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* Astrometric measurement

* Bayesian Inference

* Prior for distance inference

» 6d phasespace including error propagation
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Gala vision

Motion of the star on the sky
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Parallax uncertainty

Lindegren+ 2018
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Parallax measurement

Lindegren+ 2018
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Parallax measurement

¢ IS GaUSS|an Lindegren+ 2018
» Zero-point offset
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Measurement model
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L 1kelihood function

1 1 R
P(wlr, 05) = exp| ——5-|@ — —| | 0= 20
N 2T o - 20, r
o/ w=0.2 o/ w=0.5
1/r 1/w 1/w
20, | 20, 1/(w+20:)1 1/(w—205)  1/(w+205)] 1/(w — 204) = oo
< > <4

P(w|r,o4)




Bayesian parameter estimation

Posterior: P(r|w)= leegcgﬁ Cle) rior




Bayesian parameter estimation

Posterior: P(r|w)= leegcgﬁ Cle) rior

Likelihood : P ( w]r)



Bayesian parameter estimation

Posterior: P(r|w)= leegcgﬁ Cle) rior

Likelihood : P ( w]r)

Prior:P(r)



Bayesian parameter estimation

Posterior: P(r|w)= leegcgﬁ Cle) rior

Likelihood : P ( w|r)

Prior:P(r)

r=o0

Evidence: f Posterior
r=0



= X PcC dgjm = 250 PC
I [ | I | | [
| Py
0.010 | d -

‘_? I
% sze—d' I
< 0.005 F | N
o
B P1 M [ ——

| I | | | | |

—100 0 100 200 300 400

distance in pc



Bae:

T _1 | T I | T
| P
0.010 | d -

2 '
,'% szc.—a' |
<= 0.005 F | 7
<
B Pl M [ ——

| l | | | | |

—100 0 100 200 300 400 500

distance in pc

* Exponentially decreasing volume density prior



Bae:

= X pPcC d!im = 250 PC
I [ | I | | [
| Py
0.010 | d -

Z '
,'% szc.—a' |
< 0.005 F | N
o
B Pl M [ ——

| | | | | | |

—100 0 100 200 300 400 500

distance in pc

* Exponentially decreasing volume density prior
» Bailer-Jones+2018: L prior(l,b)



= X pPcC d!im = 250 PC
I I | I | | [
| Py
0.010 | d -
2 '
,'% pdzc.—a' |
<= 0.005 F | 7
<
B Pl M [ ——
0.000
| | | | | | |
—100 0 100 200 300 400

distance in pc

* Exponentially decreasing volume density prior
» Bailer-Jones+2018: L prior(l,b)
 GDR2mock as spin-off (Rybizki+ 2018)
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Prior Lengthscale(l,b)
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Posterior Highest Density Interval
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| | , | | Catalog entries:
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, result flag [mode, mean], modality flag
distance [kpc]
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Do’'s with the catalog

* Provides probable distance range for stars
- Does a set of stars have consistent distances?

 Select a set of stars on which other inferences are
then performed

* A baseline against which to compare other distances

* 3D space distribution of a set of stars

- Distances are inferred independently but prior is
correlated on small scales (and parallaxes may as well)
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Don'ts with the catalog

* Infer cluster distance from a set of probable
cluster members using our distances

— Set up a model for the cluster in which its distance is
a free parameter and solve for this using the original
parallaxes (accomodating for their spatial correlation)

* Use our distances as intermediate step in a
calculation (e.g. abs mag or transverse velocity)

- Infer those quantities directly
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Different prior (MG prior)
Let's use our knowledge about stars:

- Test star: AGB, -1 MG, BP-BP = 2, 15kpc away

- G = 14.9, true parallax = 0.067 mas,
uncertainty 0.037 mas

arallaxes culled below 0.010 mas
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Posterior
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Posterior
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Posterior
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bd phasespace

* Plugin astrometry and rv and sample the correlated
uncertainties

 Example code including orbit integration can be
found here: https://bit.ly/312UiCc

* For distant stars (> 5 kpc) usually spectro-
photometric distance inferences are more precise:

- Green+ 2019 https://arxiv.org/abs/1905.02734
- Anders+2019 https://arxiv.org/abs/1904.11302
- Leung+2019 https://arxiv.org/abs/1902.08634



» Distance is not observable — inference problem


https://bit.ly/312UiCc

» Distance is not observable — inference problem
* Frame your prior assumptions


https://bit.ly/312UiCc
https://arxiv.org/abs/1905.02734
https://arxiv.org/abs/1904.11302
https://arxiv.org/abs/1902.08634

SlUmimaty

» Distance is not observable — inference problem
* Frame your prior assumptions
» Geometric distance inference has its limits



Thanks for your attention




Parallax measurement
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Figure 2.3: Probability distribution for true distance of 100 pc (equivalently a true parallax of 0.01 arcsec)
and a relative error, 0—3, of 0.2



Negative parallaxes
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Figure 2.7: Likelihood in blue and posterior in red for negative parallax, ® = —0.01, and different relative
parallax errors, 0—{53 = 10% in dashed lines and 40% in solid lines. The prior in green stays unaffected.

What is visible of the likelihoods as functions of distance is arbitrarily normalised to unity.
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