International School of Space Science (ISSI)

The Polar Upper Atmosphere: From Science to Operational Issues, L'Aquila, Italy, 16-21 Sep. 2018

"MAKING THE IONOSPHERE — All in a Morning's Work"

by
Michael Mendillo
Professor of Astronomy
Boston University
[mendillo@bu.edu]

1. The Photo-Ionization Process

Start with Neutral Atmosphere

Ionization Potentials of Atoms and Molecules

<u>Species</u>	Energy (ev)
O	13.62
O_2	12.06
N_2	15.58

<u>∧</u>ionization 910 Å 1028 Å 796 Å

Photon energy, $E = hv = hc/\lambda$

or
$$\lambda(\text{Å}) \approx \frac{12345}{\text{E(ev)}}$$

Thus, Photon $(910 \text{ Å}) + O \rightarrow O^+ + e^-$

Knowing
$$F_{910}^{SUN}(h) & [O(h)] \rightarrow [O^{+}(h)] + [e^{-}(h)]$$

Production Function (P) for monochromatic ionizing radiation (called "Chapman Theory")

How should P(h) look?

Algebraically
$$P_{i,e}$$
 (h) = $F_{\lambda_{ion}}^{sun}$ (h) σ_{ion} \cdot [O(h)]

What happens if photon $\lambda > \lambda_{\text{ion}}? \rightarrow \textit{No ionization}$ $\lambda < \lambda_{\text{ion}}? \rightarrow \textit{Extra Energy}$

i.e., Photon (
$$\lambda < \lambda_{ion}$$
) + O \rightarrow O⁺ + e ^{-*} (energetic photo-electron)

If e^{-*} Kinetic Energy > Ionization Potential collisions can cause additional ionizations

$$e^{-*} + O \rightarrow O^+ + e^-$$
 ("secondary ionization")

Thus, a very energetic photon can lead to several ion-electron pairs.

For a complete model of Photo-Ionization, the flux of solar photons at all relevant λs is needed:

$$P_{\text{Total}}(h) = \sum_{\lambda=0}^{\lambda_{\text{ion}}} F_{\lambda}^{\text{sun}}(h) \cdot \sigma_{\text{ion}}(\lambda) \cdot [N(h)]$$

Table 2.1. *Solar spectral regions*.

Radio	$\lambda > 1 \text{mm}$
Far Infrared	$10\mu\mathrm{m} < \lambda < 1\mathrm{mm}$
Infrared	$0.75 \mu \text{m} < \lambda < 10 \mu \text{m}$
Visible	$0.3 \mu \text{m} < \lambda < 0.75 \mu \text{m}$
Ultraviolet (UV)	$1200\text{Å} < \lambda < 3000\text{Å}$
Extreme ultraviolet (EUV)	$100\text{Å} < \lambda < 1200\text{Å}$
Soft x-rays	$1\text{Å} < \lambda < 100\text{Å}$
Hard x-rays	$\lambda < 1 \text{Å}$

Production of Ionospheric Plasma by Energetic Particles

2. Ionospheric Transformations

What does "production only" imply? e.g., use P(O⁺) value from graphs (photons or particles)

$$P_{\text{max}} = 4000 \,\text{e}^{-1}/\text{cm}^{3}/\text{sec} \times 3 \text{ hours} \ (\approx 10^{4} \,\text{sec})$$

gives $N_{\text{max}} \approx 4 \times 10^{7} \,\text{e}^{-1}/\text{cm}^{3}$ Never Measured!!!

Message: Something happens to these ions and electrons

Plasma recombination Answer: Chemistry: Neutral-Plasma Processes

CASE # 1: Atomic ions + electrons

 $O^+ + e^- \xrightarrow{\alpha} O$ [very rare due to precise energetics needed for electron capture]

CASE # 2: Molecular ions + electrons

$$O_2^+ + e^{\frac{-\alpha}{2}} \rightarrow O + O$$
 [fast due to excess energetics used for dissociation]

CASE #3: Transform Atomic ions to Molecular ions

$$O^{+} + \begin{bmatrix} N_{2} \\ O_{2} \end{bmatrix} \xrightarrow{k} \begin{bmatrix} NO^{+} \\ O_{2}^{+} \end{bmatrix} + \begin{bmatrix} N \\ O \end{bmatrix} \quad (slow)$$

$$\xrightarrow{\text{followed by } \\ CASE \#2 \text{ (quick)}}$$

The 2-stage recombination process governed by slower step, e.g.,

$$\frac{dN_{e}}{dt} = -k[N_{2}]N_{e} = -\beta N_{e}$$

Messages from Simple Photochemical Theory

•Plasmas should be ionized form of dominant neutral

 \rightarrow CASE #1 : O⁺ + e⁻

 \rightarrow CASE #2 : $O_2^+ + e^ N_2^+ + e^-$

• The actual case:

— some chemical transformations to form NO⁺ and H⁺

• Two main layers: F-layer and E-layer (EUV) (X-rays)

Some E-layer Characteristics

- In regions of a dense neutral atmosphere ($h \le 150$ km) all ions are molecular (rapid chemistry) and the ions + electrons stay where produced (too many collisions to move away).
- Example of diurnal behavior

The E-layer is controlled by the Sun's flux and its position ($dec + \chi_{\odot}$)

3. Photochemistry-Plus-Dynamics

• Some F-layer Characteristics

The F-layer is produced by sunlight BUT its behavior does not follow $\chi_{\odot} \Rightarrow$ "Anomalies"

What are the causes of vertical motions?

GRAVITY

- For neutral gas,
$$\frac{dP}{dh} = -\rho g \Rightarrow \frac{d(NkT)}{dh} = -Nmg$$

Solution: Hydrostatic Law

$$N(h) = N_o(h_o) \exp[-(h-h_o)/H_n)$$

neutral scale height
$$H_n = \frac{kT}{mg}$$

- For plasma \rightarrow ions + electrons $m_i \gg m_e$

Gravity tends towards "charge separation"

 \Rightarrow Polarization $\stackrel{\cdot}{E}$ -field (ϵ_p)

$$\frac{dP_{i}}{dh} = -\rho_{i}g + N_{i}e\varepsilon_{p} \qquad \qquad \frac{dP_{e}}{dh} = -\rho_{e}g - N_{e}e\varepsilon_{p}$$

Adding, with $N_i = N_e = N$ and $m_e \leftrightarrow 0$

$$\frac{d(P_i + P_e)}{dh} \approx -Nm_i g$$

• Solution $N(h) = N_o(h_o) \exp[-(h-h_o)/H_p]$

Plasma scale height
$$H_p = \frac{K(I_e + I_i)}{mg}$$

$$H_p \ge 2H_n$$

Called "Ambipolar diffusion" electrons "pull" ions upward

ions "pull" electrons downward

- Midlatitudes (extended)

Magnetic Latitude (Λ), $\cos^2\Lambda = 1/L$ (e.g., $L=4 \Rightarrow \Lambda = 60^{\circ}$)

What happens to ionospheric plasma diffusing upwards?

Diffusion affected by reduced gravity, $F_{centripetal}$, light ions

$$\frac{dP}{ds} \rightarrow \text{large H}_{p}$$

fluxtubes of plasma of ionospheric origin

"Charge Exchange"
$$\underbrace{O^+_{\text{heavy ion}}}^+ + H \iff \underbrace{H^+_{\text{light ion}}}^+ + O$$

The Plasmasphere in 3-dimensions:

What else causes Vertical Motions? Roles of Magnetic Field

- Neutral Winds (U_m) are horizontal
- Plasma constrained to move $\parallel \overline{\overline{B}}$

- Middle Latitudes maximum effect
- Equatorial Latitudes $(I = 0^{\circ})$ small effect
- High Latitudes $(I = 90^{\circ})$ small effect

Unless U_m generates polarization \overrightarrow{E} -field

Electrodynamics: Motions caused by induced or penetrating \vec{E} -fields

At high latitudes

 \vec{B} close to vertical

 $ec{E}$ horizontal causes horizontal $ec{V}_p$

Convection Patterns

At low latitudes

B close to horizontal

 $ec{E}$ horizontal causes vertical $ec{V}_p$

Fountain Effect

Effects of Electro-Dynamics at Low Latitudes

Effects of Electro-Dynamics at High Latitudes

B_z southward

The Polar and High Latitude Ionosphere

- Minimal production of plasma by solar photons
- Strong production of plasma by precipitation of energetic particles from Magnetosphere (nightside) and solar wind (dayside)
- Strong E-fields: Solar wind \rightarrow Magnetosphere \rightarrow Ionosphere
- Electrodynamics: Horizontal convection/circulation patterns
- Upward diffusion & escape: Polar Wind
- Many ionospheric irregularities due to Plasma Instabilities

Summary #1: External Drivers

Summary #2: A Highly Coupled/Complex System

Current closure (height-integrated Ohm's law) is key to M-I-T coupling

$$\nabla_{\perp} \cdot \left(\ddot{\Sigma} \cdot \nabla_{\perp} \Phi \right) = J_{\parallel}$$

$$\ddot{\Sigma} = \int \ddot{\sigma} dh$$

Conductivity regulates interaction between the field-aligned current $J_{||}$, electric potential Φ and Hall and Pedersen currents.

Conductivity $\vec{\sigma}(n, n_e, n_i)$ and its functional dependences are critical.

Need global distributions of neutral (n), electron (n_a) , ion (n_i) densities.

References

Akasofu, S.-I. 1968, *Polar and Magnetospheric Substorms*, Springer-Verlag, New York,

Akasofu, S-I, 2003, Exploring the secrets of the aurora, Kluwer Academic Publishers, Dordrecht; ISBN 1-4020-0685-3

Banks, P. M., and G. Kockarts, 1973, *Aeronomy* (Parts A and B), Academic Press, New York.

Bauer, S. (1973), *Physics of Planetary Ionospheres*, Springer-Verlag, Berlin.

Bauer, S. J., and H. Lammer (2004), *Planetary Aeronomy*, Springer, New York..

Brekke, A. 1997, *Physics of the Upper Polar Atmosphere*, John Wiley & Sons, Chichester, England.

Eather, R., 1980, *Majestic Lights: The Aurora in Science*, History and the Arts, AGU, Washington, DC.

Hargreaves, J. K. (1995), *The Solar-Terrestrial Environment*, Cambridge Univ. Press, Cambridge.

Hunsucher, R. D., and J. K. Hargreaves 2003, *The High-Latitude Ionosphere and its Effects on Radio Propagation*, Camb. Univ. Press, Cambridge.

Kelley, M., 2009, *The Earth's Ionosphere: Plasma Physics and Electrodynamics*, 2nd ed., Elsivier Academic Press, New York.

Knipp, D. J., *Understanding Space Weather and the Physics Behind It*, 2011, McGraw Hill, Boston.

Prölss, G. W. 2004, *Physics of the Earth's Space Environment*, An Introduction, Springer-Verlag, Berlin.

Ratcliffe, J., A. (ed.) 1960, *Physics of the Upper Atmosphere*, Academic Press, New York.

Rees, M. H. 1989, *Physics and Chemistry of the Upper Atmosphere*, Camb. Univ. Press, Cambridge.

Rishbeth, H.,, and O. K. Garriott, *Introduction to Ionospheric Physics*, Academic Press, New York.

Schunk, R. W., and A. F. Nagy, 2009, *Ionospheres: Physics, Plasma Physics and Chemistry*, Camb. Univ. Press., Cambridge (UK).