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Ground & space geodesy accuracy is increasing:

Motivations

Navigation of interplanetary probes :

From cm to mmLLR & SLR
GALILEO

factor 80 on Grav. RedshiftGravity Probe A to ACES/Pharao

Ground & space astrometry:
from milli to micro-arcsecondGaia, Gravity

factor 10 on Doppler
Cassini Experiment, use of Ka Band
MORE Experiment on BepiColombo
JUNO Experiment 2016, JUICE towards 2030

Need to describe light propagation in 
relativistic framework

• one can solve null geodesic
• one can introduce new tools

and define properly the observables !



Light propagation is crucial in the

1) Range observable

modeling of Sol. Sys. observations

• Depends on the difference 
in coord. time (amongst 
other parameters)

tB � tA

Emitter
worldline

Transmitter
worldline

OA
(⌧A, ⌫A)

OB
(⌧B , ⌫B)

• Difference in proper time

Range = c(⌧B � ⌧A)
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Light propagation is crucial in the

2) Doppler observable

modeling of Sol. Sys. observations

D =
⌫B
⌫A

• Ratio of proper frequency =

✓
d⌧

dt

◆

A

✓
d⌧

dt

◆�1

B

kB0
kA0

1 + �i
B k̂

B
i

1 + �i
Ak̂

A
i

Wave vector kµB

Wave vector kµA

Emitter
worldline

Receiver
worldline

OA
(ta, ⌫A)

(tB , ⌫B)

OB

• Wave vector at emission 
and reception needed
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�i = vi/cwith and

k̂i =
ki
k0



Light propagation is crucial in the
modeling of Sol. Sys. observations

3) Astrometric observables

Wave vector kµB

Emitter
worldline

Receiver
worldline

OA

OB

Eµ
h↵i

Local Ref. Syst.
or tetrad

Direction of observation of the light ray in a local reference system (or 
tetrad)

nhii = �
E0

hii + Ej
hiik̂

B
j

E0
h0i + Ej

h0ik̂
B
j

Wave vector at reception needed only

B. Astrometric observables

The goal of astrometry is to determine the position of
celestial bodies from angular observations. We focus on
two main approaches. First, we consider the modeling of
the direction of incidence of a light ray in a given reference
frame, which gives an absolute positioning of the studied
object on a celestial sphere. Second, we consider the case of
the angular separation of two light sources.
One way to get a covariant definition of the absolute

positioning of a light source is to use the tetrad formalism
[36–39] thus giving the direction of observation of an
incoming light ray in a tetrad E comoving with the
observer OB (see Fig. 1). Let us note Eμ

hαi, the components
of this tetrad, where hαi corresponds to the tetrad index
and μ is a normal tensor index that can be lowered and
raised by use of the metric. The tetrad is assumed to be
orthonormal so that

gμνE
μ
hαiE

ν
hβi ¼ ηhαihβi: (15)

Vector Eν
h0i is chosen unit and timelike, and consequently

Eν
hii are unit and spacelike. The components of the tetrad

allow us to transform the coordinates of the wave vector
from the global coordinate frame to the tetrad frame,

khαi ¼ Eμ
hαikμ; (16)

where kμ are the coordinates of the wave vector in the
global frame (represented on Fig. 1) while khαi are
the coordinates of the same vector in the tetrad frame.
The incident direction of the light ray in the tetrad
frame (which is a relativistic observable) is given by the
normalization

nhii ¼ khiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δjkkhjikhki

q ¼ khii

kh0i
¼ − khii

kh0i
; (17)

where we used the properties of the null-vector khii and the
fact that the metric tensor has a Minkowskian form in the
tetrad frame. Using the transformation law (16) into
Eq. (17), one gets

nhii ¼ −
E0
hiik0 þ Ej

hiikj

E0
h0ik0 þ Ej

h0ikj
¼ −

E0
hii þ Ej

hiik̂j

E0
h0i þ Ej

h0ik̂j
; (18)

where k̂j are the deflection functions at OB defined in
(10b). This expression is consistent with the one derived in
[40]. Using the relation (10b) one can then express the
incoming direction of the light ray in terms of the reception
delay function and its derivatives [41,42] as

nhii ¼ −
E0
hiið1 − 1

c
∂Δr
∂tB Þ − Ej

hiiN
j − Ej

hii
∂Δr

∂xjB
E0
h0ið1 − 1

c
∂Δr
∂tB Þ − Ej

h0iN
j − Ej

h0i
∂Δr

∂xjB
; (19)

which is an exact formula.

Let us now examine the second kind of astrometric
observations, namely the modeling of angular distance
between two celestial bodies. This observable can also be
computed within the TTF formalism. We assume that
two different light sources OA and OA0 are emitting a
light ray Γ and Γ0, respectively. These light rays are
received simultaneously by OB at coordinates ðtB;xBÞ.
We denote by k and k0 the wave vector of Γ and Γ0 at OB,
respectively. Using expression (10b), we construct the ratio
ðk̂jÞB corresponding to Γ and ðk̂j0ÞB describing Γ0, which
require an expression for the derivatives of the TTF whose
expression up to the 2PM order will be given in Sec. V.
It is straightforward to show that the angular distance ϕ
between OA and OA0 , as observed by a moving observer
OB, can be written as [43]

sin2
ϕ
2
¼−1
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"ðg00þ2g0kβkþgklβkβlÞgijðk̂0i− k̂iÞðk̂0j− k̂jÞ
ð1 þβm k̂m Þð1 þβlk̂l

0Þ

#

B

;

(20)

where βiB ¼ ðdxi=cdtÞB is the coordinate velocity of OB at
coordinates ðtB;xBÞ.

V. POST-MINKOWSKIAN EXPANSION
OF THE TIME TRANSFER FUNCTION

AND ITS DERIVATIVES

In Sec. IV, we have presented a method to compute
Doppler and astrometric observables in an exact form
depending explicitly on the expression of the TTF and
its derivatives. In this section, we present a way to derive
these quantities up to 2PM order as integrals of some
functions of the space-time metric taken along a straight
line. In the weak field approximation, the expression of T r
as a formal PM series has been derived by [23] and can be
written in ascending powers of G as

T rðxA; tB;xBÞ ¼
RAB

c
þ 1

c

X∞

n¼1

ΔðnÞ
r ðxA; tB;xBÞ; (21)

whereΔðnÞ
r is of the orderOðGnÞ. The goal of this section is

then to derive analytical formulas for the delay functions
Δð1 Þ

r , Δð2Þ
r and their derivatives [44] up to 2PM order.

A. Notations and variables used

In the following, we provide some useful notations used
throughout this paper. First of all, the Minkowskian path
between the emitter and the receiver (which is a straight
line) is parametrized by λ (whose values are between 0 and
1) and is given by

z0ðλÞ ¼ ctB − λRAB (22a)

zðλÞ ¼ xB − λRAB ¼ xBð1 − λÞ þ λxA: (22b)

RELATIVISTIC FORMULATION OF COORDINATE LIGHT … PHYSICAL REVIEW D 89, 064045 (2014)

064045-5

4) Differential astrometric observables

Angle between 2 incoming light rays



How to determine the light propagation ?
• At the geometric optics approximation: photons follow null 

geodesics
dkµ

d�
+ �µ

↵�k
↵k� = 0 kµkµ = 0

kµ =
dxµ

d�
with                   the tangent vector

Wave vector kµB

Wave vector kµA

Emitter
worldline
xA(t)

Receiver
worldline

OA
(tA,xA)

(tB ,xB)

OB

But the real life :

a Boundary Value Problem
 6

an Initial Value Problem



• Analytical solutions for weak gravitational field:  
   - 1 pM Schwarzschild metric  
   - moving monopoles at 1pM order 
   - static extended bodies with multipolar expansion at 1pM  
 
  - 2 pM Schwarzschild metric

see E. Shapiro, PRL 13, 26, 789, 1964

see S. Kopeikin, G. Schäffer, PRD 60, 124002, 1999
      S. Klioner, A & A, 404, 783, 2003
      MT Crosta, CQG, 28, 235013, 2011

see S. Kopeikin, J. of Math. Phys., 38, 2587
       S. Zschocke, PRD 92, 063015, 2015

see G. Richter, R. Matzner, PRD 28, 3007, 1983
      S. Klioner, S. Zschocke, CQG 27, 075015, 2010

• Full numerical integration of the null geodesic eqs. with a 
shooting method

see A. San Miguel, Gen. Rel. Grav. 39, 2025, 2007
     MT Crosta et al, CQG, 32, 165008, 2015

Methods to solve the null geodesic eqs.

see for example N. Ashby, B. Bertotti, CQG 27, 145013, 2010

• Use of the eikonal equation:  
   - perturbative solution for spherically symmetric space-time

       A. Cadez, U. Kostic, PRD 72, 104024, 2005
                         A. Cadez, et al, New Astr. 3, 647, 1998

see for example: de Jans, Mem. de l’Ac. Roy. de Bel., 1922
                        B. Carter, Com. in Math. Phys. 10, 280, 1968

• Exact analytical solution for some metrics: Schwarzschild and Kerr 
(solution with Jacobian/Weierstrass elliptic functions)
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… and the Time Transfer Functions
see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• The TTF is solution of an eikonal equation well adapted to a 
perturbative expansion

• The derivatives of the TTF are of crucial interest since

k̂Ai = c
@Tr
@xi

A
k̂Bi = �c

@Tr
@xi

B


1� @Tr

@tB

��1 kB0
kA0

= 1� @Tr
@tB

Range, Doppler, astrometric observables can be 
written in terms of the TTF and its derivatives
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• The Time Transfer Functions - TTF - are defined by

tB � tA = Tr(xA, tB ,xB) tB � tA = Te(tA,xA,xB)



Synge’s World Function as TTF 
progenitor 

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008
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Suppose the existence of two event-points xA 
and xB on a manifold. We assume that they are 
located in a convex neighbourhood in such a 
way that they are connected by a unique 
geodesic.

see De Felice & Clarke
Cambridge Univ. Press

One can define a Synge’s World Function 
between xA and xB (Ruse 1931, Synge 1931, 1964)

⌦ (xA, xB) =
✏AB

2

Z 1

0
gµ⌫(x

↵(�))
dxµ

d�

dx⌫

d�
d� ,

where    is an affine parameter, � ✏AB = �1, 0, 1

Very difficult to determine it… Schwarzschild (Buchdhal 1979). 
But an iterative Post-Minkowskian expansion has been found



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008
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World Function property 1: Hamilton-Jacobi equations

1

2
g↵�(xA)

@⌦

@x↵
A

(xA, xB)
@⌦

@x�
A

(xA, xB) = ⌦(xA, xB) ,

1

2
g↵�(xB)

@⌦

@x↵
B

(xA, xB)
@⌦

@x�
B

(xA, xB) = ⌦(xA, xB) .

World Function property 1II: particular case of light rays

✏AB = 0 , ⌦ (xA, xB) = 0

Synge’s World Function as TTF 
progenitor 

World Function property 1I: Tangent vectors at xA and xB

✓
gµ⌫

dx⌫

d�

◆

A

= � @⌦

@xµ
A

(xA, xB) ,

✓
gµ⌫

dx⌫

d�

◆

B

=
@⌦

@xµ
B

(xA, xB) .



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008
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Let us introduce the emission TTF as follows
⌦
�
x0
A,xA, x

0
A + cTe(tA,xA,xB),xB

�
⌘ 0

@⌦

@x0
A

(xA, xB) +
@⌦

@x0
B

(xA, xB)


1 +

@Te
@tA

(tA,xA,xB)

�
= 0 ,

@⌦

@xi
A

(xA, xB) + c
@⌦

@x0
B

(xA, xB)
@Te
@xi

A

(tA,xA,xB) = 0 ,

c
@⌦

@x0
B

(xA, xB)
@Te
@xi

B

(tA,xA,xB) +
@⌦

@xi
B

(xA, xB) = 0 ,

If we differentiate with respect to     ,      and   x0
A xi

A xi
B

Same reasoning on reception TTF
⌦
�
x0
B � cTr(tB ,xA,xB),xA, x

0
B ,xB

�
⌘ 0 .

Synge’s World Function as TTF 
progenitor 



see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
      P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008
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But how to calculate a TTF ?

II.    Realize that [gµ⌫kµk⌫ ]xA/xB
⌘ 0 , so (2008) 

I. First calculate the world function, then apply                 is equal to 0 and use a
      Lagrange inversion (2004)

⌦ (xA, xB)

) g00(x0
B � cTr,xA) + 2c g0i(x0

B � cTr,xA)
@Tr
@xi

A

+ c2 gij(x0
B � cTr,xA)

@Tr
@xi

A

@Tr
@xj

A

= 0

g00(x0
A + cTe,xB)� 2c g0i(x0

A + cTe,xB)
@Te
@xi

B

+ c2 gij(x0
A + cTe,xB)

@Te
@xi

B

@Te
@xj

B

= 0.

Fundamental properties of TTF’s

It leads to the fundamental theorem for TTF
✓
ki
k0

◆

B

= �c
@Te
@xi

B

= �c
@Tr
@xi

B


1� @Tr

@tB

��1

,

✓
ki
k0

◆

A

= c
@Te
@xi

A


1 +

@Te
@tA

��1

= c
@Tr
@xi

A

,

(k0)B
(k0)A

=


1 +

@Te
@tA

��1

= 1� @Tr
@tB

.

TTF is a dedicated World Function to light ray. 
General Post-Minkowskian expansions are possible 



Post-Minkowskian expansion of the TTF

• A pM expansion of the TTF:

see P. Teyssandier and C. Le Poncin-Lafitte, CQG 25, 145020, 2008

• Computation with an iterative procedure involving integrations 
over a straight line between the emitter and the spatial position 
of the receiver !

• Main advantages:

- analytical computations relatively easy

- very well adapted to numerical evaluation

• Example at 1 pM:

with            the straight Mink. null path between em. and rec.z↵(�)

Tr(xA, tB ,xB) =
RAB

c
+

X

n>1

T (n)
r

T (1)
r =

RAB

2c

Z 1

0

h
g00(1) � 2N i

ABg
0i
(1) +N i

ABN
j
ABg

ij
(1)

i

z↵(�)
d�
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

and the corresponding derivatives have been computed up to the 
3rd pM order

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014
      P. Teyssandier, 2014, arXiv: 1407.4361

• A “simplified” iterative method has been developed for static 
spherically symmetric geometry

ds2 =

✓
1� 2

m

r
+ 2�

m2

r2
� 3

2
�3

m3

r3
+ . . .

◆
dt2 �

✓
1 + 2�

m

r
+

3

2
✏
m2

r2
+

1

2
�3

m3

r3
+ . . .

◆
dx2

• In GR: � = � = ✏ = �3 = �3 = 1

T =
RAB

c
+

X

n>1

T (n)
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Analytical results in Schwarzschild space-time

• A pM expansion of the TTF:

see B. Linet and P. Teyssandier, CQG 30, 175008, 2014

T (1) =
(1 + �)m

c
ln

rA + rB + |xB � xA|
rA + rB � |xB � xA|

T (2) =
m2

rArB

|xB � xA|
c



arccosnA.nB

|nA ⇥ nB |
� (1 + �)2

1 + nA.nB

�

T (3) =
m3

rArB

✓
1

rA
+

1

rB

◆
|xB � xA|

c(1 + nA.nB)


3 � (1 + �)

arccosnA.nB

|nA ⇥ nB |
+

(1 + �)3

1 + nA.nB

�

see E. Shapiro, PRL 13, 26, 789, 1964

see C. Le Poncin-Lafitte, et al, CQG 21, 4463, 2004
     S. Klioner, S. Zschocke, CQG 27, 075015, 2010

 = 2 + 2� � � +
3

4
✏

3 = 2� 2�(1 + �) +
1

4
(3�3 + �3)

with
and nA/B =

xA/B

rA/B

T =
RAB

c
+

X

n>1

T (n)
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• Ex. with light deflection for Sun grazing rays: AGP space mission 
(old GAME). Expected accuracy: 𝜇as 
⇒ 3pM term needed

see A. Hees, S. Bertone, C. Le Poncin-Lafitte, PRD 89, 064045, 2014
      P. Teyssandier, B. Linet, proceedings of JSR 2013, arXiv:1312.3510
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Is it necessary to go to the 3rd order?
• In a conjunction geometry, at each order n, there are enhanced 

terms proportional to           (1 + �)n



Analytical result around axisymmetric bodies
• Influence of all the multipole moments Jn from the grav. potential

• Influence of Jupiter J2 on the JUNO Doppler  (1𝜇m/s accuracy) 

see C. Le Poncin-Lafitte, P. Teyssandier, PRD 77, 044029, 2008 for a computation with the TTF
or S. Kopeikin, J. of Math. Physics 38, 2587, 1997 for another approach
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• terms important for the data analysis for these missions
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see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



What happens if the body is moving ?

• At first pM order, the TTF for uniformly moving bodies can 
easily be derived from the TTF generated by a static body

• All the analytical results computed for a static source can be 
extended in the case of a uniformly moving source

�(xA, tB ,xB) = �(1�NAB .�)�̃(RA + ��RAB ,RB)

� = v/c, � = (1� �2)�1/2

static TTFTTF in the 
moving case with

RXand depends on xX , �
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see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



Ex.: motion of Jupiter
• Influence of Jupiter velocity on the JUNO Doppler  (1𝜇m/s 

GAIA/VLBI

• depend highly on the orbit geometry: conjunction and 
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• In particular: should be reassessed for JUICE orbit
see Hees, Bertone, Le Poncin-Lafitte, PRD 90, 084020, 2014



Numerical evaluation of the TTF
• Iterative procedure involving integrals over a straight line: 

appropriate for numerical evaluation

• At 1pM order: a simple integral to evaluate

T (1) =

Z 1

0
m

h
z↵(µ); g(1)↵� , xA, tB ,xB

i
dµ

@T (1)

@xi
A/B

=

Z 1

0
mA/B

h
z↵(µ); g(1)↵� , g(1)↵�,� , xA, tB ,xB

i
dµ

• At 2pM order: a double integral to evaluate

T (2) =

Z 1

0

Z 1

0
n
h
z↵(µ�); g(2)↵� , g(1)↵� , g(1)↵�,� , xA, tB ,xB

i
d�dµ

@T (2)

@xi
A/B

=

Z 1

0

Z 1

0
nA/B

h
z↵(µ�); g(2)↵� , g(2)↵�,� , g(1)↵� , g(1)↵�,� , g(1)↵�,��, xA, tB ,xB

i
d�dµ
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• Numerically efficient ; useful when no analytical solution can be 
found see Hees, Bertone, Le Poncin-Lafitte, PRD 89, 064045, 2014



Numerical evaluation of the TTF

• Example: Doppler for 30 days of Cassini tracking between 
Jupiter and Saturn (“𝛾 experiment”)

see A. Hees, et al, CQG 29, 235027, 2012

• Effect of the 𝛾 PPN and of Standard Model Extension sTY on 
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• Numerical evaluation appropriate to evaluate effects due to 
alternative theories of gravitation

𝛾 -1 = 5 x 10-5

sTY = 10-5

for SME, see Q. Bailey and A. Kostelecky, PRD 74, 045001, 2006
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Photo 1930.
Crédit: Royal Astronomical Society

Einstein, Eddington 1919

Complicated situation

Einstein prediction is published during WW1 in a german journal Annalen 
den Physik

However, the paper goes through the no man’s land up and barbed wire up 
to England where Sir Eddington obtained the paper.

Eddington (1882- 1944) holds the Professor's Chair Plumian Experimental Astronomy Cambridge from 1912 succeeding 
G. Darwin. Pacific, he refuses to participate in the war of 14-18. After a thorough study of Einstein's work, he sets out on 
an expedition off the coast of Africa to observe a total solar eclipse on May 29, 1919

22 November 1919 edition 
of The Illustrated London News

Crédit: Royal Astronomical Society

1. Several poor quality photographic plates
2. Disastrous weather conditions

One plate gaves 1.7’’. Eddington kept it



Testing Relativity since 1919
• How to test the form of the metric/the Einstein field equations ? Two 

frameworks widely used so far:

- powerful phenomenology making an interface between 
theoretical development and experiments

- metric parametrized by 10 dimensionless coefficients

- 𝛾 and 𝛽 whose values are1 in GR

1) Parametrized Post-Newtonian Formalism1

1I) Fifth force formalism2

1 C. Will, LRR, 9, 2006 
  “Theory and Experiment in Grav. Physics”, C. Will, 1993

ds2 = (1 + 2⇤N + 2�⇤2
N + . . . )dt2 � (1� 2⇥⇤N + . . . )d⌅x2

- modification of Newton potential of the form of a Yukawa potential

⇥(r) =
GM

c2r

⇣
1 + �e�r/�

⌘

2 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
  “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998



Parameter What it measures, relative to 
general relativity

Value in GR

Value in 
scalar 
tensor 
theory

Value in semi-
conservative 

theories

γ 
How much space curvature 
produced by unit mass? 1

(1+ω)/
(2+ω)

γ

β How “nonlinear’’ is gravity? 1 1 + Λ β

ξ Preferred-location effects? 0 0 ξ

α1
Preferred-frame effects?

0 0 α1
α2 0 0 α2
α3 0 0 0

ζ1

Is momentum conserved?

0 0 0

ζ2 0 0 0

ζ3 0 0 0

ζ4 0 0 0

PPN parameters and their significance



Instruments for 
Radio-science:
antenna, clock

Radio-Science Experiments

Conjonction between the Earth 
And Cassini in September 2003 Maximum of relativistic deflection !

Italian team measured the change in signal frequency with a precision 
of some 10-14 in frequency fraction. Relativity is then correct at 0.002% 

Bertotti et al. 2003, Nature, 425, 374



Shapiro effect with Viking Probe



Doppler effect
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Cassini probe experiment





observable :
time delay between 
the reception of 
signal at the 
radiotelescopes

Observations of quasars
1. Statistically not moving
2. With 2 radiotelescopes, we 
are able to fix the Earth 
orientation with respect to 
quasars

kinematical position of the 
Earth in space

Very Long Baseline Interferometry VLBI



International VLBI service (IVS)

5 data centers and 29 analysis 
centers 

IVS-OPAR @ SYRTE/Obs. 
Paris 

lead : S. Lambert

primary goals :  
• monitoring the Earth's rotation  
• determining reference frames

Use Mark-5 VLBI Analysis Software Calc/Solve. 
109 programs, 3680 modules 
1.02 million lines of source code  
written mainly in Fortran-95

Observation time span : From August 1979 to mid-2016  
almost 6000 VLBI 24-hr sessions  
(correspondingly 10 million delays) 



Er
ro

rs
 (

m
as

)

Number of sources peer session
Source’s declination
Length of observation’s basis (100 km)

~109 light years





Fomalont et al. 2009 

γ - 1 = 2 ± 3 x 10-4



VLBA ~ 3% of sessions ~ 30% of observations

Lambert & Le Poncin-Lafitte 2009, 2010 : use of the 
complete geodetic VLBI database

Solar activity = stronger deflection 
(Lebach et al. 1995)
~ 1—10 ps

γ = « deflection » coefficient

Without VLBA :
γ - 1 = 0.4 ± 1.4 x 10-4

+ RDV :
γ - 1 = -0.7 ± 1.3 x 10-4

+ VCS :
γ - 1 = -0.8 ± 1.2 x 10-4



Modeling SME-VLBI delay & fit
Lambert & CLPL, 2009 and 2011 : determination of PPN 

Gamma at the level of 10-4,  
1 order of mag below Cassini but strong statistics & 

robustess

First, we derive the VLBI delay in SME from Bailey (2009) : 

with positions of stations and
and is the direction of the source.

• Modification of CALC with 
module USERPART. Test 
with post-fit analysis :  

  
• 2 & 8 Ghz for solar activity 

• 8 Ghz for SME analysis 

• Systematics on CONT08 
data 

     but we kept them. 

CLPL, Hees & Lambert, PRD 2016 
arXiv:1604.01663




