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What is the “halo” ? [for purposes of this lecture]

“dark halo” - the dark matter in the Galaxy

“stellar halo” - stars with an orbit
distribution centered on the Galactic
center, roughly isotropic and roughly non-
rotating
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*accreted stellar halo” - stars that
acquired this distribution because they

formed in other galaxies that merged with
the MW
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“stellar disk” - stars with a defined sense
of rotation, mostly in a [relatively] thin Figure courtesy A. Bonaca
plane



The halo Is dominated by dark matter
rather than stars and gas

Dark Matter{(CDM) Stars

100 kpc 100 kpc

FIRE-2 simulation m172i, Wetzel et al 2016



The halo’s mass is dominated by dark matter

Milky Way rotation curve
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Bland-Hawthorn J, Gerhard O. 2016.
Annu. Rev. Astron. Astrophys. 54:529-96




This regionzzofoﬁc)he Galaxy is fundamentally cosmological

FIRE-2 simulation m172i, Wetzel et al 2016

100 kpc Movie by Shea Garrison-Kimmel
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What is in the “halo” ?

dark matter
satellite galaxies
globular clusters

accreted stars formed in other galaxies that
merged with the MW

stars born in the MW that ended up on halo-
like orbits, either:

* through interactions between the disk and
accreted satellite galaxies, or

® born before the disk?



What is in the “halo” ?

F 1 - 1
e dark matter 0.0 <1, < 0.2°deg
+ .

e satellite galaxies

Deep color-magnitude diagram of the
Sculptor dwarf satellite galaxy
Galactic positions of known satellite galaxies + surveyed regions de Boer et al. 2011

of sky (as of 2015). Drlica-Wagner et al. 2015 (DES collab)




What is in the “halo” ?
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DEIMOS spectroscopic
stellar metallicities

log (L‘/()LQ) k y Deep color-magnitude diagram of the

.. .. _ Sculptor dwarf satellite galaxy
luminosity-metallicity reln for dwarf satellites de Boer et al. 2011

(Kirby et al. 2013)




What is in the “halo” ?

@® Galactic sub—group
B Andromeda sub—group

e dark matter

: : % Nearby galaxies
e satellite galaxies

* globular clusters

Absolute magnitude (total brightness)

r, (pc)
Half-light radius (apparent size)

McConnachie 2012



What is in the “halo” ?

e dark matter NGC5824 dsun = 30.9 kpé
t= (12,13,14)Gyr co

[Fe/H]=-2.3, [a/Fe]=+0.4
e satellite galaxies

(m-M),=18.06, E(B-V)=0.15 ~*

* globular clusters __
O_.I_O < gy < O.?"’deg

CMD of Sculptor

Boer et al. 2011
de Boer et al. 20 A.R. Walker et al. 2017



What is in the “halo” ?

NORTHERN SKY

dark matter
satellite galaxies
globular clusters

accreted stars formed in other galaxies that
merged with the MW
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stellar streams are found all over the Galaxy

4-10 kpc Galactocentric
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https://github.com/cmateu/galstreams

stellar streams are found all over the Galaxy

15-21 kpc Galactocentric
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https://github.com/cmateu/galstreams

stellar streams are found all over the Galaxy

21-26 kpc Galactocentric
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https://github.com/cmateu/galstreams

most streams used to be found via “matched filtering”
operating on photometric surveys like SDSS
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around the Sun, Gaia & predecessors showed streams
passing through the solar neighborhood In phase space

Angular momentum distribution, looking toward Galactic anticenter

Gaia view of solar neighborhood

Gaia data Simulation of a 1:5 merger
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Figure from Helmi et al. 2018

see also Belokurov et al 2018
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Gaia Collaboration, Helmi et al. 2018



Streams are detected to large distances in the halo

Sgr stream angular distribution and heliocentric distances for |B..| < 9°
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Hernitschek et al. 2017




Not all stars are readily assigned to a particular stream

300 | == a=—3.0 12<gi<1l4
= o= —J3.5
240 | mem o= —4.0
(different power-law
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Slater et al. 2016



dark matter
satellite galaxies

globular clusters

(M-giants)
accreted stars formed in other galaxies that RR Lyrae) | Megiamts |
merged Wlth the MW - ; HEl RR [yrae

Y =
r-- '

stars born in the MW that ended up on halo-
like orbits, either:

* through interactions between the disk and
accreted satellite galaxies, or 160 150 140 131 ) 20 110 100 10

projected phase-space distribution for different types of
stars in the “Triangulum-Andromeda” structure
Price-Whelan et al. 2015



What is In the “halo” ?

| == Disk
* Ser/LMC

dark matter
satellite galaxies
globular clusters

accreted stars formed in other galaxies that
merged with the MW

stars born in the MW that ended up on halo-
like orbits, either:

* through interactions between the disk and

accreted satellite galaxies, or ' 0.4 06 08 10

RR: MG
ratio of RR Lyr to M giant stars in the TriAnd structure
compared to the disk, Sagittarius dwarf galaxy and LMC

Price-Whelan et al. 2015




What is in the “halo” ?

dark matter
satellite galaxies
globular clusters

accreted stars formed in other galaxies that
merged with the MW

stars born in the MW that ended up on halo-
like orbits, either:

* through interactions between the disk and
accreted satellite galaxies, or

® born before the disk? 100 kpc




The transition from stars formed In situ to accreted likely varies widely
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The transition from stars formed In situ to accreted likely varies widely
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Making predictions for a 6+D galaxy

'+ Simple mock accreted halos
. (e.g. Sanderson,

elmi, & Hogg 2015)

e spherical analytic halo

* building blocks matched to satellite mass
function

e single tracers ad hoc

(e.

' Aquarius
- (Cooper et al. 2010, Lowing et al 2012) |

Resampled cosmological sim

DM-on
(no dis

|« 6D positions, velocities :

g. K giants, RR Lyrae)

vV + tagging

<)

'+ Galaxia, GUMS |
{  (Sharma et al. 2011; Gaia DPAC) "

 semi-analytic accreted halo
(Bullock & Johnston 2005)

* empirical disk, bulge ;
(Robin et al 2001)

 complete stellar populations

6D+Fe,“alpha”+age :

i+ Ananke, Aurigaia
| (Sanderson et al 2018, Grand et al. 2018) |

 (Cosmological sim with hydro —> realistic central MW
« oD + 10 abundances + ages + ...

i * Complete stellar populations f



Making predictions for a 6+D galaxy

Synthetic Survey
one particle = one “observed” star

Galaxy Simulation
(cosmology, DM model,
gravity, gas physics, star
formation, stellar feedback, ...)

i Stellar Populations |

 (stellar structure, stellar evolution, f’

19

tconvection models, isochrone |
imapping, IMF, ...) ff

Phase-space density estimation
(kernel dimensiop, smoothing scales,
ages, accretion history, ...)

'Survey description
s Mock Catalog | ‘
4 dne particle =

nthetic star

' (Magnitude/color limits,
‘extinction/reddening,

' selection function, error |
‘model, instrument model, ...) |

One particle = many “stars”
...with same age, abundances 50 kpc




‘.

| ® Cosmological sim with hydro —> realistic central MW

® 6D + 10 abundances + ages + ...
| >anderson et al. 2018, ® Complete stellar populations
$ arXiv:1806.10564 | - . - B . | i
b _ ® 3 simulations x 3 observation volumes = 9 surveys - .
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What have we learned from Gaia so far?

e There seems to be plenty of halo
substructure passing by the Sun

e The disk-halo interface is really (papers by Helmi+, Belokurov+,
complicated! Mergers could move stars Myeong & Evans, Meingast+, Necib+)
from the disk onto more halo-like orbits
(see lectures by Hunt, Antoja). Hints

before Gaia, now very obvious. e _..butis there some unifying event
underneath? more than one? How can
e It’s still not clear whether the inner halo we compare with predictions?
IS an old spheroidal component (“in situ
halo”), entirely the product of a few e (Gaia proper motions really clean up
relatively massive mergers like Gaia- selections for known streams (e.qg.
Enceladus, or both. Price-Whelan & Bonaca 2018)

e Thereis more stuff out there to find!
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Gaia is only the beginning
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025

K1)
Gaia 00 Exx
By 2028, we will have
6+D information SubaruPFS
for stars to the MW’s
vialradusand DI
beyond (~300 kpe)...
..and resolved stellar
maps of the ~100 _
nearest MW-like
galaxies ELT

MSE (2027) —»

Astrometric + spectroscopic  Spectroscopic: <4-m class
Photometric + astrometric Spectroscopic: >4-m class



300 kpc

Photometric (LSST)
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Sanderson et al. arXiv:1903.07641

BHB, RR Lyr
MSTO

- RGB

-= == LSST

----- WFIRST .-



-== V=150 km/s (halo orbital velocities)
vi =50 km/s (halo orbital velocities)

ve =10 km/s (intermal velocity dispersions)
MW virial radius (approximate)

Large Magellanic Cloud

Small Magellanic Cloud

other MW satellites

WFIRST HLS (single star)

WFIRST HLS x HST (single star)

Gaia error (single KIll star)

LSST error (single KIll star)

HST PMs of MW satellites (avg of 103-10% stars)
HST PMs of globular clusters

Gaia PMs of MW satellites (avg of 10%-10% stars)
Gaia PMs of Sgr stream giant stars
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Sanderson et al. arXiv:1903.07641



Spectroscopic

BHB, RR Lyr
MSTO ‘\
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Projections using simulated accreted stellar halos
from Bullock & Johnston 2005
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Sanderson et al. 2017

Stellar mass density in FIRE-2 simulated halos

Stellar Density Profile
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There i1s lots out there
still to find!




