

The Euclid Mission

René Laureijs

The Dark Side of the Universe – ISSS, l'Aquila

ESA UNCLASSIFIED - For Official Use

European Space Agency

Some history, 10 years ago.....

Subject: Name for the merged concept

From: "Refregier, Alexandre" <refregier@cea.fr>
Date: 05/03/2008 12:31 PM
To: Malcolm Longair <msl1000@cam.ac.uk>, Rene Laureijs <rlaureij@rssd.esa.int>
CC: John Peacock <jap@roe.ac.uk>, Simon Lilly <simon.lilly@phys.ethz.ch>, Peter Schneider <peter@astro.uni-bonn.de>

Dear Malcolm and Rene,

Within the DUNE team, we have been thinking about suggestions for the name of the merged DUNE/SPACE mission concept.

Our preferred name is:

EUCLID: a mission to map the geometry of the dark universe.

If needed it can be interepreted as the acronym "EUropean Cosmology aLl-sky Investigator of the Dark universe".

We have also alternatives that we are still discussing, but this is our favorite. What do you think?

Cheers, Alexandre

Outline

Lecture: Euclid Mission I

- Space Science, ESA, and Programmatics
- Mission concept and trade-offs

Lecture: Euclid Mission II

- Requirements Engineering
- Design Solutions
- Mission Overview

Euclid SPACE SCIENCE, ESA AND PROGRAMMATICS

Why a space experiment in the first place?

Both proposals were submitted simultaneously in 2007 for ESAs call for missions

Morphometry: Compact and stable PSF in the optical $\lambda > 0.5$ micron **Infrared photometry and spectroscopy**: wavelength range $1 < \lambda < 2$ micron **Survey**: observing several 10000 deg2,

homogeneous observations

Space Science

Why you scientists should be interested:

- □ Highly abstract imaginative work
- □ Working in groups and teams high level of organisation complexity
 - Social skills matters!
- Requiring technical knowledge instrumentation and mission
- Data Analysis statistics and complex software systems

What has Space Science to offer?

- Great Science! Excitement...?!
- □ Large international network politics...
- Bridging science and technology
- (Appealing to the public.)

What is ESA (not)?

ESA is not CERN!

CERN does one thing in one place, with the Nobel prize as ultimate reward

ESA is not (a European) NASA!

- NASA benefits from a massive (single) US military programme
- (...therefore) NASA has a single and complete domestic market it can use
 - > ...e.g WFIRST telescope is a donation from the National Reconnaissance Office
- □ NASA directly supports the efforts by scientists

\rightarrow Space Science is the only mandatory programme for ESA

ESA is a reflection of the political will to accomplish a European effort

A strong believe in the European industrial capacity and in the strength of the scientists, engineers, project managers, and administration.

Read: *Fifty years of European Coorporation in space* by John Krige (2014) ESA UNCLASSIFIED - For Official Use

Space Science: Agency Programmes

Budgets are available, but the individual projects are expensive. Need to probe the communities and define a process to (fairly) satisfy all parties

NASA:

- Decadal survey for astrophysics
- □ Visions and Voyages for planetary science in the decade 2013-2022

ESA:

- □ Horizon 2000 (1986-2005), Horizon 2000+ (Roger Bonnet, D/SCI 1983-2001)
- □ Cosmic Vision 2015-2025 (David Southwood, D/SCI 2001-2011)

Laureijs – ISSS l'Aquila | Mission I | 22/06/2018 | Slide 9

Programmatics related to Euclid

- □ Call for Ideas / Science Themes (2004)
- □ Overall programmatic envelope: Cosmic Vision 2015-2025 (2005)
- □ Call for Missions (2007) \rightarrow more than 50 proposals
- Proposal Selection for M-class missions for entering Assessment Phase (2007)
 - > Cross Scale, Plato, SPICA, Solar Orbiter, Marco Polo, Dune+Space = Euclid
- Selection for Definition Phase (2009):
 - Solar Orbiter, Euclid, Plato
- □ Mission Selection (4 October 2011, same day as Nobel price for Dark Energy was announced to S. Perlmutter, B. Schmidt, A. Riess)
- □ Mission Adoption (2012):
 - Start of the Euclid Project
 - Launch in Q2 2020
 - ESA budget 606 Meuro (2012 e.c.)

Euclid was a candidate M-class mission for the Cosmic Vision 2015-2025 Plan.

It is a merge of two independent proposals Dune and Space. During the Assessment Phase, the instrument payload was studied by two scientific consortia.

In February 2010, Euclid was selected by the ESA Science Programme Committee to enter the next phase, the **Definition Phase**

Study Phase = Assessment + Definition

cesa

Pre-Assessment

Concurrent Design Facility – after merger of two proposals

Assessment Phase

- Two independent industrial studies (9 months)
- Science study team: further discussion of the science requirements *→* "Yellow book" (arXiv1110.3193L)

Definition Phase

- Two independent industrial studies (1 year)
- Studies on the payload component \geq
- Science Study team: further \geq discussion on the science requirements → "**Red Book**" (arXiv0912.0914L)

Science Management

ESA science advisory structure

- Solar System and Astronomy working groups (SSWG, AWG)
- Space Science Advisory Committee (SSAC)
- Science Programme Committee (SPC)

Science Management Plan: provides instructions how the scientific return is managed – endorsed by the advisory structure. It is the commitment of ESA to the member states.

- > Composition and Responsibilities of parties (ESA, other agencies, Community, Science Team)
- > Overall Scientific Organisation
- > Timescales and data governance
- > Monitored by **Euclid Science Team** (Chair Project Scientist)

Multi Lateral Agreement: gives the description of the commitment of each country / funding agency to the project signed by the participating countries

- Monitored by Euclid Steering Committee (Chair: Project Manager)
- Bi-Lateral agreement with NASA
 - > Joint Project Implementation Plan

Euclid Consortium

The Euclid Consortium will, as agreed in the MLA and SMP, provide:

- □ The VIS instrument
- The NISP instrument
- □ The Science Ground Segment
 - algorithms and related production pipeline software
 - infrastructure and data processing centres
 - data products
- □ Scientific requirements

Euclid CONCEPT AND TRADE-OFFS

"IT WAS A LOT EASIER TO KEEP AN EVE ON THINGS BEFORE THE BIG BANG. EVERYTHING WAS ALL IN ONE PLACE THEN."

Spacecraft Engineering/Project development

General Approach – involve following steps

- □ Concept / assumptions -- involve boundary conditions
- Development Plan / Implementation Plan / Operation Plan
- Requirements and interfaces
- Design Solutions
- Implementation
- Testing
- Operation and maintenance

Spacecraft Engineering/Project Development

ECSS – European Cooperation for Space Standardisation

ECSS is a cooperative effort of the European Space Agency, national space agencies and European industry associations for the purpose of developing and maintaining common standards.

Requirements in this Standard are defined in terms of **what shall be accomplished**, rather than in terms of how to organize and perform the necessary work.

Boundary Conditions for Euclid

Should be a benefit for (European) Science and European space industry, according to equal return

- M-class mission:
 - Launch slots in 2017 and 2018
 - > ESA costs should be less than 450 ME
 - Technology Readiness Level TRL > 5 at end of definition phase for satellite and payload components and subsystems
- **G** Foreign partners can be considered for a more expensive solution:
 - > Depending on the "stakeholders" / communities
 - > To enable non-European technologies
- **European Launch** \rightarrow Soyuz 2-1B was then the only option:
 - Mass limited by launch capacity of Soyuz
- □ Further important constraints from:
 - Available industrial companies with sufficient proven expertise in Europe (e.g. Mersen Boostec for SiC)

Trade offs: orbit selection

Assuming a Launch with Soyuz 2-1b from French Guyana

	Small Lissajous around SEL2	Free insertion libration around SEL	HEO (low perigee) 2	HEO (high perigee)	GEO
Δv (deterministic)	200 m/s Long transfer time (depending on Lissajous amplitude, 1-3 months)	0 m/s Science ops can start typically 30d after launch	75m/s Short transfer	400 m/s Short transfer	1478 m/s Short transfer (1 day)
Heritage	Planck, GAIA	Herschel, LPF	Integral (10000/152000/51.6)	No heritage	Hipparcos (failed to reach)
Soyuz capacity	2146 kg	2146 kg	2360 kg	2270 kg	1300 kg for direct injection 2730 kg from GTO, with SC propulsion module (apogee engine)
Mass after injection	2013 kg	2146 kg	2304 kg	2010 kg	1300 kg for direct injection 1723 kg from GTO
Sky viewing	Earth and Moon never seen by the telescope	Earth and Moon never seen by the telescope	Some occultation by Earth +Moon	Some occultation by Earth +Moon	Some occultation by Earth +Moon
Eclipses	No eclipse for 6 years, moon eclipses possible	None	Seasonal Earth-Sun daily eclipses Moon-Sun eclipses : marginal occurrence	Seasonal Earth-Sun daily eclipses Moon-Sun eclipses : marginal occurrence	Seasonal Earth-Sun daily eclipses Moon-Sun eclipses : marginal occurrence

 $\Delta v = v_{e} \ln(m_{o}/m_{1})$ – rocket equation – note: LHC/ATLAS is 7000 tonnes!

Laureijs - ISSS l'Aquila | Mission I | 22/06/2018 | Slide 19

Stability and orbit control

□ AOCS = attitude and orbit control system \rightarrow to maintain orbit stability

	SEL2 orbits	GEO	HEO		
FDIR aspects					
Failure detection	Easy and robust	Medium	Worst case		
Failure correction	Easy	Medium	Highest cost		
Disturbances					
Gravity gradient	None	Residual, but changing with time and orientation	Sizing at perigee for the 3-day orbit		
Earth magnetic field	None	Very small, but changing unevenly	Variable over the orbit for low perigee case, high perigee case similar to GEO		
Effect of Moon	None	Negligible (TBC)	Negligible (TBC)		
Thermal perturbations None		Small but not static	Variable over the orbit		
(impacting AOCS)			for low perigee case, high perigee case similar to GEO		

Orbit details

The launch will be on a Soyuz 2-1b from French Guiana

The trajectory is a direct ascent trajectory without a drift phase

- > The direct ascent provides the maximum performance
- > All orbital parameters are free except the apogee altitude

The daily launch window is constrained by

- Size of the science orbit defined by the Sun-S/C-Earth angle
- Illumination constraints
- Maximum deviation of the required perigee velocity from the launcher flight program
- Eclipses during transfer and operational orbit

Operational orbit

Large amplitude orbit around the SEL2 point:

- High thermal stability
- Communication distance is limited
- Unobstructed observations in one hemisphere

Typical SEL2 launch sequence (Gaia)

Launch opportunities

Present launch date: end 2021- end 2022

Trade Offs: telemetry

- □ X-band (for housekeeping)
- □ K-band with 850 Gb/4hours (~60 Mbps) for science data \rightarrow new for ESA, need new hardware

Band	Frequency	Bandwidth	Comments
S-band	2200-2290 MHz	6 MHz/mission	Max symbol rate 6 Msps
			Band quite congested, complex frequency
			coordination
X-band	8450-8500 MHz	10 MHz/mission	Max symbol rate 10 Msps
			Using GMSK and standard coding, max data
			rate of 5-8 Mbps
			10 Mbps easier with dual polarisation
			Use from GEO quite restricted
X-band	8025-8400 MHz	375 MHz	Enabling high data rates > 100 Mbps
EES			But strictly reserved for Earth Exploration
			missions
K-band	25.5-27 GHz	1.5 GHz	No bandwidth restrictions but efficient use
			encouraged
			For L2 missions requiring > 5 Mbps
			"Hardware limit" at 100 Mbps
			(200 MHz clock-frequency)
Ka-band	31.8-32.3 GHz	500 MHz	Strictly reserved for Deep Space missions
Ka-band	37-38 GHz	1 GHz	Manned planetary exploration
			Shared with fixed satellite services (telecom)

Cebreros upgrade for K-band

support leg of M9

X/K-band feed

Mirror M9

ES

- X/K-band feed (new)
- Movable M5

- Dichroic mirror M7 (legacy)
- X-band feed (legacy) behind M7

Trade-offs: Aperture, Mass and costs

- OTA = optical telescope assembly
- \rightarrow OTA Cost $\sim D^{1.7}\lambda^{-0.3}T^{-0.25}$
- Where, D=diameter, λ = diffraction limited wavelength, T= temperature of OTA
- \rightarrow (Total costs –OTA costs) \sim Mass^{0.9}

OTA Cost vs Aperture Diameter (rev. 8.1.11) Rev. 08.08.2011 Total Cost - OTA Cost vs. Total Mass 10000 – 90% CI sts – 90% PI 1000 Included in Regression Ô 1000 Median OtA OTA Cost (FY11SM) OAO-Cost Herschel Regression COStS -Information 8 1.56 0% Coefficient 0.86 Ē p-value: 0.00 80% 0.58 ota r²adj 79% Adjusted R2 0.56 🖕 WÍRE 21 SPE 142% 20 0.1 100 1000ss (kg) 10000 Kg 0.1 10 Aperture Diameter (m) Spacecraft mass

Stahl, H.P., et al (2012, NASA publication)

Trade-off: Telescope Size

Telescope size was fixed at 1.2 m at an early stage

- Monolitic SiC design max diameter of 1.2 m possible
- Zerodur design no max diameter, but constrained by mass and minimum temperature
- □ The science requirements did not impose larger size telescope
 - > Effective area = 1.00 m^2 (identical to that of Fermi satellite)

Euclid Science Concept

- Determine the dark energy equation of state, pressure over density, as a function of cosmic scale *a*:
 w(a) = P/p, a = 1/(1+z)
 - $\succ w(a) = w_p + w_a(a_p a)$
 - > w_p is a measure of the *acceleration* of the Universe's expansion, and w_a is a measure of the *variation* of the acceleration.

This gives us the dark energy Figure of Merit: $FoM=1/(\Delta w_p \Delta w_a)$

Aim: *FoM* > 400

- Determine the growth rate of structure formation $f \sim \Omega^{\gamma}$ Aim: Δγ< 0.02
- Seneral Relativity with a cosmological constant and cold dark matter (ACDM model) **predicts**:

> $w_a = 0, w_p = -1, \gamma = 0.55$

...but this would be in contradiction with the standard model of particle physics. Euclid has sufficient precision to test any deviations in this triplet!

Euclid Design Concept

Optimize the mission for two complementary dark energy probes: galaxy clustering and weak lensing; Minimum survey area of 15,000 deg² (36% of the total sky)

 \rightarrow 6 year nominal mission

Weak Lensing: → **VIS** imager + **NIR** imaging-photometer

- > Shapes and shear of galaxies with a density of >30 galaxies/arcmin²
- > Minimum Systematics $\sigma^2_{sys} < 10^{-7}$
 - Very high image quality, high stability
- Redshift range $0 < z < \sim 2$, accuracy dz/(z+1) < 0.05

Galaxy clustering → NIR slitless spectrometer

- H_alpha Redshifts for >1700 galaxies/deg²
- > Redshift range 0.9 < z < 1.8, accuracy dz/(z+1) < 0.001
- > Same area as for WL \rightarrow line Flux limit < 2 10⁻¹⁶ erg cm⁻²s⁻¹.

Euclid Design Concept → *challenges*

Optimize the mission for two complementary dark energy probes: galaxy clustering and weak lensing; Minimum survey area of 15,000 deg² (36% of the total sky)

→ 6 year nominal mission → exposure times, survey area, and viewing constraints are very tightly connected

Weak Lensing: → **VIS** imager + **NIR** imaging-photometer

- Shapes and shear of galaxies with a density of >30 galaxies/arcmin² \rightarrow *limited by backgrounds & straylight*
- > Minimum Systematics $\sigma^2_{sys} < 10^{-7}$
 - Very high image quality, high stability
- ▶ Redshift range 0 < z < ~2, accuracy $dz/(z+1) < 0.05 \rightarrow$ need ground based g,r,i,z photometry

Galaxy clustering → NIR slitless spectrometer

- ➢ Redshifts for >1700 galaxies/deg² → purity & completeness limited by background level and source confusion
- > Redshift range 0.9 < z < 1.8, accuracy dz/(z+1) < 0.001
- Same area as WL \rightarrow line Flux limit < 2 10⁻¹⁶ erg cm⁻²s⁻¹ \rightarrow VIS and NISP-S exposure times are identical

Euclid REQUIREMENTS ENGINEERING

Euclid Mission: Requirements flow down

Mission Requirements

Reading: Lorenzo Alvarez, et al (2016) "Model-based system engineering approach for the Euclid mission to manage scientific and technical complexity" SPIE, Volume 9911, id. 99110C

MRD top-level functional requirements Agency **Functions** Mission Architecture Constraints Perform Wide Survey: Science Lifetime Single Telescope ECSS Standards 15,000 deg2 6 years **VIS** Instrument Perform Deep Survey: Space Segment L2 orbit **Decommissioning** provided by EC 40 deg2 NISP Instrument Passivation Visible imaging provided by EC Near-Infrared Slitless MOC at ESOC Spectroscopy SOC at ESAC Near-Infrared Photometry Ground segment **EC-SGS** Provide mission data products in a Euclid GSN with X & K-Legacy Archive (ELA) band capability Launch Segment Soyuz Launcher

MRD Main Weak-Lensing Science requirements

MRD Main Weak-Lensing Science requirements

MRD Main Galaxy Clustering Science requirements

	Galaxy sample selection		Spectroscopic red-shift determination		
	Survey size	15,000 deg ²		Wavelength error	
		85% survey efficiency	Redshift (z) precision, uncertainty and systematic offset (see SciRD)NISP-S Imaging of the NI field with sensitivity $m_{AB} = 24 (5\sigma)$ Spectral resolution > 21		
	Average Number of galaxies	Flux limit Ha-line: 3x10 ⁻¹⁶ erg cm ⁻² s ⁻¹ @ 1600nm		NISP-S Imaging of the NISP-P field with sensitivity $m_{AB} = 24 (5\sigma)$	
	3500 gal/deg ² Galaxy redshift distribution	Flux limit other wavelenghts: 3.6x10 ⁻¹⁶ erg cm ⁻² s ⁻¹		Spectral resolution > 250	
ESA U		Completeness > 45%	Redshift catastrophic error fraction	Z measurement purity > 80%	
			f _{cat} < 0.2%	Subsample >140,000 galaxies with purity > 99%	
	Median redshit 0.7 <z<2.05< td=""><td>NISP-P spectral range 1100-2000nm</td><td>f_{cat} knowledge better than 1%</td><td>External data under EC responsibility</td></z<2.05<>	NISP-P spectral range 1100-2000nm	f _{cat} knowledge better than 1%	External data under EC responsibility	

2018 | Slide 38

MRD Main Galaxy Clustering Science requirements

	Galaxy sample selection		Spectroscopic red-shift determination		
ESA U	Survey size	15,000 deg ²		Wavelength error	
		85% survey efficiency			
	Mean surface density of galaxies 1700 gal/deg ²	Flux limit Ha-line: 2x10 ⁻¹⁶ erg cm ⁻² s ⁻¹ @ 1600nm	Redshift (z) precision, uncertainty and systematic offset (see SciRD)	NISP-S Imaging of the NISP-P field with sensitivity $m_{AB} = 24 (5\sigma)$	
		Flux limit other wavelenghts: 2.4x10 ⁻¹⁶ erg cm ⁻² s ⁻¹		Spectral resolution > 380	
	Galaxy redshift		Redshift catastrophic error fraction	Z measurement purity > 80%	
		Completeness > 45%	f _{cat} < 0.2%	Subsample >120,000 galaxies with purity > 99%	
	Median redshit 0.9<2<1.8	NISP-P spectral range 1250-1850 nm	f _{cat} knowledge better than 1%	External data under EC responsibility 2018	3 Slide

Straylight requirements changed to level 3

Straylight requirement change

Latest NDI curve for the red grism channel

Incluence angle

Euclid DESIGN SOLUTIONS

"Novel" System solutions (1)

- Sic Homothetic design for he payload: same coefficient of thermal expansion
 - > All mirrors, baseplate, truss, brackets are made of SiC
- □ Large FoV telescope (0.8x0.7 deg), with large dichroic \rightarrow Korsch TMA (flat FPA)
- **Stable pointing**: sophistic Attitude and Orbit Control System
 - > Reaction wheels stop rotating during a science exposure
 - > Optical gyroscope for stability at short time intervals
 - Fine Guidance Sensor using the telescope, with *absolute pointing* capabilities (to calibrate the startracker)
 - Cold pressurised gas for actuation during exposure
 - "compensating mechanism unit" to counter the NISP filterwheel torque

"Novel" System solutions (1)

- **K-band operations** \rightarrow 850 Gb/day (assuming 4 hours of station time)
 - New file transfer protocol between spacecraft and Earth (CFDP)
 - Use of flash memory
- Customised Sensors
 - Infrared: H2RG (HgCdTe) sensors with 2.3 micron cutoff (Teledyne + NASA)
 - Optical: CCDs e2v model 273 better equipped against radiation, low CTI

Mission Implementation (1): Payload Module

Mission Implementation (2): Service Module

Mating of the SVM and PLM

ESA UNCLASSIFIED - For Official Use

Instruments - VIS

 Focal plane assembly, with readout electronics, and power support units

- Shutter or door
- Calibration unit
- □ One wide band 0.55-0.90 micron

Instruments - VIS

□ STM FPA and the AVM parts

Instruments - NISP

- □ Three Red grism with 0°; 90° and 180° dispersion: 1250 1850nm
- One Blue grism with 0° dispersion:
 920 1300nm
- ✓ Y Band: 950 1192nm
- ✓ J Band: 1192 1544nm
- ✓ H Band: 1544 2000nm

Instruments: NISP STM parts

□ STM = structural thermal model

System Performances

	Attitude range	87° < SAA < 121°, -8° < a <8°	
D _i_t_t_		Requirement	Performance
Pointing	Absolute Pointing Error (APE) 99.7% CL	7.5 arcsec,	6.25 arcsec on X, and Y
	Relative Pointing Error (RPE) 99.7% CL	75 mas / 700 s	70.5 on X , 47.3 on Y 👘 👘
	No. of fields, dithers, large slews	60,000 fields, 4 dithers per field (≤100"), 16 large slews per month	
Survey	Max accumulated maintenance time	2 months in 6 years	
	Field overlap	< 1% (99.7% CL)	
		Requirement	Performance
	PSF FWHM (800 nm, 700 s)	< 0.155 arcsec	<0.141 arcsec
	PSF ellipticity (800nm, 700 s)	< 14%	<10.4%
VIS Image quality	PSF R ² (800nm, 700 s)	< 0.055 arcsec ²	<0.054 arcsec ²
	Ellipticity, R ² variation (800nm, 11000 s)	< 2%	<0.4%
	Maximum Encircled Energy (EE) radius	50% /80%	50% / 80%
NISP Image quality	@ 1033nm	19.2 nm / 43 nm	16.5 nm / 41.4 nm
	@ 2000nm	31.5 nm / 77 nm	27.1 nm / 75.6 nm

These are the performances derived by the prime contractor (TAS), for S-CDR

Survey Design

- The Euclid Collaboration is responsible for the survey plan according to
 - Scientific requirements for the wide survey and deep survey
 - Operational constraints
 - Calibration requirements (to remove instrumental effects)
- □ Wide Survey:15,000 deg2, in 6 year nominal mission
- □ Deep Survey: 40 deg2, 2 mag deeper than the wide survey
 - Ecliptic poles (2 fields)
 - Fornax field (1 field)

Euclid Survey Development

Euclid will survey 15,000 deg² in 6 years nominal mission

The survey plan has to take the following issues into account:

- > S/N depends on sky background and source density (for spectroscopy)
- > Required calibrations and the deep field observations
- > Each Field consists of 4 dithered exposures, and the overlap between fields is at most 2%, no re-visit
- Spacecraft slewing overheads and viewing constraints
- > Viewing angles are also constrained by the thermal stability of the payload, to minimise biases in the PSF
- > Exclusion of the galactic plane, the ecliptic plane, and regions with high galactic extinction.

This is a non-trivial exercise and is closely coupled with the performances of the scientific instruments, telescope and satellite (straylight, pointing stability, and thermal stability).

The survey pointing plan is developed by the Euclid Consortium and delivered to the SOC for scheduling and maintenance.

Reference Survey (for M-PDR)

Mollweide projection in ecliptic coordinates, different colours give different years of the mission. Each field is indicated by a small rectangular box. The curved line is the galactic plane. Overlayed are the constellations.

ESA UNCLASSIFIED - For Official Use

This is the survey plan developed by the EC survey group, scheduling algorithm by J. Dinis (Univ. Lisbon).

It shows the feasibility to build a survey satisfying given constraints – this was done for the Mission preliminary design review.

Ground Segment

Consists of three major elements

- **Operational Ground Segment (OGS):** Mission operations centre (MOC) for the satellite in orbit
 - Satellite Operations (uplink/downlink telemetry, commanding)
 - > Orbit maintenance
 - > Management of ground stations for Euclid
 - > First line of housekeeping monitoring to check systems health
- Science Operations Centre (SOC): scientific operations and science data handling
 - > Survey Execution: delivery of the pointing plan to MOC
 - > First level of data processing
 - Science data (quality) monitoring
 - > Data distribution via the Euclid Archive System
- **Euclid Consortium science ground Segment (EC-SGS):** data processing and product generation
 - Scientific data processing
 - Provision and development of the processing pipelines

SOC and EC-SGS should conserve the knowledge of the mission and the products to ensure correct interpretation of the data.

ESA UNCLASSIFIED - For Official Use

Ground Segment **Operations**

SGS design and development

a few more words...:

- □ Micro-pipelines \rightarrow "code to data" instead "data to code"
- □ Agile development \rightarrow science challenges and IT challenges
- Archive is an important central component:
 - Consists of 3 components: DPS, SAS, and DDS
 - Functions for (giant) tables
 - Common Data Model

Euclid MISSION OUTLOOK

ESA UNCLASSIFIED - For Official Use

Industrial Geographical Distribution

Not only scientists benefit from the mission. It is also meant to boost the space industries in Europe.

- ISSS l'Aquila | Mission I | 22/06/2018 | Slide 63

Data release plan: preparing the scientific return

Launch

Routine Operations Mission Extension 6 years 1+ years (optional) Commissioning 3 months TO Ι. Q1 DR1 Q2 DR2 Q3 Q4 DR3 T1+3 yrs T1+6 yrs T1=T0+14 T1+1 yr T1+2 yrs T1+4 yrs T1+5 yrs months End of Nominal Mission 4 2 0 6 years 8

Note: the mission duration is limited by the availability of cold gas

Laureijs - ISSS l'Aquila | Mission I | 22/06/2018 | Slide 65