Some basics General Relativity
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How to construct an astronomical reference system
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Motivations

Ground & space geodesy accuracy is increasing:

LLR & SLR > From cm to mm
GALILEO
Gravity Probe A to ACES/Pharao > factor 80 on Grav. Redshift

Ground & space astrometry:
Gaia, Gravity > from milli to micro-arcsecond

Navigation of interplanetary probes :

Cassini Experiment, use of Ka Band
MORE Experiment on BepiColombo > factor 10 on Doppler
JUNO Experiment 2016, JUICE towards 2030

Need to describe light propagation and
dynamics in a relativistic framework

® How to solve the field equation
® Need to introduce new tools

and define properly the observables !



Special Relativity in some words...

Inertial frame and Principle of Relativity

S = (Cta Ly Y, Z)
Let us suppose 2 frames S ans S’ with coordinates Y
S = (Ct s LY, % )

Imagine now a free particule, P, existing somewhere. How to represent P in Sand S’ ?

: : : : d’x d*y d’z
If S and S’ are inertial, the Newton First Law holds.In S,we have — - —- "~ _~ > _ ).
dt?>  dt?  dr?

‘ > Free particule at rest or linear motion

We have the same equation for this particule in S’ with prime coordinates..

If now, S’ is in motion with respect to S, in x-
direction with constant velocity. Suppose that
at t=t'=0, S and S’ coincide.

/ / How to link the coordinates of Pin Sand S’ ?



Special Relativity in some wo

Inertial frame and Principle of Relativity

First key point of Special Relativity : Principle of Relativity.
Physics must be the same in all inertial frames...

One has to imagine the most simple linear transformation

One has to find A,B,D and E...

First, we now the motion of S’ as constant in x-direction so

rds...

t' = At+ Bx
x' = Dt+ Ex
/_
y =Y
/
= Z
t' = At + Bx,
x' = A(x—vi),
y =y,
/
7 =z

Second key point of Special Relativity : the speed of light is constant in inertial frame.

Imagine a photon emitted from the coincident S and S’ at

t=t'=0 and travelling in an

arbitrary direction. Time and space coordinates of that photon in each frame must

satisfy

2 2 2 2
C2t2_x2_y2_z2:c2t/ —x _y/ _Z/ —0



Special Relativity in some words...

Inertial frame, Principle of Relativity, constant speed of light

t' = At + Bx,
. x' = A(x—vi), 5 5 ) S .y " PR
Let us now combine Yy and P —x*—y - =" X =y -7 =0.
7 =z.
ct' = y(ct — Bx),
x' = y(x — Bet), : y=(1-p*)"">
with  5_ .
y =y, -
7=z, Lorentz transform...

Notion of interval

Consider now two events in spacetime, A and B.We can define the (squared) interval as
ds? = Adt* — dz? — dy?* — dz*

with dt =tgp —ta,dr=axp —xa,dy=yg —ya, dz =2 — 24

It is straightforward to show that ds® is conserved under any Lorentz transformation.

Let us finally introduce the Minkowski tensor as  ds® = 1, dz" dx”



Special Relativity in some words...

Interval and lightcone

Let us consider a point-event A and represent it in a Minkowski diagram

ct

A Future of A d82 — nuydxudajy — C2dt2 L dajZ
s Let us consider others point-events (B, C, D). If
‘Elsewhere’ of A OA ‘Elsewhere’ of A d82 p— O % C2 dtz p— dxz Lightlike OI' nUII

ds® >0 — c?dt? > dx?  Timelike
ds® < 0 — c*dt* < dz*  Spacelike

Past of A

ct

Particule worldlines and proper time X

for ds* > 0, the interval is timelike; , X Photon
Massive |

for ds> = 0, the interval is null or lightlike; particuleX

for ds”> < 0, the interval 1s spacelike. /

Definition of the proper time : ¢*d71* = ds”




Special Relativity in some words...

Lorentz group

Flat (or Minkowski) spacetime of Special Relativity is a fixed four-dimensional pseudo-
Euclidean manifold. It exists a privileged class of Cartesian coordinate system (ct, X, Y, z)
covering the whole spacetime where the (squared) interval takes, at every point-event,
the form

ds? = Ny dzt dz” | = diag(1,-1,—-1,-1)

Transforming to a different Cartesian inertial frame corresponds to a new coordinates

system (ct’, X’,y’,z') and must satisfy
2 w g v I 3.1V — amfp 633/0
ds® = ndxtdz” = n,,dx'"dr > Ty = 5 g o

Thus the transformation between 2 inertial frames must be linear z'# = A*z¥ + a*

(v —By 0 0) T T

x*1 |-By v 00 2 constants ¢ = 0
0 0O 120
\ 0 0 01)

where we have [A*,]= [ ey

with the properties A =1,,n"°AL and  AJAT =467



Towards General Relativity

Notion of curvature...

In Special Relativity, the metric tensor corresponds to flat space time ds* = 7, dz*dz”

Let us consider a more general manifold.
At each point P, one can define a coordinate basis 1, <o
os o

Sx4—0 OX4 ,

e, = lim

where 0s is the infinitesimal vector displacement between P and a nearby point O

» ds = e, (x) dx® H ds? = (eqdz®)(epdx®) = (eqep)dz®da®

More generally speaking, let us define the metric tensor as follow
Juv = €,.€y

In this case, the interval can be written :

ds? = Gupdztdz”



Towards General Relativity

Notion of curvature...

But local vectors at different points P and Q of the manifold lie in different tangent
spaces. —}NO WAY to add or subtract them...

»@ How to define the derivative
"’ o of a vector field ?

One can write ¢,(Q) =e,(P)+ e,

M

One has now to calculate the partial derivate % _ ( lim %) and project it into
ox¢ \ow—06x¢ ), tangent space at P!

.. : de
It leads to the definition of the affine connection - = = I’ e,
X

Since every coordinate basis must be reciprocital . e, =5,

One gets d.(e“-e,) = (0.e")-e,+e"-(d.e,) =0 » | J.e’ = —F“bceb

(9eb

Final definition of the connection 1'“%,. =e“. — | <) Link with metric tensor !
0x¢




Towards General Relativity

Connection versus metric tensor

_ b
=1,

For simplicity, let us assume that the connection is symmetric (no torsion) : I’ZC

The metric tensor has been definedas g,, = ¢,.¢,
If we differentiate the metric tensor, what's happen ? — 9.5, = (9.€,) €, +e,-(3.e})

: de
But... We have just seen that —¢ =T"_.¢, !!
0x¢

q OcGab = T gap + T'.Gad

- o 0p8ea = T cb8aa+ T p8eas
We can also permute the indice and see what is going on.... b8ca ch8da abbed

aagbc — deagdc + chagba“
And finally, forming the combination 0.9, + Ovgcqa — Ougve and contracting by ¢°*

e = %gad(abgdc +0.8pa — 948pc)




Towards General Relativity

Geodesics :intrinsic derivative of a vector along a curve

Let us consider a curve C. At any point along C, we have a vector field as v(u) = v*(w)e,(u),
where e, (u) are the coordinate basis at a point on C corresponding to parameter u.

Thus, the derivative of v along C is given by % _ 4", | a9 " a0ad
du du du du 0x¢ du
: oe
But we have established before a—i =17 e, N
X

dv dv® . pdx© Dv?
q — = + T, v e, = e,.
du du du Du

Geodesics : parallel transport

dv dv* e
We want something like — =0 — =0
du du
In pseudo-euclidian space, it works... But in general, NO !
Dv*  dv? dx© ¢
# = Ifv’—— =0.
Du  du T hheY du




Towards General Relativity

Equation of geodesics

Let us consider a curve x“(u) parameterized by some general parameter v and ¢%(u)
the vector tangent to the curve.

The variation of the tangent vector defines the curve without any doubt.

Let us assume the most simple evolution @ = \(u)t
du t

To be determined !

Using the coordinate basis and the result concerning parallel transport, we
must satisfy Dia g e g drc At
= — — Uu
Du  du " du

a 2.0 b C a
But t° = do*du_ — o = S g SO — )T
u U

The question is now to define \(u) —> Let choosew as an affine parameter... A\(u) = 0

d? dxb dxc
Geodesic equations : . =0
T du? ¢ du du




General Relativity

The Equivalence Principle

- 3 facets: Universality of free fall, Local Position/Lorentz Invariance

- very well tested (10-13 with Eot-wash experiments and Lunar Laser
Ranging ; 104 with grav. redshift ; no variation of constants)’

- more accurate measurement needed: alternative (string) theories
predict violation smaller? =+ MICROSCOPE accuracy |0-1>

- Gravitation < space-time curvature (described by a metric Guv )
Einstein intuition : matter curves spacetime

- free-falling masses follow geodesics of this metric and ideal clocks
measure proper time ds® = gudat dx”



Free Fall Experiments

TESTS OF THE
WEAK EQUIVALENCE PRINCIPLE

L | | | 400 CE TIoannes Philiponus: “./et fall from the same height
e e i ather . the difference 1 time 15 a very smallone
0 ; Renner T I 1553  Giambattista Benedetti
107 = I B proposed equality
I Fifth-force 1586  Simon Stevin
10-10 |— Boulder / SRR — experiments
1589-92 Gadlileo Galilei
o Princeton ; Eot-Wash B Leaning Tower of Pisa?
; 1670-87 Newton
"y endulum experiments
10712 — Moscoy Sl - 1889, 1968 Baron /l;. von Eotvos
torsion balance experiments (10-°)
13 J | 1990s UW (Est-Wash) 10+
as-as
1014 |- = (a;+ay)/2 —_
| | l |

1 P 2 2
C) IR 9, 2 7
D 0 % Tp 2 % ‘o

YEAR OF EXPERIMENT

MICROSCOPE
Echelle 1/2
“%‘N. ﬂ OMNERA




Local Position Invariance : redshift

TESTS OF
LOCAL POSITION INVARIANCE

| | | | | |
1 Pound-Rebka Millisecond Pulsar
T T L )
ART ' 1959 : Pound & Rebka (10%
I P | : Poun ebka o
; Snider I I
Saturn
103 |- =
H maser GPA
0
10° [~ I -
Solar spectra Fountain
. = Clocks
6 Clocks in rockets : g

10 —; spacecraft & planes — GPA* EXPERIMENT PACKAGE E ‘

i Null experiments l %oy

DISSOCIATOR
i Ye COOLING 4
10'7 TRANSPONDER % loor I
L = ) ‘ .- .;:,"-’“ - S\ -
,'96‘0 ’0)0 ’\900 2 &00 v"ooo ‘Do,o , 7 25 E SECTION
YEAR OF EXPERIMENT D
Av/v = (1+a)AU/c? )B' N
- . , R ~ SR séom IV STAGE DISTRIBUTOR

K GRAVITATIONAL PROBE A-REDSHIFT
MSFC-75-55-G 1708E

1980 : Gravity Probe A
Vessot (0.01%)

Magnetic
shields

. is e
High voltage ¢ =
assembly B

Crystal
oscillator

Launch : 1976 with Scout rocket
duration : |h55mn
where :Wallops Island

Electronic ~ 7
PCB's




General Relativity

Curvature of a manifold: the Riemann tensor

Let us go back to the covariant derivative of a vector field V,v, =d,v, — Fdabvd

A second covariant differentiation then yields

chbva — ac(vbva) o Feacvbve T 1_‘ebcvevaz
— é)6819va T (acrdab)vd T I‘dabé)cvd

R Feac(abve R Fdebvd) R 1_‘ebc(aeva o 1_‘daevd)
Swapping indices b and ¢, we can construct the following tensorial quantity

Vchva T Vchva — Rdabcvd

where Rdabc = abrdac o 8crdab T 1—‘eacrdeb T Feabrd

ec

is the Riemann tensor




General Relativity

Matter content : the energy-momentum tensor

We need to describe matter content in a covariant way.

Let us consider N dust particules. Let be M the rest mass of all non-interacting
particule.

At each event P in spacetime, this dust is fully characterized by giving the matter density
and its velocity measured in an inertial frame.

e

In rest frame, the velocity is null.
The density is p = M x N z

R [
In other frame, boosted, the volume of the 47 47

containing the dust is contracted along the direction of motlon r=iry
In this frame,we have N' =~yN M =M — o' =~?%p Lorentz contracted in

direction of motion

The matter density is not a scalar but does transform as the 00-component of a tensor

The most obvious and simple choice is then T'(x) = py(x)u(x) @ u(x)



General Relativity

Signification of the energy-momentum tensor

In an inertial frame, we have

00 ; : - : 00 __ 0.0__ 2,2
TO‘ .1s the energy density olf .the par.tlc.les, | T =pu'u = Y, PC”,
T*" 1s the energy flux X ¢~ 1in the i-direction; 0; 0 0 i 5 ,
‘. . . N . 1 70 __ I [
T is the momentum density x c¢ in the i-direction; I'™ =T" =puu =vy,pcu,

T" is the rate of flow of the i-component of momentum per unit area in the

. o i
R TY = pu'u’ = u'u’.
j-direction. P YuP

Equation of motion of the matter content

Let us try an analogy with the conservation of charge : 0,7 =

» 0,T"" =0 gives directly the equation of motion of the fluid
and the equation of continuity

But we have seen that partial derivative are not covariant, we must used in fact the
covariant derivative :

vV, TH =0



General Relativity
The Field Equations... (finally !)

One must realized that it is a postulate of Einstein: K, = <1},

K . is a 2 rank.Tensor related to the curvature... But how ?

It must have some properties :
- must be symmetric as 7"
- Must satisfy an analog to V,K*" =0

The most general choice is K,, =aR,,+bRg,,+Ag,,

But in order to fulfill all properties, we arrive necessarily to

R R =—kT

1
uy Qg,uv 182

What is the value of kappa ? => weak field approximation to recover Newton
Gravitation !

e

> K
2



Towards Relativistic reference frames

Weak Field approximation of General Relativity

GM
Solar System is a weak field >— =107 Earth, 10-¢ Sun
car
» Metric can be expanded in series...  Guv = Nuv + Ny hu| <<1

Lorentz group in this case h},, = AL AN,

o . . Ox'F
Infinitesimal coordinate transform can be written z'# = z# 4 &* — — =0, + 0,&"

ox

. dxP ox? \
The metric can transform as follow ¢, = S 57 8 = (80, —8,EP)(87 — 0,€7) (Mpo + por.

= Nuv + h,LLV - a,ufv - avg,un

> h//tw = hyy — 0,6, — 9,8,
The contravariant components of the metric tensor are simply

g,uz/ — n,uz/ . h,u’/ With h,W/ — nlvboénl/ﬁhaﬁ



Towards Relativistic reference frames

Linearized Field Equations

We have to expand R, — %gWR = —kT1,,

First, the connection... I'7,, =30"°(3,h,, +d,h,,—d,h,,) = 5(0,h] +d,hy —d"h,,)

: 0a _ o 0a T o) T 0
Then, the Riemann... Rr?,,=9,17,,-9,I'" ,+17 19 -17 I
R o = 30,(,h0 4+ 09,hG —37h,,) — 53,(3,h +d,hT — 37 h,,)

— %(ay%hg + 8pao-h,uy o 8Vao-h,U«P - apaﬂhg)’

Final step... Ricci Tensor and curvature scalar.

| 2 _ . 1 M2
R, =2(3,0,h+0Ph,,— 9,0,k —3,3,h%) And R=RE=n""R,,=0h—0,0,h"

And after a lot of fighting algebra and using %,,=h,,—31,h and h=-h

P hyy +1,,,0,0,h°7 — 0,0, 00 — 0,0, h8 = —2kT,,,,.

vOpltu = Oul ™ty



Towards Relativistic reference frames

Linearized Field Equations and harmonic jauge

We want to simplify Dzl_zw—l— nwﬁpaal}p(’ c?,,é‘phﬁ — 3,0, hP = —2kT,,.

Let us try with an infinitesimal change of change of coordinate /1,

h/MP WP _ inup h
— WHP G EP — P EM — %n“p(h —20,£9)
— hMP _ HEP — QPER 4 P E7

WVe find that ap}_l/ﬂp — ap}_l,up _ D2§M

If we choose... [1?&* = (9pilup

Final Linearized Einstein Equation

-
ﬁ h,, =—2kT,,

— h/.LV T ap,gv o aVé:,u.



Towards Relativistic reference frames

Post-Newtonian & Minkowskian approximations

The question : how to represent in practice |l | <<'1

By series... But which small parameter ? < o
Weak gravitational field

and slow velocity

L GM
Only weak gravitational field — << 1 Post-Minkowskian approx.
cr
Weak gravitational field GM GM v ,
. << 1 ~ — Post-Newtonian approx.
and slow velocity c2r "\ e2r c



Towards Relativistic reference frames

Post-Newtonian & Minkowskian approximations
Post-Minkowskian approx. h,, = Z Gnh/(ﬁ/)

1
Post-Newtonian approx. iy = Z C—nhﬁ,’;)

Particular case of the Post-Newtonian approx.

ds® = gudatdz” =n,,detdx” + Z h/(ﬁ/)d:v“d:z”

1
ch

Motion of a free particule under gravity in Newtonian regime...

: 2
d? x™ dx¥ dx? dxt d O dzx“ 7 dt
M — or et % oY
12 +17,, i 0. But o I o > 03 + 1" gocC o 0
. d*x 1 2¢
. d>t A>3 dr\? - “L=—=c“Vh
Obviously = 0 and 5 = _%CZ (_T) Vhgp. dt? 2 00
2
h()() — 2(1)/C ‘




Relativistic Astronomy : some basics

Relativistic reference

systems

—

\.

\

Relativistic Equations of Definition
equations signal . of o
of motion propagation Observables
Tests of _ _‘
gravitation Relativistic
“ S models
fob bl
Coordinate-dependent 0T OLSEIVabIes _
parameters ‘ : Observational
v data

Astronomical
reference

frames

Klioner, 2003



AU

ARG, THhe Amencin ASsronomical Sooety. All ngnls reserved, Frinled i U A,

eference, Systems.and.relativity. ..

THE RELATIVISTIC FRAMEWORK: EXPLANATORY SUPPLEMENT

M. SoFreL,! S. A. KLIONER,! G. PETIT.” P. WOLF,” S. M. KOPEIKIN.? P. BRETAGNON.* V. A. BRUMBERG,” N. CAPITAINE.®
T. DaMouRr,’ T. FukusHiMa,® B. GuiNoT,® T.-Y. HuanG,? L. LINDEGREN, ! C. Ma,'" K. NorpTVEDT,'? I. C. RIES, "}
P. K. SEIDELMANN,* D. Vokrounvricky,"” C. M. WiLL,'® anp C. Xul’

Received 2002 August 9; accepted 2003 July 2

S

e First attempt : IAU 1976
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Time transformation between TCG & TCB
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oscillation reduces to only a few centimeters (Mashhoon
1985: Soffel, Ruder, & Schneider 1986).

The situation 1s even more critical in the field of
astrometry. It i1s well known that the gravitational light
deflection at the limb of the Sun amounts to 1775 and
decreases only as 1/r with increasing impact parameter r of a
light ray to the solar center. Thus, for light rays incident at
about 90° from the Sun the angle of light deflection still
amounts to 4 mas. To describe the accuracy of astrometric
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« BCRS (Barycentric Celestial Reference System)
« GCRS (Geocentric Celestial Reference System

* Local reference system of an observer

play an important role.
* All these reference systems are defined by

* In relativistic astronomy the

Reference systems theory
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Barycentric Celestial Reference System

The BCRS is a particular reference system in the curved space-time
of the Solar system

* One can use any

* but one should fix one :
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Used to describe motion of celestial body and description of light propagation
Ephemeride Astrometry




