The Galactic stellar halo Robyn Sanderson ISSS, Summer 2019

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

What is the "halo"? [for purposes of this lecture]

- "dark halo" the dark matter in the Galaxy
- "stellar halo" stars with an orbit distribution centered on the Galactic center, roughly isotropic and roughly nonrotating
- "accreted stellar halo" stars that acquired this distribution because they formed in other galaxies that merged with the MW
- "stellar disk" stars with a defined sense of rotation, mostly in a [relatively] thin plane

Galactocentric azimuthal velocity V_{db}

Figure courtesy A. Bonaca

The halo is dominated by dark matter rather than stars and gas

Dark Matter (CDM)

100 kpc

Stars

100 kpc

FIRE-2 simulation *m12i*, Wetzel et al 2016

The halo's mass is dominated by dark matter

Milky Way rotation curve

This region of the Galaxy is fundamentally cosmological

FIRE-2 simulation *m12i*, Wetzel et al 2016 Movie by Shea Garrison-Kimmel

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

- dark matter
- ॅ
- ॅ
- accreted stars formed in other galaxies that merged with the MW
- stars born in the MW that ended up on halolike orbits, either:
 - through interactions between the disk and accreted satellite galaxies, or
 - born before the disk?

- dark matter
- ॅ

Galactic positions of known satellite galaxies + surveyed regions of sky (as of 2015). Drlica-Wagner et al. 2015 (DES collab)

What is in the "halo"?

Sculptor dwarf satellite galaxy de Boer et al. 2011

- dark matter
- satellite galax

(Kirby et al. 2013)

- dark matter
- satellite galaxies
- globular clusters

Half-light radius (apparent size)

McConnachie 2012

- dark matter
- satellite galaxies
- globular clusters

.5

CMD of Sculptor de Boer et al. 2011

What is in the "halo"?

- dark matter
- satellite galaxies
- globular clusters
- accreted stars formed in other galaxies that merged with the MW

Northern Sky

Southern Sky

stellar streams are found all over the Galaxy

4-10 kpc Galactocentric

https://github.com/cmateu/galstreams

Mateu, Read, & Kawata 2018

stellar streams are found all over the Galaxy

15-21 kpc Galactocentric

https://github.com/cmateu/galstreams

Mateu, Read, & Kawata 2018

stellar streams are found all over the Galaxy

21-26 kpc Galactocentric

https://github.com/cmateu/galstreams

Mateu, Read, & Kawata 2018

most streams used to be found via "matched filtering" operating on photometric surveys like SDSS...

...but now Gaia allows searches in position + proper motion (e.g. Malhan & Ibata 2018)

Grillmair 2009

around the Sun, Gaia & predecessors showed streams passing through the solar neighborhood in phase space Angular momentum distribution, looking toward Galactic anticenter

Gaia Collaboration, Helmi et al. 2018

Gaia view of solar neighborhood

Gaia data

Simulation of a 1:5 merger

Figure from Helmi et al. 2018 see also Belokurov et al 2018

Streams are detected to large distances in the halo

Not all stars are readily assigned to a particular stream

- dark matter
- satellite galaxies
- globular clusters
- accreted stars formed in other galaxies that merged with the MW
- stars born in the MW that ended up on halolike orbits, either:
 - through interactions between the disk and accreted satellite galaxies, or

projected phase-space distribution for different types of stars in the "Triangulum-Andromeda" structure

- dark matter
- satellite galaxies
- globular clusters
- accreted stars formed in other galaxies that merged with the MW
- stars born in the MW that ended up on halolike orbits, either:
 - through interactions between the disk and accreted satellite galaxies, or

ratio of RR Lyr to M giant stars in the TriAnd structure compared to the disk, Sagittarius dwarf galaxy and LMC **Price-Whelan et al. 2015**

- dark matter
- satellite galaxies
- globular clusters
- accreted stars formed in other galaxies that merged with the MW
- stars born in the MW that ended up on halolike orbits, either:
 - through interactions between the disk and accreted satellite galaxies, or
 - born before the disk?

z=1.5

The transition from stars formed in situ to accreted likely varies widely

The transition from stars formed in situ to accreted likely varies widely

Sanderson et al. 2018

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

Making predictions for a 6+D galaxy

- Simple mock accreted halos (e.g. Sanderson, Helmi, & Hogg 2015)
 - spherical analytic halo
 - building blocks matched to satellite mass function
 - single tracers ad hoc (e.g. K giants, RR Lyrae)

• Aquarius

(Cooper et al. 2010, Lowing et al 2012)

- Resampled cosmological sim
- 6D positions, velocities

• 6D+Fe, "alpha" + age

Ananke, Aurigaia

(Sanderson et al 2018, Grand et al. 2018)

Cosmological sim with hydro —> realistic central MW

6D + 10 abundances + ages + ...

Complete stellar populations

Making predictions for a 6+D galaxy

Galaxy Simulation (cosmology, DM model, gravity, gas physics, star formation, stellar feedback, ...)

(stellar structure, stellar evolution, convection models, isochrone mapping, IMF, ...)

Phase-space density estimation (kernel dimension, smoothing scales, ages, accretion history, ...)

One particle = many "stars" ...with same age, abundances

Synthetic Survey one particle = one "observed" star

Mock Catalog

one particle = one synthetic star

ॅ

(Magnitude/color limits, ॅ selection function, error model. instrument model.

50 kpc

Ananke Sanderson et al. 2018, arXiv:1806.10564

 Cosmological sim with hydro —> realistic central MW • 6D + 10 abundances + ages + ... Complete stellar populations • 3 simulations x 3 observation volumes = 9 surveys

Available for Gaia DR2 on:

ॅ

Andrew Wetzel

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

What have we learned from Gaia so far?

- The disk-halo interface is really complicated! Mergers could move stars from the disk onto more halo-like orbits (see lectures by Hunt, Antoja). Hints before Gaia, now very obvious.
- It's still not clear whether the inner halo is an old spheroidal component ("in situ halo"), entirely the product of a few relatively massive mergers like Gaia-Enceladus, or both.

- There seems to be plenty of halo substructure passing by the Sun (papers by Helmi+, Belokurov+, Myeong & Evans, Meingast+, Necib+)
- ...but is there some unifying event underneath? more than one? How can we compare with predictions?
- Gaia proper motions really clean up selections for known streams (e.g. Price-Whelan & Bonaca 2018)
- There is more stuff out there to find!

Outline

- What is the "halo"?
- What is in it?
- How do we think stars get there?
- What do we know about their properties?
- How do we make & test predictions for this part of the Galaxy?
- What have we learned so far from Gaia?
- What will we learn in the future?

Gaia is only the beginning

2019 2018

Gaia

By 2028, we will have 6+D information for stars to the MW's virial radius and beyond (~300 kpc)...

...and resolved stellar ॅ nearest MW-like galaxies

Astrometric + spectroscopic Photometric + astrometric

DESI

300 kpc 150 kpc

Photometric (LSST)

BHB MSTO RGB

Sanderson et al. arXiv:1903.07641

300 kpc 150 kpc

Sanderson et al. arXiv:1903.07641

Astrometric

BHB, RR Lyr MSTO RGB

······Gaia ---·LSST ·····WFIRST

Sanderson et al. arXiv:1903.07641

300 kpc 150 kpc

Sanderson et al. arXiv:1903.07641

Projections using simulated accreted stellar halos from Bullock & Johnston 2005 10⁶ RRLe in tidal streams halo virial radius 10⁵ 10⁴ of Stars **T0**31 Number 10² 10¹ 10° 100 200 300 500 600 700 800 400 True Distance (kpc)

Sanderson et al. 2017

