Euclid Science Drivers and Requirements: Weak Lensing

Vincenzo F. Cardone - Osservatorio Astronomico di Roma

Cosmic Shear Tomography in One Slide

Weak Gravitational Lensing

- A consequence of General Relativity
- Overdensities along the lines of sight
- Distortion (and magnifaction) of galaxy shape
- A statistical effect : need for large samples
- A tiny effect : need for a stable PSF
- Binning in redshift : accurate photo z
- Measurement of both expansion and growth

Cosmic Shear Tomography : Cookbook

• Shear power spectrum:
$$C_{ij}(\ell) = \frac{c}{H_0} \int_0^{z_h} \frac{W_i^{\gamma}(z)W_j^{\gamma}(z)}{E(z)\chi^2(z)} P_{\delta\delta} \left[\frac{\ell+1/2}{\chi(z)}, z \right] dz$$

+ $\frac{c}{H_0} \int_0^{z_h} \frac{W_i^{\gamma}(z)W_j^{IA}(z) + W_i^{IA}(z)W_j^{\gamma}(z)}{E(z)\chi^2(z)} P_{\delta I} \left[\frac{\ell+1/2}{\chi(z)}, z \right] dz$
+ $\frac{c}{H_0} \int_0^{z_h} \frac{W_i^{IA}(z)W_j^{IA}(z)}{E(z)\chi^2(z)} P_{II} \left[\frac{\ell+1/2}{\chi(z)}, z \right] dz$

• Shear weight function:
$$\mathcal{W}_i^{\gamma}(z) = rac{3}{2} \left(rac{H_0}{c}
ight) \Omega_M(1+z) \tilde{\chi}(z) \int_z^{z_{max}} n_i(z') \left[1 - rac{\tilde{\chi}(z)}{\tilde{\chi}(z')}
ight] dz'$$

weight function:
$$\mathcal{W}_i^{IA}(z) = rac{n_i(z)}{c/H(z)} = \left(rac{H_0}{c}
ight) n_i(z) E(z)$$

• 1A

• Redshift distribution:
$$n_i(z) = rac{\int_{z_{il}}^{z_{iu}} n(z) p_{ph}(z_p,z) dz_p}{\int_{z_{min}}^{z_{max}} dz \int_{z_{il}}^{z_{iu}} n(z) p_{ph}(z_p,z) dz_p}$$

• Photo - z pdf:
$$p_{ph}(z) = \frac{1 - f_{out}}{\sqrt{2\pi}\sigma_b(1+z)} \exp\left\{-\frac{1}{2}\left[\frac{z - c_b z_p - z_b}{\sigma_b(1+z)}\right]^2\right\} + \frac{f_{out}}{\sqrt{2\pi}\sigma_o(1+z)} \exp\left\{-\frac{1}{2}\left[\frac{z - c_o z_p - z_o}{\sigma_o(1+z)}\right]^2\right\}$$

Shear Tomography and Dark Energy

Background expansion:

$$E^{2}(z) = \Omega_{M}(1+z)^{3} + \Omega_{X}(1+z)^{3(1+w_{0}+w_{a})}e^{-w_{a}z/(1+z)} + \Omega_{K}(1+z)^{2}$$

• Growth of structures – power spectrum:

$$P_L(k,z) = rac{9}{25} rac{2\pi^2}{g_\infty^2} \left[rac{3}{2} \Omega_M \left(rac{H_0}{c}
ight)^2
ight]^{-2} \left(rac{A_s}{k_0^{n_s-1}}
ight) T_m^2(k) D^2(z) k^{n_s}$$

 $P_{\delta\delta}(k,z) = \mathcal{P}[P_L(k,z)]$ (need for a nonlinear recipe)

• Growth of structures – growth rate:

 $rac{d\ln D(a)}{d\ln a} = [\Omega_M(a)]^\gamma$ (γ = 0.55 for ACDM, slightly different for CPL)

• Intrinsic alignment (probe DE and galaxy physics):

$$P_{\delta I}(k,z) = -[\mathcal{A}_{IA}\mathcal{C}_{IA}\Omega_M/D(z)]P_{\delta\delta}(k,z)\mathcal{F}_{IA}(z)$$

 ${\cal F}_{IA}(z) = (1+z)^{\eta_{IA}} \left[\langle L
angle(z)/L_{\star}(z)
ight]^{eta_{IA}}$

Shear Tomography and DE vs MG

• Growth of structures - growth rate:

 $rac{d\ln D(a)}{d\ln a} = [\Omega_M(a)]^{\gamma}$ ($\gamma \neq 0.55$ for Modified Gravity models)

• Growth of structures – effective gravitational constant:

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi \mathscr{G}(k,a)\rho\delta \simeq 0, \quad \mathscr{G}(k,a) = \frac{G}{f_{,R}} \frac{1 + 4\frac{k^2}{a^2} \frac{f_{,RR}}{f_{,R}}}{1 + 3\frac{k^2}{a^2} \frac{f_{,RR}}{f_{,R}}}$$

A Side Comment : There is More in Lensing!

Lensing Convergence Maps

- excess surface mass density
- reconstructed from the shear field
- scalar quantity with different systematics
- a rich mine of informations

Minkowski Functionals

Optimizing a (Lensing) Survey: Figure of Merit

- What is the aim of a survey? improving our understanding of the dark side of the universe
- What does "improving" mean? reducing uncertainties on the DE equation of state
- What does "reducing uncertainties" mean? smaller area in the (w_0, w_a) parameter space

• Quantifying the knowledge: Figure of Merit = inverse of the area of the 95% confidence level

- Estimating the FoM: FoM = $\{det[Cov(w_0, w_a)]\}^{-1/2} = \{det[F(w_0, w_a)]\}^{1/2}$
- Forecasting the accuracy: Fisher matrix (minimum variance estimator)

Forecasting the Accuracy: Fisher Matrix

Approximating the Likelihood as Gaussian

- Taylor like expansion around the best fit point: Gaussian approximation
- First non null order: first order derivatives of the observable wrt to cosmological parameters

$$\begin{split} F_{\alpha\beta} &= \sum_{\ell=\ell_{min}}^{\ell_{max}} \frac{(2\ell+1)f_{sky}\Delta\ell}{2} \operatorname{Tr} \bigg[\frac{\partial \mathbf{C}(\ell)}{\partial p_{\alpha}} \mathbf{Cov}^{-1}(\ell) \frac{\partial \mathbf{C}(\ell)}{\partial p_{\beta}} \mathbf{Cov}^{-1}(\ell) \bigg] \\ \mathbf{Cov}_{ij}(\ell) &= \mathcal{C}_{ij}(\ell) + \frac{\gamma_{int}^2 \delta_{ij}^K}{f_i n_g \times 3600(180/\pi)^2} \\ \mathbf{p}_c &\equiv \{\Omega_M, \Omega_X, \Omega_b, w_0, w_a, h, n_s, \sigma_8\} = \{0.32, 0.68, 0.05, -1.0, 0.0, 0.67, 0.83\} \\ \mathcal{A} &= 15000 \text{ sq deg }, \quad n_g = 30 \text{ gal/arcmin}^2 , \quad \gamma_{int} = 0.22 , \quad \mathcal{N}_{bin} = 10 \end{split}$$

The Best We Can Do but Yet Not Optimal

- Gaussian approximation vs non Gaussian likelihood
- Elliptical confidence contours vs banana like observed contours
- Beware of technical yet important details (numerical derivatives and matrix inversion)
- Critically dependent on the data covariance matrix (more on this point later)

Cosmic Shear Tomography : Ingredients

Observational Inputs		Theoretical Inputs						
 Redshift estimate: photometric redshift 		Matter power spectrum: linear regime						
 Photo – z pdf: accuracy (bias) 		 Matter power spectrum: nonlinearities 						
• Photo – z pdf: failure rate		Matter power spectrum: baryons impact						
 Photo – z pdf: precision (scatter) 		 Growth of structures: growth rate 						
 Survey depth: limiting magnitude 		 Intrinsic alignment: IA power spectrum 						
 Survey duration: area coverage 		 Intrinsic alignment: source properties 						
Weak Lensing Requirements								
_								
Galaxy Clustering Requirements								

Euclid Survey Requirements

• Additive bias: the centre of the bin is shifted with respect to the correct position

• Why do we care? mixing galaxies from different bins washing out the shear signal

• FoM(-5%, 0%, +5%, noIA) = {48, 55, 49}; FoM(-5%, 0%, +5%, eNLA) = {38, 46, 43}

- Impact of additive bias: reducing the FoM (up to 13% for noIA, up to 18% for eNLA)
- Requirement on additive bias: less than 0.01%

• Multiplicative bias: the centre of the bin is shifted with respect to the correct position

• Why do we care? mixing galaxies from different bins washing out the shear signal

• FoM(-3%, 0%, +3%, noIA) = {47, 55, 50} ; FoM(-3%, 0%, +3%, eNLA) = {38, 46, 43}

- Impact of multiplicative bias: reducing the FoM (up to 15% for noIA, up to 18% for eNLA)
- Requirement on multiplicative bias: less than 0.01%

- Catastrophic outliers: galaxies with photo z quite different from the spec z (degeneracy)
- Consequences: galaxies incorrectly assigned to the wrong redshift bin

• Why do we care? mixing galaxies from different bins washing out the shear signal

- FoM(20%, 10%, 0%, noIA) = {48, 55, 49}; FoM(20%, 10%, +0%, eNLA) = {40, 46, 41}
- Impact of catastrophic outliers: reducing the FoM (up to 13% for noIA, up to 13% for eNLA)
- Counterintuitive result: no outliers causes some loss of signal? simplified photo z model
- Requirement on outliers fraction: less than 10%

• Photo – z scatter: photo – z deviating from the spec – z no more than a given scatter

• Why do we care? smaller scatter, smaller correlation among bins, better signal

• FoM(1%, 5%, +10%, nolA) = {55, 55, 37}; FoM(1%, 5%, 10%, eNLA) = {48, 46, 25}

- Impact of lower scatter: increasing the FoM for the eNLA case only (and not so much)
- Impact of higher scatter: dramatically decreasing the FoM for both the noIA and eNLA cases
- Requirement on photo z scatter: less than 5% (3% goal)

Requirements in Action: the Photo – z Example

Photo – z Requirements

- 1. accuracy within 0.1%
- 2. outliers fraction < 10%
- 3. scatter < 5%

Measurement Requirements

- multiband photometry
- colors estimate (within 0.2%)
- jmprove photo z modeling
- large training samples

Need for Additional Data

- ground based photometry
- spectroscopic samples
- **Companion surveys**

Photo – z Measurement

- i. template fitting
- ii. population synthesis
- iii. neural networks

Photometry Requirements

- homogeneize data
- calibrate magnitudes
- choosing filters
- remove degeneracies

Deep and Narrow vs Wide and Shallow

- Deep vs Shallow: larger limiting magnitude, wider redshift range, larger galaxy number
- Narrow vs Wide: larger limiting magnitude, longer exposure time, lower survey area

mag _{lim}	z _m	n _g	A (sq deg)	FoM(noIA)	FoM(eNLA)
23.5	0.60	11.6	30000	43.9	25.3
24.0	0.75	18.7	30000	64.4	37.3
24.5	0.90	30.0	15000	55.1	43.0
25.0	1.05	47.6	5970	22.3	19.3
25.5	1.19	74.8	2377	9.5	8.0
26.0	1.34	116.5	946	3.9	3.3
26.5	1.49	180.0	377	1.7	1.4
27.0	1.63	275.8	150	0.7	0.6

- Not a unique answer: modeling intrinsic alignment asks for the right combination
- Area vs Depth: FoM scaling with area much faster than with number density
- Dark Energy impact: the larger the redshift, the more DM dominated, the less EoS matters

Tracing the Universe Evolution and Growth

- Why tomography? tracing DE properties through its impact on the growth of structures
- How many bins? more bins, more details on DE EoS, less galaxies in each bin, more noise

• FoM scaling with no bins: increasing but flattening out after 10 bins

- noIA vs eNLA: larger number of bins preferred to model IA (to follow IA at low z)
- changing requirements: more bins, same range, narrower bins, higher photo z accuracy
- looking for a compromise: 10 redshift bins with (super)accurate bin centres

Tracing the Universe from Small to Large Scales

- Why power spectrum? quantifying the structures from the largest to the smallest scales
- Multipole range: how do we choose (l_{min}, l_{max})?

Weak Lensing Survey(s) Requirements

Photo - z Requirements

- 1. accuracy within 0.1%
- 2. outliers fraction < 10%
- 3. scatter < 5%

Dark Energy Requirements

- 1. 10 < l < 5000
- 2. $n_g = 30 \text{ gal/arcmin}^2$
- 3. area = 15000 sq deg

Weak Lensing Survey Requirements

Ground Based Data Requirements

Theory and N – body Simulations Requirements

Alice Out of the Wonderland - Systematics

- Cosmic shear changes the ellipticity of the source image but it's a tiny modification
- In an ideal world: measure the shape of the galaxies to get the shear from averaging

moderate S/N

- Out of Wonderland: background removal shape measurement codes
- Observed shear: $\gamma_{obs}(q,z) = [1 + m(z)] \gamma(\theta,z) + \gamma_{add}(\theta,z)$
- *m*(*z*): redshift depedent multiplicative bias
- $\gamma_{add}(\theta, z)$: scale and redshift dependent additive bias
- Observed cosmic shear power spectrum:

Eyes Not Wide Shut Open: Bias

cosmic shear tomography

• Euclid + Planck mock dataset : \checkmark systematics included !

✓ Planck anisotropy power spectrum

• MCMC fitting assuming no systematics : bias on cosmological parameters

Bias on Cosmological Parameters

- Two fiducial cosmological models considered : non flat LCDM and flat CPL
- Bias negligible if the variance of systematics is small enough

When Stop Caring About Systematics

- Impact of systematics: bias on cosmological parameters
- When bias matters: when the biased confidence levels are distant from the true ones

• Biased and actual pdf overlapping: negligible bias – b < 0.31 σ

When Too Much is Too Much

assume a model for (m, γ_{add})

Limits on systematics: -

propagate systematics

🦢 estimate bias

Where Systematics Come From – Raw Data

- Our instruments are awesome! yet they are made by humans
- Charge Transfer Inefficiency
 - space based instruments damaged by radiation and cosmic rays
 - trails along a preferred direction due to readout problems
 - distortion of the shape of objects mimicking lensing shear
 - well known effect already corrected for (... if you believe that)
- Brighter Fatter effect
 - the brighter the object the larger the charge in the CCD pixel
 - scattering out light by residual charge after readout
 - the brighter the object the more light is scattered the fatter it looks
 - possibly corrected by flat field techniques
- Non optical detectors
 - observations made in the optical with "standard" instruments
 - what if observing in other photometric bands? new problems?

Where Systematics Come From - Blending

Ground vs Space Based Problems

- what you see is not what is there
- a composite rather than a single object
- dependent on magnitude limit

Why Do We Care About Blending

- wrong shape measurement
- wrong interpretation of the colors
- wrong photometric redshift estimate

Can We Correct for Blending?

- remove recognized blends
- correct for blending from simulations
- multiband photometry (if possible)

Systematics from Raw Data and Requirements

Quantifying the impact of detector systematics

$$\begin{split} \mathcal{M} &= 2 \left\langle \frac{R_{\rm PSF}^2}{R_{\rm gal}^2} \right\rangle \left(\frac{\left\langle \delta \left(R_{\rm PSF}^2 \right) \right\rangle}{\left\langle R_{\rm PSF}^2 \right\rangle} + 2 \frac{\left\langle \delta (R_{\rm NC}) \right\rangle}{\left\langle R_{\rm obs} \right\rangle} \right) \\ &+ \left\langle \frac{R_{\rm PSF}^4}{R_{\rm gal}^4} \right\rangle \left(\frac{\sigma^2 \left[R_{\rm PSF}^2 \right]}{\left\langle R_{\rm PSF}^4 \right\rangle} + 4 \frac{\sigma^2 [R_{\rm NC}]}{\left\langle R_{\rm obs}^2 \right\rangle} \right) \\ \mathcal{A} &= \frac{1}{P_{\gamma}^2} \left\langle \frac{R_{\rm PSF}^4}{R_{\rm gal}^4} \right\rangle \sigma^2 [|\boldsymbol{\varepsilon}_{\rm PSF}|] \\ &+ \frac{1}{P_{\gamma}^2} \left\langle \left(1 + \frac{R_{\rm PSF}^2}{R_{\rm gal}^2} \right)^2 \right\rangle \sigma^2 [|\boldsymbol{\varepsilon}_{\rm NC}|] \\ &\left\langle |\boldsymbol{\varepsilon}_{\rm PSE}|^2 \right\rangle \left\langle R_{\rm PSE}^4 \right\rangle \left(\left\langle \delta \left(R_{\rm PSF}^2 \right) \right\rangle^2 - \sigma^2 \left[R_{\rm PSF}^2 \right] \right) \end{split}$$

$$+ 4 \frac{\langle |\boldsymbol{\varepsilon}_{\rm PSF}|^2 \rangle}{P_{\gamma}^2} \left\langle \frac{R_{\rm pSF}^4}{R_{\rm gal}^4} \right\rangle \left(\frac{\langle \delta R_{\rm NC} \rangle^2}{\langle R_{\rm NC}^2 \rangle} + \frac{\sigma^2 [R_{\rm NC}]}{R_{\rm NC}^2} \right).$$

Ingredients to Care About

- 1. R_{PSF} : PSF size
- 2. R_{PSF}/R_{gal}: typical PSF/gal size ratio
- B. R_{NC} : effective size of the
- 4. ϵ_{PSF} : PSF ellipitcity
- 5. $\sigma(\epsilon_{PSF})$: error on PSF ellipticity
- 6. $\sigma(R_{PSF})$: error on PSF size

Requirements from Systematics

- . small PSF size
- ii. galaxies larger than 1.5 x PSF
- iii. correct for detector inefficiency
- iv. reduce PSF ellipitcity
- v. accuracy on PSF size and ellipticity

Systematics from PSF Modeling

Correcting for PSF

- model PSF and compute its moments
- "subtract" from the image ones
- additive bias from imperfect removal
- Include PSF in your modeling
- lens fitting codes (e.g., lensfit)
- multiplicative and additive bias

Ground vs Space Based

- model PSF from stars in the field
- interpolate where galaxies are
- depends on number density
- model PSF from telescope optics
- no need for interpolation
- harder to code and more demanding

Systematics from PSF and Requirements

Quantifying the impact of imperfect PSF modeling

$$\begin{split} \mathcal{M} &= 2 \left\langle \frac{R_{\text{PSF}}^2}{R_{\text{gal}}^2} \right\rangle \frac{\left\langle \delta \left(R_{\text{PSF}}^2 \right) \right\rangle}{\left\langle R_{\text{PSF}}^2 \right\rangle} + \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \frac{\sigma^2 \left[R_{\text{PSF}}^2 \right]}{\left\langle R_{\text{PSF}}^4 \right\rangle} \\ \mathcal{A} &= \frac{1}{P_{\gamma}^{-2}} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \sigma^2 [|\boldsymbol{\varepsilon}_{\text{PSF}}|] \\ &+ \frac{\left\langle |\boldsymbol{\varepsilon}_{\text{PSF}}|^2 \right\rangle}{P_{\gamma}^{-2}} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \left(\frac{\left\langle \delta \left(R_{\text{PSF}}^2 \right) \right\rangle^2}{\left\langle R_{\text{PSF}}^4 \right\rangle} + \frac{\sigma^2 \left[R_{\text{PSF}}^2 \right]}{R_{\text{PSF}}^4} \right) \end{split}$$

- Dependent on shear responsivity: method dependent systematics
- Requirements: same as before but method dependent
- Caveats: underestimating the impact of PSF modeling

From Data to Shear : Shape Measurement

- Observed shear : $\gamma_{obs} = (1 + m) \gamma + \chi_{add}$
- Multiplicative and Additive bias dependent on galaxy properties

$$egin{aligned} \mathcal{M} &= rac{2}{P_R} \left\langle rac{R_{ ext{PSF}}^2}{R_{ ext{gal}}^2}
ight
angle \left(rac{\left\langle \deltaig(R_{ ext{PSF}}^2ig)
ight
angle}{\left\langle R_{ ext{PSF}}^2
ight
angle} + 2rac{\left\langle \delta(R_{ ext{NC}})
ight
angle}{\left\langle R_{ ext{obs}}
ight
angle} + \left\langle \mu
ight
angle \ &+ rac{1}{P_R^2} \left\langle rac{R_{ ext{PSF}}^4}{R_{ ext{gal}}^4}
ight
angle \left(rac{\sigma^2 \Big[R_{ ext{PSF}}^2 \Big]}{\left\langle R_{ ext{PSF}}^4
ight
angle} + 4rac{\sigma^2 [R_{ ext{NC}}]}{\left\langle R_{ ext{obs}}^2
ight
angle}
ight
angle. \end{aligned}$$

Shape Measurement Requirements

- dependent on survey properties
- dependent on shape measurement code
- hard to quantify analytically
- rely on simulated data
- dependent on details of simulated data

$$\begin{split} \mathbf{I} &= \frac{1}{P_R^2 P_\gamma^2} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \frac{\sigma^2 [|\boldsymbol{e}_{\text{PSF}}|]}{P_{\boldsymbol{e}_{\text{PSF}}}^2} \\ &+ \frac{1}{P_R^2 P_\gamma^2} \left\langle \left(P_R^2 + \frac{R_{\text{PSF}}^2}{R_{\text{gal}}^2} \right)^2 \right\rangle \frac{\sigma^2 [|\boldsymbol{e}_{\text{NC}}|]}{P_{\boldsymbol{e}_{\text{NC}}}^2} \\ &+ \frac{\langle |\boldsymbol{e}_{\text{PSF}}|^2 \rangle}{P_R^2 P_\gamma^2 P_{\boldsymbol{e}_{\text{PSF}}}^2} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \left(\frac{\left\langle \delta \left(R_{\text{PSF}}^2 \right) \right\rangle^2}{\left\langle R_{\text{PSF}}^4 \right\rangle} + \frac{\sigma^2 \left[R_{\text{PSF}}^2 \right]}{R_{\text{PSF}}^4} \right) \\ &+ \frac{4 \left\langle |\boldsymbol{e}_{\text{PSF}}|^2 \right\rangle}{P_R^2 P_\gamma^2 P_{\boldsymbol{e}_{\text{PSF}}}^2} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \left(\frac{\left\langle \delta R_{\text{NC}} \right\rangle^2}{\left\langle R_{\text{NC}}^2 \right\rangle} + \frac{\sigma^2 [R_{\text{NC}}]}{R_{\text{NC}}^2} \right) \\ &+ \frac{\langle |\boldsymbol{e}_{\text{PSF}}|^2 \rangle}{P_R^2 P_\gamma^2 P_{\boldsymbol{e}_{\text{PSF}}}^2} \left\langle \frac{R_{\text{PSF}}^4}{R_{\text{gal}}^4} \right\rangle \alpha^2, \end{split}$$

• For all methods: calibration against simulated images

• Calibration: multiplicative and additive bias as function of S/N and size

New Systematics for Precision Cosmology $Q_{11}^0 - Q_{22}^0 + 2iQ_{12}^0$

- Galaxy ellipticity : $\epsilon_1 + i\epsilon_2 \approx \frac{Q_{11}^0 Q_{22}^0 + 2iQ_{12}^0}{Q_{11}^0 + Q_{22}^0 + 2(Q_{11}^0 Q_{22}^0 (Q_{12}^0)^2)^{1/2}}$
- Image moments : $Q_{ij}^{obs} = \frac{1}{F_w} \int_{\Delta\lambda} d\lambda \int d^2 \theta \, I^0(\theta; \lambda) * P(\theta, \lambda) \, \theta_i \theta_j \, W(\theta)$
- $I^{0}(\theta, \lambda) = I(\theta) S(\lambda)$: SED dependent effective PSF color bias
- $I^{0}(\theta, \lambda) = I(\theta) S(\theta, \lambda)$: spatially varying SED color gradient bias
- Correcting CG bias: 1. take galaxies with known color gradient
 - 2. measure ellipticity w/o color gradient into account

Contradiction at Works: Sytematics in Theory

Baryonic Effects

- dramatic at large k
- Simulation dependent
- AGN and/or feedback
- approximated correction
- still uncertain
- degenerate with?

Smith vs Takahashi vs Mead

Systematics in the Errors and Bias Again

Cosmic Shear Covariance Matrix

- only Gaussian (shot noise) matter
- non Gaussian terms do matter a lot
- and supersample covariance maybe
- we know how to compute them
- but we do not know what we need
- rely on simulations to check
- but we do not have enough time

The (Not So) Unaware Belief that Everything is Fine: Confirmation Bias

- more and more data and still the same model: why should I do not find it ?
- blinding the data and/or the analysis and/or the results as long as possible

The (Not So) Secret Desire to be the First One: Glorious Bias

- unprecedented accuracy to find the unexpected: why should I do not get glory?
- triple check every step and then check again: remember first CFTHLenS data

The Reward of Matching Requirements

Never Give Up Controlling Systematics and Matching Requirements

- Theory systematics addressed with improved methods and simulations
- Shape systematics reduced by shear measurement challenges
- Galaxy clustering forecast updated and improved
- Further probes combination (Euclid and non Euclid surveys)

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	y	m,√eV	f_{NL}	w_p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

Dealing with Requirements and Systematics

The Joy Of Dealing with Them

- we can do the best survey ever and ever
- we know systematics are out there
- some of them may be taken under control
- part of them may also teach us something
- overall we know what we have to do
- we have time to understand all but the details

The Sadness Of Dealing with Them

- better surveys harder requirements
- too much systematics out there
- "may be taken" is not "are taken"
- too difficult to understand them all
- that's why I can't stop crying
- but the devil lives in the details

Requirements as an Opportunity to Make the Best of Weak Lensing

No Precision Cosmology Without Complete Systematics Removal