Cosmology from galaxy clustering: the road to Euclid

Luigi Guzzo

Dipartimento di Fisica - Universita' Statale di Milano

Work presented here has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration, under grant agreement no 291521

Giuseppe "Bepi" Tormen, 1962-2018

LECTURES OUTLINE

- 1. <u>Galaxy clustering in the context of the standard model of</u> <u>cosmology</u>
 - The accelerating Universe: why we say so?
 - Dark energy or dark gravity?
 - Statistical description of density fluctuations

LECTURES OUTLINE

2. <u>Measuring galaxy clustering from redshift surveys</u>

- From observed galaxy counts to overdensities: masks, weights, windows, mock samples and all that
- From (properly measured) clustering to cosmological parameters: non-linearity, galaxy bias and redshift-space distortions
- Baryonic Acoustic Oscillations as a standard ruler
- Redshift-Space Distortions as a probe of the growth of structure
- Application to current and future surveys: the road to Euclid

The accelerating Universe: why we say so?

2011 Nobel Prize

Distance

1990s: going further, what is the past history of the expansion rate?

Beyond the Hubble law: Type-Ia supernovae as standard candles

... i.e. that the expansion history H(z) given by the Friedmann equation:

Curvature

$$H^{2}(z) = H_{0}^{2} \{ \Omega_{m} (1+z)^{3} + \Omega_{k} (1+z)^{2} + \Omega_{\gamma} (1+z)^{4} + \Omega_{x} (1+z)^{3(1+w_{x})} \}$$

Radiation

Generic component

 $\left(H \equiv \frac{\dot{a}}{a}; \quad w_x \equiv \frac{p_x}{\rho_x c^2}; \quad \Omega_i \equiv \frac{\rho_i}{\rho_c}\right)$

matches the observations only if we add an extra component with equation of state $w_x = p/c^2\rho = -1$ corresponding to a cosmological constant Λ with energy density $\Omega_{\Lambda} \sim 3\Omega_{\rm m}$

Matter

$$H^{2}(z) = H_{0}^{2} \{ \Omega_{m} (1+z)^{3} + \Omega_{\Lambda} \}$$

2011 Nobel prize in Physics

Saul Perlmutter

Adam Riess

"... for the discovery of Cosmic Acceleration"

Brian Schmidt

Why are we talking of acceleration?

• *w* describes the equation of state of the additional fluid contr to H(z): $w = pressure / density = p/c^2 \rho$

• In GR both density and pressure contribute to gravity through the stress-energy tensor, as described by the dynamical equation

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(c^2 \rho_{TOT} + 3 p_{TOT} \right)$$

• But w = -1 implies $p = -c^2 \rho_{\Lambda}$ and therefore, at z = 0

$$\frac{\ddot{a}}{a} = -\frac{H_0^2}{2} \left(\Omega_m - 2 \Omega_\Lambda \right)$$

which for $\Omega_{\Lambda} > \Omega_m/2$ becomes positive --> <u>acceleration</u>

A "Concordance Model"

Cosmic concordance: a w=-1 Universe?

After Planck (The Planck Collaboration)

(Amanullah et al. 2010 - before Planck)

Cosmic coincidence

If w=-1 and the cosmological constant corresponds to some sort of "quantum zero-point" (energy of vacuum), then its value today is a factor ~10¹²⁰ too small, plus it is suspiciously fine-tuned: anthropic argument?

time

redshift

Size=1/4 Size=1/2 Today Size=2 Size=4 Thus could we have w = w(z)? --> e.g. quintessence, a cosmic scalar field slowly rolling to the minimum of its potential (e.g. Wetterich 1988), inducing an evolving -1 < w(z) < -1/3. Or more complex interactions between DM and DE (e.g. Amendola 2000; Liddle et al. 2008) ? Remember the Friedmann equation for a flat Universe containing matter and a generic component with constant equation of state w (w=-1 for the Cosmological Constant case)

$$H^{2}(Z) = H_{0}^{2} \{ \Omega_{m}(1+Z)^{3} + \Omega_{x}(1+Z)^{3(1+W_{x})} \}$$

$$\left(H \equiv \frac{\dot{a}}{a}; \quad w_x \equiv \frac{p_x}{\rho_x c^2}; \quad \Omega_i \equiv \frac{\rho_i}{\rho_c}\right)$$

For a generic time-dependent equation of state w(z), this modifies to:

$$H^{2}(z) = H_{0}^{2} \{\Omega_{m}(1+z)^{3} + \Omega_{x} \exp\left\{ \int_{0}^{z} \left[1 + W(z') \right] d\ln(1+z') \right]$$

But how should we expect w(z) to vary?

A is too small and fine-tuned: an evolving equation of state w(a)?

Parameterizing our ignorance:

$$W(a) = W_0 + W_a(1-a)$$

 $[a = scale factor of the Universe = (1+z)^{-1}]$

Planck Collaboration 2013, XVI

THE FIRST GOAL: MEASURE WHETHER W = W(z)

... IS THIS ALL?

...Lambda [or w(z)] is not the end of the story...

Modify gravity theory [e.g. $R \rightarrow f(R)$]

Add dark energy

"...the Force be with you"

H(z) measures how the box expands with time --> equation of state w(z)

Z=0

Z=2

The growth rate of structure f(z) traces how density fluctuations grow inside the box --> depends on gravitation theory

Not only H(z)...

Cosmological perturbations

(Special thanks to Emiliano Sefusatti)

If ϕ is a random variable with Probability Distribution Function (PDF) $\mathcal{P}(\phi)$ we can compute:

$$\begin{split} \langle \phi \rangle &= \int d\phi \, \mathcal{P}(\phi) \, \phi & \text{mean} \\ \langle \phi^2 \rangle &= \int d\phi \, \mathcal{P}(\phi) \, \phi^2 & \text{2-nd-order moment} \\ \langle \phi^n \rangle &= \int d\phi \, \mathcal{P}(\phi) \, \phi^n & \text{n-th-order moment} \\ \sigma_{\phi}^2 &= \langle \phi^2 \rangle - \langle \phi \rangle^2 & \text{variance} \end{split}$$

Random fields

If $\phi(\vec{x})$ is a random field we can also compute correlation functions

two-point function three-point function
$$\begin{split} \langle \phi(x_1)\phi(x_2)\rangle &= \langle \phi(x_1)\rangle \langle \phi(x_2)\rangle + \langle \phi(x_1)\phi(x_2)\rangle_c \\ \langle \phi(x_1)\phi(x_2)\phi(x_3)\rangle &= \langle \phi(x_1)\rangle \langle \phi(x_2)\rangle \langle \phi(x_3)\rangle + \\ &+ \langle \phi(x_1)\phi(x_2)\rangle_c \langle \phi(x_3)\rangle + \text{perm.} + \\ &+ \langle \phi(x_1)\phi(x_2)\phi(x_3)\rangle_c \end{split}$$

n-point function

. . .

 $\langle \phi(x_1)\phi(x_2)\dots\phi(x_n)
angle$

The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

(random field!)

The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

Similarly, for the matter density we have

$$\rho(\vec{x},t) = \bar{\rho}(t) \left[1 + \delta(\vec{x},t)\right]$$

mean matter density

$$\delta(\vec{x},t) \equiv \frac{\rho(\vec{x},t) - \bar{\rho}(t)}{\bar{\rho}(t)}$$
matter overdensity

The galaxy two-point correlation function

What is the probability of finding two galaxies in the volume elements dV_1 and dV_2 ?

$$dP = dV_1 \, dV_2 \langle n_g(\vec{x}_1) \, n_g(\vec{x}_2) \rangle$$

= $dV_1 \, dV_2 \, \bar{n}_g^2 \left[1 + \langle \, \delta_g(\vec{x}_1) \, \delta_g(\vec{x}_2) \,
angle
ight]$
excess probability

We now make the assumption of statistical homogeneity and isotropy

$$\xi(ert ec x_1 - ec x_2 ert) \, \equiv \, \langle \, \delta_g(ec x_1) \, \delta_g(ec x_2) \,
angle$$

the two-point correlation function $\xi(r)$ only depends on the distance $|\vec{x}_1 - \vec{x}_2|$ between the two points

The galaxy two-point correlation function

The galaxy three-point correlation function

Similarly I can ask the probability of finding three galaxies in the volume elements dV_1 , dV_2 and dV_3

$$dP = dV_1 dV_2 dV_3 \langle n_g(\vec{x}_1) n_g(\vec{x}_2) n_g(\vec{x}_3) \rangle$$

= $dV_1 dV_2 dV_3 \bar{n}_g^3 [1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(r_{12}, r_{13}, r_{23})$
+ $\xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(r_{12}, r_{13}, r_{23})$

 $\zeta(r_{12}, r_{13}, r_{23}) \equiv \langle \delta_g(\vec{x}_1) \delta_g(\vec{x}_2) \delta_g(\vec{x}_3) \rangle$

the 3-point correlation function represents the (excess) probability to find 3 galaxies forming a triangle of a given shape and size

Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian random field are completely characterised by its 2-point correlation function. All higher-order, *connected* correlation functions are vanishing

Gaussian and non-Gaussian random fields

Ergodic hypothesis

Expectation values, in principle, are to be intended as *ensemble averages*, i.e. averages over many "realisations of the Universe" ...

... but we only have one Universe!

We have to assume the **ergodic hypothesis**: ensemble averages are equal to spatial averages

$$\langle \phi(\vec{x}) \rangle \equiv \int d\phi \, \phi \, \mathcal{P}(\phi) = \frac{1}{V} \int_{V} d^{3}x \, \phi(\vec{x})$$

We should make sure, however, that the observed volume correspond to a "fair sample" of the Universe

The distribution of galaxies in the Universe

The galaxy number density and its perturbations:

Similarly, for the matter density we have

$$\rho(\vec{x},t) = \bar{\rho}(t) \left[1 + \delta(\vec{x},t)\right]$$

mean matter density

$$\delta(\vec{x},t) \equiv \frac{\rho(\vec{x},t) - \bar{\rho}(t)}{\bar{\rho}(t)}$$
matter overdensity

Linear growth of density fluctuations

Jeans theory in co-moving expanding coordinates (non relativistic, Newtonian)

Equation of Continuity :

Equation of Motion :

Gravitational Potential :

$$\begin{split} \frac{\partial \varrho}{\partial t} + \nabla \cdot (\varrho \boldsymbol{v}) &= 0 ;\\ \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} &= -\frac{1}{\varrho} \nabla p - \nabla \phi ;\\ \nabla^2 \phi &= 4\pi G \varrho . \end{split}$$

Linearize equations:

$$\rho = \rho_0 [1 + \delta]$$

Linear growth equation (neglecting pressure gradients):

$$\frac{\partial^2 \delta}{\partial t^2} + 2\frac{\dot{a}}{a}\frac{\partial \delta}{\partial t} = 4\pi G\rho_b \delta.$$

Note: it is a linear differential equation -> superposition principle holds

Fourier space

Theoretical predictions for the matter correlation functions are performed in Fourier space

$$d^3ke^{iec k\cdotec x}\delta_{ec k}$$
 • Since $\delta(ec x)$ is real $\delta^*_{ec k}=\delta_{-ec k}$

IMPORTANT: We can decompose our fluctuation field into "normal modes" and each of these will have to satisfy the growth equation

Fourier space: correlation functions

The 2-point function in Fourier space: the power spectrum

$$\langle \delta_{\vec{k}} \delta_{\vec{k'}} \rangle = \delta_D(\vec{k} - \vec{k'}) P(\vec{k})$$

homogeneity & isotropy

$$P(k) = \int \frac{d^3x}{(2\pi)^3} \, e^{i\,\vec{k}\cdot\vec{x}} \xi(x)$$

The power spectrum is the Fourier transform of the 2-point correlation function

The power spectrum is a measure of the amplitude of perturbations as a function of scale

• Assuming isotropy, the Fourier transform simplifies to

$$P(k) = 4\pi \int_0^\infty \xi(r) \frac{\sin(kr)}{kr} r^2 dr$$

• You will sometimes find the power spectrum expressed as

$$\Delta^2(k) = \frac{1}{2\pi^2} P(k)k^3$$

Which corresponds to the "power per octave" and shows the true contribution of each scale to the total variance of the field:

$$\sigma^2 = \int_0^\infty \Delta^2(k) d(\ln k)$$

H(z) measures how the box expands with Not only H(z)... time --> equation of state w(z)Z=2 Z=0 $\frac{\partial^2 \delta}{\partial t^2} + 2\frac{\dot{a}}{a}\frac{\partial \delta}{\partial t} = 4\pi G\rho_b\delta.$ $\delta^+(\bar{x},t) = \hat{\delta}(\bar{x})D(t)$ $f \equiv \frac{d \ln D}{d \ln D}$ <u>Linear growth rate</u> $d\ln a$ f(z) traces how structure grows inside the box --> gravitation theory

Understanding cosmic acceleration: the quest for two functions

End Lecture 1