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LECTURES OUTLINE

1. Galaxy clustering in the context of the standard model of
cosmology

 The accelerating Universe: why we say so?
« Dark energy or dark gravity?

« Statistical description of density fluctuations



LECTURES OUTLINE

. Measuring galaxy clustering from redshift surveys

* From observed galaxy counts to overdensities: masks, weights,
windows, mock samples and all that

 From (properly measured) clustering to cosmological parameters:
non-linearity, galaxy bias and redshift-space distortions

« Baryonic Acoustic Oscillations as a standard ruler
« Redshift-Space Distortions as a probe of the growth of structure

« Application to current and future surveys: the road to Euclid



The accelerating Universe: why we say so?



The “cosmic soup” of the 21st century: but who ordered it?
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E. Hubble 1929
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1990s: going further, what is the past history of the expansion rate?

ExPANSION OF THE UNIVERSE
4 | | 1 |

e universe
(¥ 7]

Relative size of

Now 10 20 30
Billions of Years




Beyond the Hubble law: Type- Ia SUpernovae as standard candles
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All starts (again) with a “Hubble diagram”, WhICh usmg Type Ia supernovae
- (1998, glves a surprlsmg |nd|cat|on
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... 1.e. that the expansion history H(z) given by the Friedmann equation:

HZ(Z) _ Hg{gzm (1 + Z)3 + M)Z + Qy Z)4 + Qx(l + Z)3(1+Wx)}

b
Matter Curvature Radiation Generic component
a :
( = Wx = px ) ; Qi = &
a 0.C P.

matches the observations only if we add an extra
component with equation of state w_= p/¢?p = -1

corresponding to a cosmological constant A with
energy density Q, ~3Q

H (2)=H{Q,(0+2)°+Q,}




2011 Nobel prize in
Physics
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Why are we talking of acceleration?

* w describes the equation of state of the additional fluid contr\"’
to Hz): w = pressure /density = p/c?p

e In GR both density and pressure contribute to gravity through the
stress-energy tensor, as described by the dynamical equation

a 4n@G

— = C +3
\_a ( Pror pTOT

o But w =-1 implies p=-c?p , and therefore, at z=0

a H2 871G
Z=—7(Q —ZQA) Qi=3H§p

which for Q, >Q. /2 becomes positive --> acceleration
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A “Concordance Model”
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Cosmic coincidence

- If w=-1 and the cosmological constant corresponds to some sort of “quantum , L

zero-point” (energy of vacuum), then its value today is a factor ~10120 too\&
small, plus it is suspiciously fine-tuned: anthropic argument?

redshift time
-

ar
energy

N

Matter
v ()

Size=1/4 Size=1/2 Today Size=2 Size=4
Thus could we have w = w(z) ? --> e.g. quintessence, a cosmic scalar field slowly rolling
- to the minimum of its potential (e.g. Wetterich 1988), inducing an evolving -1 <w(z) <

-1/3. Or more complex interactions between DM and DE (e.g. Amendola 2000; Liddle et
al. 2008) ?




Remember the Friedmann equation for a flat Universe containing matter and a generic component
with constant equation of state w (w=-1 for the Cosmological Constant case)

H (2= H{Q (1+2° +Q . (1+2°"""™
0 m X

For a generic time-dependent equation of state w(z), this modifies to:

H*(2= H; {Q_(1+2)’ +Q, exp %foz[l +W2) ldIn(1+ Z')]

But how should we expect w(z) to vary?



A is too small and fine-tuned:

an evolving equation of state w(a)?

Parameterizing our ignorance:
wma)=w, + W,(l-a)

[a = scale factor of the Universe = (1+2z)! ]
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THE FIRST GOAL: MEASURE WHETHER W=W(Z)

...IS THIS ALL?



...Lambda [or w(z)] is not the end of the story...




Not only H(z)... H(z) measures how the box expands with
—~T T time --> equation of state w(z)

The growth rate of structure f(z) traces
how density fluctuations grow inside the
box --> depends on gravitation theory

Springel et al.



Cosmological perturbations (Special thanks to Emiliano Sefusatti)

CMB temperature fluctuations

—
> ng(T)
" Misann number density of galaxies
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We can only study the statistical
properties of cosmological perturbations

Copyright WJ

Mathematically, these are random fields




Random fields

If » is a random variable with Probability Distribution Function (PDF) P(a)
WE can compute:

{jg')} = j (}(l')lp(_(_/)) & mean
(%) = f ddpP(d) ¢* 2-nd-order moment
(") = / do P(a) o™ n-th-order moment

3 2 2 .
oy = (¢} — (&) variance




Random fields

If $(Z) is a random field we can also compute correlation functions

=
=
-5 < ' \
< t o = {p(T))
= .
e
2
spacc, X

olz1)  olxg)

two-point function (@(xy)d(xa)) = (o(x1)){d(me)) + {(d(z1)D(22))

three-paint function  {@(21)(z2)(23)) = {(¢(z1)} {¢(x2))}{d(23))+
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The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

ng(T) — 7

ng(T) = ng 1+ 84(7)] Oq () =
g
“ T [
rtat
P, = N, \ |
‘ V galaxy overdensity
mean galaxy number or density contrast
density over the volume V' (random field!)
NB. (0,()) =
galaxy number density §,(& > 1

(random field!)



The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

o~ . - ng(T) — 7y
ng(T) = ng 1+ 84(7)] 0 (T) =
77g
N T I
Ng — N’;Ot \

y Vv galaxy overdensity
mean galaxy number or density contrast
density over the volume V/ (random field’)

NB  {(0,(Z)) =0
galaxy number density 8,(7) > —1
(randem field!) g\s =

Similarly, for the matter density we have

p(Z.t) = p(t)[1 + o(F,1)] O(Z,t) = P t) — plt)
T T p(t)

mean matter density

matter overdensity




The galaxy two-point correlation function

What is the probability of finding two galaxies in
the volume elements dV7 and dV5?
dP — dV, dVs (ng(T)) ng(Ta))
= dVy dVs ﬁ'g [1 | {6y(fl)6y(f2) )]

excess probability

We now make the assumption of
statistical homogeneity and isotropy
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The galaxy two-point correlation function

What is the probability of finding two galaxies in
the volume elements dVj and dV5 ?

AP = dVy dVa {n, (F)) n,(F2))

— AV dVa 2 [14£(r)]

?
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The galaxy three-point correlation function

Similarly | can ask the probability of finding three
galaxies in the volume elements dV7, dV; and dV3

dP = dVidVadVa(ng (21 )n,(Za)ng(2's))
— dVy dVa dVy ng 1+
—&(ri2) + &(r13) + &(res) = C(rz, 3. T23).
N t

excess probability

C(riz, 713, 723) = {8y (F1)0,(F2) 8, (Fa))

the 3-point correlation function

represents the (excess) probability to
find 3 galaxies forming a triangle of a
given shape and size

dVz




Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian
random field are completely
characterised by its 2-point correlation

function. All higher-order, connected
correlation functions are vanishing
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Perturbations in the CMB are one of the
best examples of Gaussian random field!




Gaussian and non-Gaussian random fields

0zh30m

The statistical properties of a Gaussian
random field are completely
characterised by its 2-point correlation
function. All higher-order, connected
correlation functions are vanishing

all other random fields are non-Gaussian! Ko , : -
& < i i tav, IS €
o _.‘.-'-. ‘—._..Tr '!:in
-3 (:__'..-' o
|k 2% | &
3 oy g
g | £ 2y -
. g
S

The Universe evolves from Gaussian initial conditions
(CMB) to a highly nan-Gaussian distribution of

matter (LSS) due to nonlinear growth of
perturbations under the effects of gravity




Ergodic hypothesis
0zh30m : _ .
Expectation values, in principle, are to be intended 2} . - - .‘,'
as ensemble averages, i.e. averages over many e Y LG % Eu
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but we only have one Universe! e 4_" o
IE
We have to assume the ergodic hypothesis: B
ensemble averages are equal to spatial averages §§§;
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We should make sure, however, that the
observed volume correspond to a “fair sample

of the Universe

V1

PERS

0.65

——"— o~

. . S | ——_—"




The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

o~ . - ng(T) — 7y
ng(T) = ng 1+ 84(7)] 0 (T) =
77g
N T I
Ng — N’;Ot \

y Vv galaxy overdensity
mean galaxy number or density contrast
density over the volume V/ (random field’)

NB  {(0,(Z)) =0
galaxy number density 8,(7) > —1
(randem field!) g\s =

Similarly, for the matter density we have

p(Z.t) = p(t)[1 + o(F,1)] O(Z,t) = P t) — plt)
T T p(t)

mean matter density

matter overdensity




Linear growth of density fluctuations

Jeans theory in co-moving expanding coordinates (non relativistic, Newtonian)

J | _
Equation of Continuity O—f + V- (pv) =0;
, , ov 1 |
Equation of Motion s +(v-V)o=—-Vp—-Vo¢,;
, 0

Gravitational Potential : V%o = 47Go .
Linearize equations: P = ,00[1 + 5]
Linear growth equation 825 9 a Jo — A C oS
(neglecting pressure gradients): 12 ! a Y, — AT Pp0.

Note: it is a linear differential equation —> superposition principle holds




Fourier space

Theoretical predictions for the matter correlation functions are performed in Fourier space

Fourier analysis naturally

separates perturbations at
different scales:

A(x)

L

density

space, X
Br e
o = | ¢ T S(F) . =
- (27T)3 @ Since () is a random field
O is also a random field
o 3 Q,E-f - . e S F
O(’I‘] — /d ke OE ® Since §(Z) is real b —6_,.-5

IMPORTANT: We can decompose our fluctuation field into “normal
modes” and each of these will have to satisfy the growth equation




Fourier space: correlation functions
) ; Yavalanglh A Lh L Mpe)
The 2-point function in Fourier space: the power spectrum e

_ ; R Tegmark of al. 2002
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't k- .136(3,,) The power spectrum is the Fourier
transform of the 2-point correlation function

The power spectrum is a measure of the
amplitude of perturbations as a function of scale




Assuming isotropy, the Fourier
transform simplifies to

P(k) =4n /OOO f(r)%nk—gCﬂTer

You will sometimes find the
power spectrum expressed as

2 1 3

A“(k) 53 P(k)k
Which corresponds to the
“power per octave” and shows
the true contribution of each
scale to the total variance of
the field:

o2 = / T A2(k)d(n k)

\
J

power spectrum A%(k

non-linear
evolution

Shape is
modified
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ll'

Each mode grows independently:
shape of P(k) is preserved
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Not only H(z)... H(z) measures how the box expands with
- time --> equation of state w(z)

525 _a 00
42t
Ot a Ot

din D

Linear growth rate 12 % K3 I

dln a

f(z) traces how structure grows inside the

box --> gravitation theory
Springel et al.



Understanding cosmic acceleration: the
quest for two functions



w(z)
1(z)



End Lecture 1



