The data-driven approach to measuring stellar parameters

Tuesday, June 4, 2019 — 2.15-3.30 Adam Wheeler (Columbia) <u>a.wheeler@columbia.edu</u>

Should have been: Melissa Ness (Flatiron/Columbia, NYC) mkness@gmail.com

Outline

Outline

- Motivate data-driven approach to spectroscopy
- The Cannon how it works
- Applications
 - Precision abundances
 - Low-res spectra
 - Stellar ages

 respect and understand your data (plot your spectra and look at it - a lot!)

- respect and understand your data (plot your spectra and look at it - a lot!)
 - explore systematics in your data (understand the instrument!)

- respect and understand your data (plot your spectra and look at it - a lot!)
 - explore systematics in your data (understand the instrument!)
 - examine and understand correlations between measurements,

- respect and understand your data (plot your spectra and look at it - a lot!)
 - explore systematics in your data (understand the instrument!)
 - examine and understand correlations between measurements,
 - understand your errors

- respect and understand your data (plot your spectra and look at it - a lot!)
 - explore systematics in your data (understand the instrument!)
 - examine and understand correlations between measurements,
 - understand your errors
 - making diagnostic plots is critical question everything

- respect and understand your data (plot your spectra and look at it - a lot!)
 - explore systematics in your data (understand the instrument!)
 - examine and understand correlations between measurements,
 - understand your errors
 - making diagnostic plots is critical question everything
- start with simple, interpretable approaches and build in complexity as needed

Measuring stellar parameters with physics

- 1. Take model atmospheres from Castelli/Kurucz model atmospheres
- 2. Add a linelist from atomic and molecular library
- 3. MOOG (Sneden 1983) to create library of synthetic spectra.
- Program to determine best fitting spectra in Teff, logg, [Fe/H], [α/Fe]
- 5. Calibrate: modify log gf values the Sun/Arcturus, compare results to literature and "benchmarks", fit out trends

Stellar parameters measured

- Multitude of surveys at different R, λ
- Independent pipelines for parameters

- Multitude of surveys at different R, λ
- Independent pipelines for parameters

The problem:

Different surveys have different scales for Teff, logg, [Fe/H], [X/Fe]

The solution

Sub-set of reference objects: stellar parameters, abundances (labels) known with high(er) fidelity.

- astroseismology
- clusters
- high SNR, well studied benchmarks, (e.g Jofre+ 2014)

The solution

Sub-set of reference objects: stellar parameters, abundances (labels) known with high(er) fidelity.

- astroseismology
- clusters
- high SNR, well studied benchmarks, (e.g Jofre+ 2014)

use these labels *directly*: data-driven model

A very simple empirical model

A single pixel is information-rich

A very simple empirical model

proof of concept: an index made (measuring EW of 5 features) using **1%** of the spectrum can use open and globular clusters to calibrate this index to be a precise [Fe/H] measure

5 x Features (30 Angstroms of spectra) metallicity sensitive features (log g, Teff insensitive)

The Cannon

The Cannon

A single pixel is information-rich

data-driven approach to measuring stellar parameters & abundances (labels) for stars in large surveys from the spectra directly

data-driven approach to measuring stellar parameters & abundances (labels) for stars in large surveys from the spectra directly

<u>http://arxiv.org/pdf/1501.07604v2.pdf</u> M. Ness, David W. Hogg, H.W. Rix, Anna Ho, & G. Zasowski

Annie Jump Cannon

Annie Jump Cannon

Characterized temperature sequence of stars *without* stellar models

Annie Jump Cannon

Characterized temperature sequence of stars *without* stellar models

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

- (i) stars with the same labels have the same spectra
- (ii) flux varies smoothly with labels

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

- (i) stars with the same labels have the same spectra
- (ii) flux varies smoothly with labels

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

- (i) stars with the same labels have the same spectra
- (ii) flux varies smoothly with labels

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

$$F_{n\lambda} = g(\ell_n; \theta_\lambda) + \text{error}$$

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

(i) stars with the same labels have the same spectra

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

$$F_{n\lambda} = g(\ell_n; \theta_\lambda) + \text{error}$$
The Basic Idea

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

(i) stars with the same labels have the same spectra

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

$$F_{n\lambda} = g(\ell_n; \theta_\lambda) + \text{error}$$

The Basic Idea

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

(i) stars with the same labels have the same spectra

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

The Basic Idea

Relies on a *subset* of reference stars in the survey, with known labels (Teff, logg, [Fe/H].)...

(i) stars with the same labels have the same spectra

Uses reference objects (n) with known labels (ℓ_n) to build a model: *Training*

That model is then used to infer the stellar labels for the remaining stars in the survey: *Test*

 $f_{n\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_n + c_{\lambda} (\log g)_n + d_{\lambda} ([\text{Fe}/\text{H}])_n + \text{noise}$ $\theta_{\lambda} = (a_{\lambda}, b_{\lambda}, c_{\lambda}, d_{\lambda})$

(i) Training step: with the known labels: Teff, logg, [Fe/H]

 $f_{n\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_n + c_{\lambda} (\log g)_n + d_{\lambda} ([\text{Fe}/\text{H}])_n + \text{noise}$ $\theta_{\lambda} = (a_{\lambda}, b_{\lambda}, c_{\lambda}, d_{\lambda})$

(i) Training step: with the known labels: Teff, logg, [Fe/H]

 $f_{n\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_n + c_{\lambda} (\log g)_n + d_{\lambda} ([\text{Fe}/\text{H}])_n + \text{noise}$ $\theta_{\lambda} = (a_{\lambda}, b_{\lambda}, c_{\lambda}, d_{\lambda})$

(i) *Test step:* with the survey stars

(i) *Training step:* with the known labels: Teff, logg, [Fe/H]

 $f_{n\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_n + c_{\lambda} (\log g)_n + d_{\lambda} ([\text{Fe}/\text{H}])_n + \text{noise}$ $\theta_{\lambda} = (a_{\lambda}, b_{\lambda}, c_{\lambda}, d_{\lambda})$

(i) *Test step:* with the survey stars

 $f_{m\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_m + c_{\lambda} (\log g)_m + d_{\lambda} ([Fe/H])_m + \text{noise}_{\lambda}$

(i) *Training step:* with the known labels: Teff, logg, [Fe/H]

 $f_{n\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_n + c_{\lambda} (\log g)_n + d_{\lambda} ([\text{Fe}/\text{H}])_n + \text{noise}$ $\theta_{\lambda} = (a_{\lambda}, b_{\lambda}, c_{\lambda}, d_{\lambda})$

(i) *Test step:* with the survey stars

 $f_{m\lambda} = a_{\lambda} + b_{\lambda} (\text{Teff})_m + c_{\lambda} (\log g)_m + d_{\lambda} ([Fe/H])_m + \text{noise}_{\lambda}$

Unfortunately, this is too simple

We also need products of the labels

We also need products of the labels

 $T_{\rm eff}$ $\log g$ $\eta \left(\begin{bmatrix} T_{\text{eff}} \\ \log g \\ [X/\text{Fe}] \end{bmatrix} \right) = \begin{vmatrix} I^{T_{eff}} \\ (T_{\text{eff}})^2 \\ (\log g)^2 \\ ([X/\text{Fe}])^2 \end{vmatrix}$ $[X/\mathrm{Fe}]$ $(T_{\text{eff}})(\log g)$ $(T_{\text{eff}})([X/\text{Fe}])$ $(\log g)([X/\text{Fe}])$

We also need products of the labels $T_{\rm eff}$ $\log g$ [X/Fe] $\eta \left(\begin{array}{c|c} T_{\text{eff}} \\ \log g \\ [X/\text{Fe}] \end{array} \right) = \begin{array}{c} [X/\text{Fe}] \\ (T_{\text{eff}})^2 \\ (\log g)^2 \end{array}$ $([X/Fe])^2$ $(T_{\rm eff})(\log g)$ Pivot the labels: $(T_{\rm eff})([X/{\rm Fe}])$ $(\log g)([X/{\rm Fe}])$ $T_{\rm eff}' = \frac{T_{\rm eff} - T_{\rm eff}}{\operatorname{std}(T_{\rm eff})}$

$$\ell_n = \begin{bmatrix} (T_{\text{eff}})_n \\ (\log g)_n \\ \vdots \\ ([X/\text{Fe}])_n \end{bmatrix}$$

$$\ell_n = \begin{bmatrix} (T_{\text{eff}})_n \\ (\log g)_n \\ \vdots \\ ([X/\text{Fe}])_n \end{bmatrix} \theta_\lambda = \begin{bmatrix} a_\lambda \\ b_\lambda \\ c_\lambda \\ \vdots \end{bmatrix}$$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error}$$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

 $F_{n\lambda} = \theta_0 \qquad (\text{constant term}) \\ + \theta_{T_{\text{eff}}} T_{\text{eff}} + \dots + \theta_{X_N} [X_N/\text{Fe}] \qquad (\text{linear terms}) \\ + \theta_{T_{\text{eff}}^2} T_{\text{eff}}^2 + \dots + \theta_{X_N^2} ([X_N/\text{Fe}])^2 \qquad (\text{squared terms}) \\ + \theta_{T_{\text{eff}} \log(g)} T_{\text{eff}} \log(g) + \dots \\ + \theta_{X_N X_{N-1}} [X_N/\text{Fe}] [X_{N-1}/\text{Fe}] \qquad (\text{cross-terms})$

 $+ \operatorname{error}$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

 $F_{n\lambda} = \theta_0 \qquad (\text{constant term}) \\ + \theta_{T_{\text{eff}}} T_{\text{eff}} + \dots + \theta_{X_N} [X_N/\text{Fe}] \qquad (\text{linear terms}) \\ + \theta_{T_{\text{eff}}^2} T_{\text{eff}}^2 + \dots + \theta_{X_N^2} ([X_N/\text{Fe}])^2 \qquad (\text{squared terms}) \\ + \theta_{T_{\text{eff}} \log(g)} T_{\text{eff}} \log(g) + \dots \\ + \theta_{X_N X_{N-1}} [X_N/\text{Fe}] [X_{N-1}/\text{Fe}] \qquad (\text{cross-terms})$

 $+ \operatorname{error}$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$ $F_{n\lambda} | \boldsymbol{\ell}_n, \boldsymbol{\theta}_{\lambda}, s_{\lambda} \sim \mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n) \cdot \boldsymbol{\theta}_{\lambda}, \sigma_{n\lambda}^2 + s_{\lambda}^2)$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$ $F_{n\lambda} | \boldsymbol{\ell}_n, \boldsymbol{\theta}_{\lambda}, s_{\lambda} \sim \mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n) \cdot \boldsymbol{\theta}_{\lambda}, \sigma_{n\lambda}^2 + s_{\lambda}^2)$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

$$\ell_{n} = \begin{bmatrix} (T_{\text{eff}})_{n} \\ (\log g)_{n} \\ \vdots \\ ([X/\text{Fe}])_{n} \end{bmatrix} \theta_{\lambda} = \begin{bmatrix} a_{\lambda} \\ b_{\lambda} \\ c_{\lambda} \\ \vdots \end{bmatrix} \quad F_{n\lambda} = g(\ell_{n}; \theta_{\lambda}) + \text{error} \\ = \theta_{\lambda} \cdot \eta(\ell_{n}) + \text{error}$$

Get specific about "error"

 $(\text{error})^2 = (\text{measurement error})^2 + (\text{unmodelled effects})^2$

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

 $F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

The model is *linear with gaussian error* in theta! (for fixed s, ell)

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

The model is *linear with gaussian error* in theta! (for fixed s, ell)

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

If you want, apply priors (at either step), or regularize

The model is *linear with gaussian error* in theta! (for fixed s, ell)

$$F_{n\lambda}|\boldsymbol{\ell}_n,\boldsymbol{\theta}_\lambda,s_\lambda\sim\mathcal{N}(\boldsymbol{\eta}(\boldsymbol{\ell}_n)\cdot\boldsymbol{\theta}_\lambda,\sigma_{n\lambda}^2+s_\lambda^2)$$

If you want, apply priors (at either step), or regularize

The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses

Andrew R. Casey¹, David W. Hogg^{2,3,4,5}, Melissa Ness⁵, Hans-Walter Rix⁵, Anna Y. Q. Ho⁶, and Gerry Gilmore¹

The Cannon in Action

Training set: 540 open and globular cluster stars, labels from ASPCAP (Teff, log g, [Fe/H])

Test set:

120,000 stars from APOGEE

The Cannon in Action

Training set: 540 open and globular cluster stars, labels from ASPCAP (Teff, log g, [Fe/H])

Test set:

120,000 stars from APOGEE

Cross-Validation

rms is the order of the ASPCAP errors — first indicator of high precision using this approach

APOGEE Results

Labels for 120,000 stars - 540 reference stars with high fidelity labels

APOGEE Results

Labels for 120,000 stars - 540 reference stars with high fidelity labels

The model matches the data (3 labels!)

uses full spectrum & error-weighted information in each pixel match becomes even better with abundance labels (see next example)

Where the information resides

$$F_{n\lambda} = \theta_{\lambda} \cdot \eta(\ell_n) + \text{error}$$

this line is where spectroscopists expect logg sensitivity from stellar physics - The Cannon learns this from the data ensemble (data-driven)

Where the information resides

Applications...

Precision abundances

Applications...

Precision abundances

Advantages: The Cannon delivers 2-3 times smaller

Individual abundances

Add more labels to The Cannon - [X/Fe]

Individual abundances

Add more labels to The Cannon - [X/Fe]

Individual abundances

Add more labels to The Cannon - [X/Fe]

APOGEE DR14 data release has catalogue using The Cannon

Carefully assessed precision (Ness et al., 2018)

Carefully assessed precision (Ness et al., 2018)

Carefully assessed precision (Ness et al., 2018)

Carefully assessed precision (Ness et al., 2018)

with higher precision, more discriminating power in measurements

Galah model versus data - 23 elements

Applications...

Low-resolution spectra

Individual abundances from LAMOST

Wheeler & Ness (in prep) - catalogue of 4 million stars with 7 abundances

You don't always need nice lines

Opportunity - do this for any low resolution spectra (i.e. SLOAN)

Opportunity - do this for any low resolution spectra (i.e. SLOAN)

Can learn a lot from many low-precision measurements

Applications to Galactic archeology...

Empirical Spectroscopic ages

How are ages typically measured? giants: asteroseismology: Kepler, CoRoT = mass giant masses → giant ages [Fe/H] = +0.3[Fe/H] = -0.110 [Fe/H] = -0.54 [Fe/H] = -0.9Age (Gyr) log age LogL/L_o 9.2 subgiants 9.4 9.6 1.5 1.0 2.59.B Mass (M_O) proxy for age wood et al., 10.0 13.5 12.2 0 -10.2 10.9 0.3 9.6 8.3 Age [Gyr] 0.2 7.0 [a/Fe] 4.2 3.6 3.8 5.7 0.1 4.4 Log Te 3.1 1.8 -0.0 0.5 ---9 -1.2 -0.8 -0.4 0.2 0.6 0.0 0.4 [Fe/H]

Origin of mass information in the red giants

mass-dependent dredge up changes surface C&N abundance

Origin of mass information in the red giants

mass-dependent dredge up changes surface C&N abundance

regime change: from stars in the solar neighbourhood....

regime change: from stars in the solar neighbourhood....

6kpc

regime change: from stars in the solar neighbourhood....

6kpc

Ages: formation history of disk

150,000 stars from APOGEE DR14

Ages: formation history of disk

Learning Carbon & Nitrogen from LAMOST spectra

Ho et al., 2016b

 $C \& N \longrightarrow ages (Martig et al., 2016)$

Learning Carbon & Nitrogen from LAMOST spectra

Low resolution spectra is [X/Fe] information rich

Ho et al., 2016b

 $C \& N \longrightarrow ages (Martig et al., 2016)$

APOGEE AGES ON SKY

75,000 APOGEE stars

Ho et al., 2016b

APOGEE + LAMOST AGES

All the data now is just a warm up for the 2020's

