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• Motivate data-driven approach to spectroscopy
• The Cannon - how it works
• Applications

• Precision abundances
• Low-res spectra
• Stellar ages
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Data Analysis principles

 3

• respect and understand your data (plot your spectra and 
look at it - a lot!) 
• explore systematics in your data (understand the 

instrument!)
• examine and understand correlations between 

measurements,
• understand your errors
• making diagnostic plots is critical - question everything

• start with simple, interpretable approaches and build in 
complexity as needed
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Measuring stellar parameters 

with physics

1. Take model atmospheres from Castelli/Kurucz model 
atmospheres

2. Add a linelist from atomic and molecular library
3. MOOG (Sneden 1983) to create library of synthetic spectra.
4. Program to determine best fitting spectra in Teff, logg, [Fe/H], 

[𝛂/Fe]

5. Calibrate: modify log gf values the Sun/Arcturus, compare 
results to literature and “benchmarks”, fit out trends
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Stellar parameters measured
template
model
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• Multitude of surveys at different R, λ
• Independent pipelines for parameters

Bigger picture
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APOGEE (150K stars, R = 22,500, 15000-17000A)

• Multitude of surveys at different R, λ
• Independent pipelines for parameters

Bigger picture
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APOGEE-2 (300K stars, R = 22,5000, 15000-17000A)

Bigger picture
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GALAH (106) (R=28,000, 4710-7900A)

Bigger picture
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 Gaia-ESO (100K stars, R > 20,000, 5800A/8700A)

Bigger picture
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The problem:

[α/H] (Gaia-ESO)[α
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Different surveys have different scales for Teff, 
logg, [Fe/H], [X/Fe]
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The solution

• astroseismology 
• clusters
• high SNR, well studied 

benchmarks, (e.g Jofre+ 
2014)

Sub-set of reference objects: stellar parameters, abundances 
(labels) known with high(er) fidelity.
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The solution

• astroseismology 
• clusters
• high SNR, well studied 

benchmarks, (e.g Jofre+ 
2014)

Sub-set of reference objects: stellar parameters, abundances 
(labels) known with high(er) fidelity.

use these labels directly: data-driven model
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A very simple empirical model 
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proof of concept: an index made (measuring EW of 5 features) using 1% of the 
spectrum can use open and globular clusters to calibrate this index to be a 

precise [Fe/H] measure
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5 x Features (30 Angstroms of spectra) metallicity sensitive features 
(log g, Teff insensitive) 

(Ness et al., 2014)
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The Cannon

data-driven approach to measuring stellar parameters & 
abundances (labels) for stars in large surveys from the 

spectra directly
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The Cannon

data-driven approach to measuring stellar parameters & 
abundances (labels) for stars in large surveys from the 

spectra directly

http://arxiv.org/pdf/1501.07604v2.pdf
M. Ness, David W. Hogg, H.W. Rix, Anna Ho, & G. Zasowski
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Annie Jump Cannon
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The Basic Idea
Relies on a subset of reference stars in 
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The Basic Idea
Relies on a subset of reference stars in 
the survey, with known labels (Teff, logg, 

[Fe/H].)… 

That model is then used to infer the stellar labels for the 
remaining stars in the survey: Test

Uses reference objects (n) with known labels (    ) to build a model: Training

(i) stars with the same labels have the 
same spectra

(ii) flux varies smoothly with labels

Teff, logg, [Fe/H]  
[X/Fe] measurement error +

Inaccuracy of model

Spectral model params
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How about a linear model?
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(i) Training step: with the known labels:  Teff, logg, [Fe/H]

 θλ = (aλ,bλ,cλ,dλ) 
 noiseλ      

How about a linear model?

!18



(i) Training step: with the known labels:  Teff, logg, [Fe/H]

 θλ = (aλ,bλ,cλ,dλ) 
 noiseλ      

(i) Test step: with the survey stars

How about a linear model?

!18



(i) Training step: with the known labels:  Teff, logg, [Fe/H]

 θλ = (aλ,bλ,cλ,dλ) 
 noiseλ      
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(i) Training step: with the known labels:  Teff, logg, [Fe/H]

 θλ = (aλ,bλ,cλ,dλ) 
 noiseλ      

(i) Test step: with the survey stars

noiseλcλaλ bλ dλ

How about a linear model?

Unfortunately, this is too simple
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We also need products of the labels
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Pivot the labels:
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The Cannon in Action

Training set: 540 open 
and globular cluster stars, 
labels from ASPCAP (Teff, 
log g, [Fe/H])

Test set: 
120,000 stars from 
APOGEE
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The Cannon in Action
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Training set: 540 open 
and globular cluster stars, 
labels from ASPCAP (Teff, 
log g, [Fe/H])

Test set: 
120,000 stars from 
APOGEE
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Cross-Validation

rms: Teff < 63K    

rms: log g < 0.16    

rms: [FeH] < 0.06 

rms is the order of the 
ASPCAP errors — first 

indicator of high precision 
using this approach
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APOGEE Results

only 1 cluster
with main 
sequence
stars amongst
the reference
objects

no isochrone
priors

very fast!

Labels for 120,000 stars - 540 reference stars with high fidelity labels
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The model matches the 

data (3 labels!)

Ness+ 2015

uses full spectrum & error-weighted information in each pixel
match becomes even better with abundance labels (see next example)
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Where the information resides

zeroth coefficient

label coefficients
𝚹logg

this line is where spectroscopists expect logg 
sensitivity from stellar physics - The Cannon 

learns this from the data ensemble (data-driven)
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zeroth  
coefficient

label  
coefficients

θTeff, θlogg, θ[Fe/H]

Where the information resides
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Implementations
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github.com/ajwheeler/TheCannon.jl

github.com/andycasey/AnniesLasso

(minimalmist)
(maximalist)



Precision 

abundances

Applications…
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Precision 

abundances

Applications…

Advantages: The Cannon delivers 2-3 times smaller 
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The Cannon delivers 2-3 times 

smaller errors

using multiple 
observations 

to assess precision

!30



The Cannon delivers 2-3 times 

smaller errors

using multiple 
observations 

to assess precision

!30



The Cannon delivers 2-3 times 

smaller errors

using multiple 
observations 

to assess precision

!30



The Cannon delivers 2-3 times 

smaller errors

using multiple 
observations 

to assess precision

!30



The Cannon delivers 2-3 times 

smaller errors

using multiple 
observations 

to assess precision

!30



Individual abundances

Add more labels to The Cannon - [X/Fe]

!31



Individual abundances
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Individual abundances

Add more labels to The Cannon - [X/Fe]

APOGEE DR14 data release has catalogue using The Cannon
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Median precision of 0.03 dex for 

20 elements 

Carefully assessed precision (Ness et al., 2018)
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Median precision of 0.03 dex for 

20 elements 

Carefully assessed precision (Ness et al., 2018)

old

The Cannon

with higher precision, more discriminating power in measurements
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Galah
Sven Buder
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Galah
350,000 stars (R=30,000) 23 element abundances inc. Ti, Si, Mg, O, Li, Ba, Y

Sven Buder
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Low-resolution 

spectra

Applications…
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Individual abundances from LAMOST

[Li/Fe]

[Li/Fe]

Survey A Survey B labels from A (GALAH)
spectra from B (LAMOST)

Wheeler & Ness (in prep) - catalogue of 4 million stars with 7 abundances 
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You don’t always need nice lines

Ting+ 2018
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Cross-validation



Opportunity - do this for any low resolution 

spectra (i.e. SLOAN)
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Opportunity - do this for any low resolution 

spectra (i.e. SLOAN)

Can learn a lot from many 
low-precision measurements
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Empirical 

Spectroscopic  ages

Applications to  

Galactic archeology…
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How are ages typically measured?  
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Haywood et al., 

giant masses       giant ages

How are ages typically measured?  

(1)

(2)

giants: asteroseismology: Kepler, CoRoT = mass

proxy for age

�41



Origin of mass information in the red 

giants 

mass-dependent dredge up changes surface C&N abundance

Martig+2016

2000 stars observed
by Kepler
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Origin of mass information in the red 

giants 

mass-dependent dredge up changes surface C&N abundance

Martig+2016

2000 stars observed
by Kepler

Regime change 
 small local samples to 
spectroscopic stellar 

ages throughout the 
disk
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We can now measure ages for giants spectroscopically

regime change: 
from stars in the solar 
neighbourhood….
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Ages: formation history of disk 

150,000 stars from APOGEE DR14

(also see Martig et al., 2016, Ness et al., 2016, Das & Sanders et al., 2018) 
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Ages: formation history of disk 

150,000 stars from APOGEE DR14

(also see Martig et al., 2016, Ness et al., 2016, Das & Sanders et al., 2018) 

• inside-out, upside-down formation and radial migration
• (e.g. Bird+ 2013, Freudenburg+ 2017, Ness 2018, Bovy 2015) 
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Ho et al., 2016b

Learning Carbon & Nitrogen from 

LAMOST spectra

C & N                  ages (Martig et al., 2016) 
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Ho et al., 2016b

Learning Carbon & Nitrogen from 

LAMOST spectra
Low resolution spectra is  [X/Fe] information rich

C & N                  ages (Martig et al., 2016) 
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APOGEE AGES ON SKY
75,000 APOGEE stars

Ho et al., 2016b
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APOGEE + LAMOST AGES

Ho et al., 2016b

75,000 APOGEE stars 
+  

230,000 LAMOST stars
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All the data now is just a 

warm up for the 2020’s

AS4	Milky	Way	Mapper	
Targe1ng:	

–  all	stars	in	the	MW	with	H<11,	G-H>3.5	
•  >10.000	stars	on	the	``far”	side	of	the	Galaxy	

–  “all”	massive	or	young	stars	H<11	
–  1-20	epochs	

High-res.,	near-IR	spectroscopy	for	5M	stars	

+ Gaia RVS spectra,  

higher precision motions
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