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WHY

• DENSIFICATION OF THE REFERENCE FRAME

• RELATIVE PARALLAXES/PROPER MOTIONS
• KINEMATICS OF STELLAR SYSTEMS

• EPHEMERIDES OF SOLAR SYSTEM BODIES
• BINARY ORBITS

• ASTROMETRIC MICROLENSING

• RELATIVISTIC LIGHT DEFLECTION 

HOW

• PRINCIPLES OF DIFFERENTIAL ASTROMETRY

• Stellar motions (‘true’ displacements)
• Apparent displacements (observer-induced) 

• Instrumental/environmental effects

• PRINCIPLES OF DATA REDUCTION

• Observation equation
• Parameter estimation

WHEN

• I AM DEALING WITH RELATIVELY SMALL FIELD OF VIEWS

• I WANT TO DETERMINE THE COORDINATES OF SOME
OBJECTS WITH RESPECT TO OTHERS WHOSE POSITION

IS KNOWN IN A GLOBAL REFERENCE SYSTEM
• I AM INTERESTED IN THE RELATIVE MOTION OF THE

OBJECTS OF STUDY 

WHERE

• OPTICAL/NEAR-INFRARED  IMAGING      

WHAT

• POINT SOURCES



Proper Motion

A star’s proper motion μ is its yearly angular displacement.
Unless the center of mass of the system represented by the star does not concide with the star (e.g., in a multiple system),
The star’s space velocity is assumed to be constant.
A star with tangential velocity VT (Km/s) at a distance of ρ parsecs has a proper motion μ=VT/(4.74047 ρ) arcseconds/year;
however, the star’s radial motion with respect to the observer induces a variation in the proper motion called secular
(or perspective) acceleration

Let V be the star space velocity and θ its angle with the direction of motion, then the modulus of the proper motion is
μ=Vsinθ/ρ à dμ/dt = -V/ρ2sinθdρ/dt+V/ρcosθdθ/dt.     
Noting that dθ/dt = -μ and Vcosθ = Vr = dρ/dt, one gets

à

If μ is given in arcsec/year, the radial velocity in Km/s and the 
distance in parsecs, the perspective acceleration amounts to 

dμ/dt= -0.205 10-5 μVr/ρ arcsec/year2

significant only for nearby stars with high radial velocities.
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Parallactic displacement

The apparent displacement produced by the motion of the observer with respect to a fixed reference system is
called parallactic displacement.
Annual parallax: even for the nearest stars it can be modelled to better than a microarcsecond by first-order formulas in 
the small quantity R/ρ (< 10-6 rad), where R is the distance of the observer from the solar system barycenter (geocentric
or horizontal parallax is only relevant for bodies within the solar system).
For a star in the p direction, the vectorial displacement due to annual parallax is given by
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If the barycentric spherical coordinates of the star are (α,δ), the corrections to the barycentric coordinates derived from 
the above formula  reads

Δ. cos . = 1
( +2 sin . − +5 cos . ≡ 78

Δ9 = 1
( : +2 cos . + +5 sin . sin 9 − )+< cos 9 ≡ 7=

where P, Q are called parallax factors and ϖ = 1/ρ is the star’s parallax.
[when R is given in Astronomical Units and ρ in parsecs, the parallax
ϖ is in arcseconds]



Aberration

Apparent effect induced by the velocity of the observer in the fixed frame. Depending on the relative motion of the observer
and object of study we can distinguish different effects:

first-order newtonian formula à !#⃗ = −1' #⃗×(#⃗×*)

• Transforming the vector components into spherical coordaintes, keeping only first-order terms in V/c, one obtains
the aberrational correction in equatorial coordinates, accurate at the milliarcsecond level,
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• Earth Diurnal aberration Vd≅ 10-6 c à 0.2’’
• Earth Annual aberration Va ≅ 10-4 c à 20’’
• Galactic Secular Aberration Vc≅ 10-3 c à 150’’
present in Gaia’s catalog (BCRS origin)



• the curvature of the galactocentric orbit introduces a variability in the  Sun’s velocity of the order of Vcωt, where
ω is the Sun’s angular velocity in radians (≅ 2.4 10-8) ; this gives rise to an apparent proper motion μ=ΔVc/c ≅ 4
muas/year,  which would appear as a residual proper motion vectorial field in the direction of the galactic center.

Galactic secular aberration à

• In Special Relativity (SR), Lorentz transformations for velocities apply, while in the GR framework one must take into
account the effect of gravitational potential in the expression of the observer’s velocity. 
Let p be the geometric direction to the star , V the vectorial velocity of the observer, and  p’ the aberrated direction, the
exact special relativistic aberration equation is given by

where γ=(1-V2/c2)-1/2, and c the light velocity in vacuum, from which the aberration angle developed to third order in   
V/c reads
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• This formula agrees with the newtonian aberration only to first order in V/c, which is at the mas precision.
• The GR contribution is proportional to  w/c3, where w is the gravitational potential at the observer ≅ GMSun/|r0-rSun|,

and is at the level of 1 microarcsecond.                                                                
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Rigorous calculation of the aberration displacement in (α,δ)

• The aberration displacement Δθ can be decomposed into corrections to the star’s spherical coordinates (α,δ) referred
to the inertial frame by applying a rotation of Δθ to the star direction vector p around the axis normal to the plane defined
by p and the direction vector of the observer’s velocity p0 ; such axis is given by n = p x p0, so the rotation reads

4⃗′ = 4⃗ cos ∆& + 8×4⃗ sin ∆&
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,  one can easily derive the corrections Δα = α’- α, Δδ = δ’ – δ.

However, keep in mind that, since we are dealing with differential astrometry, we only need to consider the differential
aberration effect within the field of view of our observations. à quantifying the variation of each astrometric effect across
the field of view can help setting up properly what is called the ‘plate model’



Gravitational light deflection

• In high-accuracy differential astrometry, another effect which changes the apparent direction of the incoming
photons is due to relativistic light deflection from the major solar system planets

• The main contribution is given by the spherically symmetric part of the gravitational field of each body, and
corresponds to a deflection angle of                                                  

Δ" = (1 + ') )*+,- tan
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where G is the gravitational constant, M the mass of the perturbing body, r the distance observer-perturbing body, 
χ the separation angle between source and perturbing body, and γ the PPN parameter (=1 in GR)  

• The quadrupole term is the first non-zero term of the multipole expansion that depends on the asphericity of 
the mass

• Due to its smallness, the
• quadrupole component  of

of light deflection has been
so far impossible to detect
by means of astrometric
measurements



Atmopheric Refraction (plays a role only in ground-based observations!)

• Snell’s law for different isotropic media: (n+dn)sin(ξ+dξ)=nsinξ
In the case of thin plane layers where ξ is equal to the zenith distance z,
one obtains by iterative application of Snell’s law n0sinz0=sinz being n0
the refractive index at the observer, and z0 the apparent zenith distance;
Naming R=z-z0 the total refraction angle and neglecting second order
terms in R, we have the first-order refraction formula

! = ($% − 1) tan ,%

• For accurate astrometric work one needs to take into account curvature
effects.  Using a radially symmetric atmosphere model around the 
local vertical, O being the Earth center, r0 the radius at the observer
Ω and z0 the apparent zenith distance of the star, one
can derive the following integral equation

which is exact but assumes the knowledge of n(r). In practice, this
formula is semplified by introducing two small parameters: the 
refractivity at the ground α=(n0-1), and η defined by  (nr/n0r0)2=1+2η
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Non-standard conditions and Cromatic effects

• Developing R with respect to α and η and defining β=L/r0 (where L is the scale height of an exponentially decreasing

atmosphere density) after some calculations one obtains the famous Laplace formula

• The quantities A=α(1-β) and B=α(β-α/2) in the previous formula are functions of the atmospheric conditions as well as

of the wavelength of the incident light.

• For standard atmospheric conditions (T=15°C, p=1 atm, λ=590 nm)  A=60’’.236 and B=0’’.0675

• Pulkovo Observatory in 1985 has produced accurate refraction tables for varying atmospheric conditions and

as function of zenith distance

• The dependence of the refractive index on the wavelength is a 

complicated function of λ-2, but also the finite passband of the filters

and the stellar spectral distribution must be taken into account

• the resulting astrometric effect goes under the name of Differential
Color Refraction (DCR), which is best determined by observations

• to alleviate the effect of DCR one should prefer near-infrared
observations

• The above models are at best good to a few mas for small zenith

distances, and reach the level of 50 mas for z=70°

• With ad-hoc techniques it is possible to reach sub-mas accuracy, but

one needs to go into space for micro-arcsecond accuracy

! = #(1 − ') tan ,- − # ' − #2 /012,-



Instrumental Effects

• Optical aberrations, and in particular off-axis aberrations,  of the telescope optical train can generate astrometric
effects, as they impact the determination of the image centroid
• coma (y2θ), astigmatism (yθ2), distortion (θ3) [y=aperture radius, θ=field angle); distortion acts only on position,

while the first two affects also image quality; all of them change the telescope Point Spread Function (PSF)
• Various kinds of mechanical obscurations of  the FOV give rise to vignetting, which also affects the PSF
• CCD observations made in Time Delay Integration mode (TDI), as opposed to the most common stare mode, can also

introduce distortions in the PSF of the image, and therefore on its centroid
• in TDI mode, the CCD is read out at the same rate as the star motion across the detector
• in this case, the distortion comes from a smearing of the PSF in both the read-out, and across-scan direction

• A first approach to correcting instrumental effects is to represent them by power series of the image location on the
focal plane; distortions of the PSF can be corrected by using different PSF templates as function of location in the
optical system à need optimal distribution of reference stars



Observation Equation

• First step is to correct the reference stars’s coordinates (the astrometric parameters α and δ) and their associated
uncertainties from the reference catalog values to those at the epoch and location of the observation
• this includes proper motion and parallax effects
• the know refraction and aberration effects should also be evaluated and pre-corrected
• the observed positions of the i-th reference star can be expressed as
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where tj=Tj-T0, and Lij, Mij are non-linear displacements of the star position from the reference epoch T0 to the 
observation epoch Tj

• Second step involves the geometric transformation which maps the sky coordinates to tangent plane coordinates, 
i.e., the plane tangent to the unit sphere in the direction of the optical axis.
• gnomonic projection (astrograph-like telescope optics, most common)
• equidistant projection (Schmidt telescopes)

• Third step, commonly called plate model, consists in determining the functional relation that links the measured
quantities (x,y) identifiyng the object’s location onto the detector to some field angles directly related to the sky
coordinates of that object at the epoch of observation.



First step: (1) Propagation of the astrometric parameters to the observation epoch

• We introduce the normal triad at the star direction relative to the equatorial system (p, q, r)
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• Let the astrometric parameters of the star at the reference epoch T0 be (α0, δ0, μα0, μδ0, ϖ0) and Vr0 its radial velocity;
we can calculate the star’s vectorial proper motion as

/⃗0 = "⃗0/1∗0 + ,⃗0/40

where μα*=μαcosδ.  Writing the star’s space velocity as
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• With the previous notations, the direction to the star at a time t=(T0-Tj) is given by

"⃗ # = "⃗% + '⃗%()∗% + +⃗%(,% + "⃗%-% # = "⃗% 1 + -% + (⃗%#

where ζ0=Vr0ϖ0/A is called radial proper motion, being the equivalent of the tangential proper motion but in the
radial direction. To have ζ0 in mas/yr, Vr0 is given in Km/s, ϖ0 in mas, and the Astronomical Unit A is expressed in 
Km yr s-1

• The quantities ()∗% , (,% , -% /n the previous expression are the component of the space velocity scaled by the
inverse distance at epoch T0 along the vectors of the normal triad at r0

• The normalization factor can be computed as

0 = "⃗% "⃗(#) 34 = 1 + 2-%# + (%6 + -%6 #6 34/6

where (%6 ≡ ()∗%6 + (,%6 , from which we obtain the epoch propagation equation

"⃗ # = "⃗% 1 + -%# + (⃗%# 0

• Finally, the spherical coordinates α(t),δ(t) can be easily computed from the components of r(t) 



First step: (2) Propagation of uncertainties to the observation epoch

• The rigorous propagation of positional uncertainties is obtained by computing the 2x2 covariancematrix

!"# = %!"&#&%'

Cα0δ0 is the 2x2 covariance matrix of the star’s catalog coordinates, and J is the 2x2 Jacobian matrix of 
partial derivatives:
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where t=(Tj-T0) and the suffix ‘T’ denotes vector transposition.
• A less rigorous, but most useful formula can be obtained from the simplified model for the propagation of 

position, which does not take into account variations in proper motion or parallax with time:
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which gives for the final α and δ variances
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Second step: From Equatorial to Tangential Coordinates

• Let A(α0,δ0) define the direction of the optical axis, and ξ,η be rectangular Cartesian coordinates measured from
the intersection of the optical axis and the tangent plane A’, toward East and toward North respectively ; the
gnomonic projection mapping the equatorial coorindastes (α,δ) into the so called standard coordinates (ξ,η) reads

! = cos & sin ) − )+
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where (ξ,η) are in radians.
• The measured coordinates (x,y), if the detector system is perfectly

aligned with the standard plane , are x=fξ , y=fη with f equal to the
telescope focal length

• It can be shown that the tangent point error,  due to an imperfect knowledge
of the telescope pointing, introduces an error on the calculated standard
coordinates given by
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• On the other hand, a misalignment of the detector with respect to the 
ideal focal plane, introduces an error in the measured (x,y) of the kind
x(ax+by), y(ax+by)

• The second-order terms of both the above effects are known as tilt terms



Third step: Plate Model

• A realistic plate model can take the following polynomial form, with r2=(x2+y2)

! = #$ + &' + ( + )$ + *' + +$, + ℎ$' + .$/,
0 = #' −&$ + (2 − )' + *$ + ℎ', + +$' + .'/,

• The quantities a, b, c, c’,e,f,g,g’,h,h’,q,q’ are referred to as plate constants:
• a,b,c,c’ represent an orthogonal transformation (rotation+translation)
• e,f represent the affine part of the transformation (scale change in x, y + non-orthogonality of axes)
• g,h correct for tilt terms
• q is the third-order optical distortion term

• These observation equations relate the calculated standard coordinates of the reference stars to their
measured coordinates via the plates constants which can therefore be estimated, provided that a 
sufficient number of reference stars is available on the FOV
• residual differential astrometric effects due aberration and refraction should be evaluated and, if

appropriate, incorporated as second-order or third-order polynomial terms in the above equations
• Once the values of the plate constants have been determined, one can derive the standard coordinates of

any anonymous/target star in the FOV 
• By then applying the inverse of the transformation (ξ,η) à (α,δ) one can obtain the sky coordinates of each

target star in the frame defined by the reference stars being used



Principles of Statistical Parameter Estimation

• The observation equation for each star takes the form ! + $⃗ = &((⃗), where O is the vector of (pseudo-)observations,
with associated random error vector ε; F is in general a non-linear function of the vector of unknown parameters p.

• If an approximate value for the vector p is known, the observation equation can be linearized as

! + $⃗ = F (+ + ∑-. /0
/12

∆(4
where we have assumed that the second order terms of the Taylor expansion are negligible with respect to the 
measurement errors and therefore no bias is introduced in the estimation process

• Bringing all the constant terms to the left side of the equation, one can rewrite it in the more usual matrix form

5⃗ + $⃗ = A7⃗

A is the  (mxn) matrix of coefficients, where m represents the number of observation equations and n the number of 
parameters to be estimated; the solution vector x represents the adjustment to its approximate known value.

• An optimal estimation of x is obtained by the method of least-squares, which corresponds to minimizing the quadratic
form

8 = A7⃗ − 5⃗ : A7⃗ − 5⃗ ≡ $⃗:$⃗

with respect to x, i.e., minimizing the squared sum of the measurement errors.
• If the errors are heteroshedastic, possibly correlated, random variables, the system of equations must be properly

weighted à weighted least-squares theory



Differential Astrometric Field Treatment: Summary Diagram
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Example: Relativistic Light Deflection from Jupiter in Gaia’s measurements

• On-going experiment: detect the Jupiter quadrupole light deflection via Gaia’s focal plane data 
à test of GR predictions

• Principles of differential astrometry can be used to set up an accurate local reference frame at the
micro-arcsecond level
• Gaia observes in TDI mode, so the fundamental observation is the observing time tobs, i.e., the 

time at which the stellar centroid crosses the fiducial line of the CCD
• tobs can be converted into field angles (η(tref),ζ(tref)) at the chosen reference time if the satellite 

scanning law is known, i.e., one is able to compute "̇, ̇#
• Each time the satellite FOV scans the same sky area (about 1°) , one can collect the field angle 

coordinates of the reference stars and put them on
the tangent plane, pre-correcting for known astrometric
effects

• Once each local reference frame has been set up, the 
standard coordinates of each frame are linked together
by means of a polynomial model (plate solution)

• The light deflection effect (monopole+quadrupole) from 
Jupiter on the target star is treated as
residual astrometric signal



• Along (AL) and across-scan (AC) residuals after least-squares adjustment of 15 overlapping Gaia transits over a 
realistically simulated stellar field around Jupiter. 
- a-priori corrections for proper motion and parallactic effects have been applied
- no relativistic aberration nor gravitational deflection are included in the simulation
- observations are error-free
- satellite attitude errors are of 10 muas/sec around each axis


