx \tau_{NL} \rightarrow k_{\parallel} \sim k_{\perp}^{2/3}$ (eddies get elongated) $\rightarrow E(k_{\perp}) \sim k_{\perp}^{-5/3}$, $E(k_{\parallel}) \sim k_{\parallel}^{-2}$ Observed spectral exponents seem to confirm the prediction.

Spectra/6: anisotropy

The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence

F. Gerick D, J. Saur, and M. von Papen D Published 2017 June 26 • © 2017. The American Astronomical Society. All rights reserved. <u>The Astrophysical Journal</u>, <u>Volume 843</u>, <u>5</u>

Figure 1. Schematic representation of the orientation of an eddy with respect to the orientation of two different background fields averaged at the scale of the eddy s_e and averaged at some larger scale s_b .

Figure 5. Spectral index κ at $\theta = 0-10^{\circ}$ and $\theta = 60-70^{\circ}$ as a function of increased averaging width by the factor α . Error

Open questions: How to define (local or global) B_0 in a turbulent flow with fluctuations at all scales? Meaningful in terms of theoretical models? ~Lagrangian turbulence? OK in time series? Mixing longitudinal and transverse fluctuations?

Spectra/7: high frequency

Early observations of high frequency spectra showed a secondary power-law range, with very variable spectral index [2-4] (claim of dissipation range).

Spectra/7: high-freq exponents

There is now a certain amount of agreement about the spectral properties after the ion-scale break [~2.5-2.8, 7/3, 8/3...]. Something more complicated happens in the transition zone.

Caveat: very short samples, ergodicity might be violated.

Spectra/8: high-freq exponents

There is now a certain amount of agreement about the spectral properties after the ion-scale break [~2.5-2.8, 7/3, 8/3...]. Something more complicated happens in the transition zone.

Hadid et al., APJL 2015

Caveat: very short samples, ergodicity might be violated.

Spectra/9: spectral break

[or $f_b vs f_{ci} vs f_{\lambda i}$ (Hall) $vs f_{\rho i}$ (kinetic Alfvén turbulence) $vs f_r$ (Alfvén waves resonance)...]

Disagreement on the location of the spectral break f_{b} (important to understand which processes end the MHD cascade).

Spectra/10: spectral break/2

Radial distance evolution of the spectral break: even more controversial data.

Spectra/11: high-freq anisotropy

And of course spectra are anisotropic at kinetic scales

Chen et al. 2010 PRL

Spectra/(n-1): compressive

Spectra/(n): density

Density fluctuations are enhanced (shallower spectra) in the transition range, where compressive magnetic fluctuations also start to enhance.

Spectra/(n+1): electric field

Electric field measurements show a spectral flattening above the ion-scale break, where it decouples from the magnetic field. Parallel electric field also show more power than expected. In the inertial range, it couples to B in the s/c frame, and to velocity in the plasma frame. At small sales: faster decay.

Mozer & Chen, 2013

Spectra/ ∞ : electron scale

A second break occurs at electron scales. The spectral shape after the break is debated, but limited data resolution and steep decrease don't allow an answer.

Intermittency

SW turbulence is highly intermittent: energy is transferred on concentrated small scale structures.

Burlaga 1991; Marsch & Tu 1994; Carbone 1996; Horbury 1998; Sorriso-Valvo 1999, 2000; ...

Intermittency/2: radial evolution

Interplanetary Magnetic Field

Intermittency/3: small scale

Intermittency at high frequency is more variable: some SW samples show increase of Flatness (typically with a small flattening/decrease around the spectral break, suggesting phase re-organization), or linear scaling of the structure functions (no intermittency). It is probably a very local property.

Gives information about the nonlinear character of the high frequency energy cascade, and on formation of smaller scale structures.

Intermittency/4: small scale

Intermittency/5: structures

Intermittency highlights the enhanced presence of small scale magnetic structures in solar wind turbulence. These structures have been described and studied in several works [Tsurutani & Smith, 1979; Tu & Marsch, 1995].

Heating and acceleration near intermittent structures

Third-order moment scaling law

Fluids - Yaglom law: linear scaling of the 3rd order moment: $\Delta v_{l}^{3} = -4/5\varepsilon l$

MHD - Politano-Pouquet law: linear scaling of the mixed 3rd order moment.

Mean and local energy transfer rate

Politano-Pouquet: first measurement of the mean energy transfer rate: $2\epsilon = \epsilon^+ + \epsilon^-$

t (sec)

Comparison with PVI: Helios, Wind

 $sqrt(\varepsilon)$

Statistical properties of proxies: PDF

Statistical properties of proxies: scaling

Helios II, fast wind, R=0.98AU

Proton heating near ε and PVI structures

Summary/1

- There are many proposed mechanisms for dissipation of plasma turbulence.
 - What is the relative contribution to dissipation by each of these mechanisms?
 - How is dissipated turbulent energy divided between alphas, protons and electrons?
 - Do we need to challenge some assumptions, e.g. universality?
- What is the most appropriate theoretical framework in which to interpret dissipation range fluctuations?
 - We need to investigate the degree of nonlinearity scale-by-scale and compare to inertial range.
 - What are the most relevant wave modes and how do we distinguish between them?

Summary/2

- What are the roles of current sheets, coherent structures and intermittency in dissipation?
 - How are these structures related to magnetic reconnection?
 - What are the origins of these structures?
 - Need a more robust estimate of the relative importance of current sheets and wave modes?
- This field of work is directly relevant to new missions: NASA MMS, DSCOVR, Solar Probe+ and ESA Solar Orbiter.
 - These will help address the role of turbulent reconnection and the radial evolution of turbulence.
 - What does the plasma turbulence community need that these missions do not provide?