Data analysis Milne-Eddington inversion codes

Luis Bellot Rubio Instituto de Astrofísica de Andalucía (IAA-CSIC), Spain

Outline

- What are inversions?
- How do they work?
- Milne-Eddington inversions
- Available codes
- Tips and tricks
- P-MILOS
 - General description
 - Input/output files
- Example

What is an inversion?

- In a broad sense, any inference of the physical conditions of the solar atmosphere based on the interpretation of observed Stokes profiles
 - Weak-field approximation, center-of-gravity method...
 - Forward modeling
 - PCA, artificial neural networks
 - Least-squares fitting
- What we want: vector magnetic field, gas velocity, temperature
- What to expect: a model atmosphere capable of reproducing the observations.... nothing else!

Radiative transfer equation

The Stokes parameters obey the RTE

$$\frac{d}{d\tau} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \eta_{\mathsf{I}} & \eta_{\mathsf{Q}} & \eta_{\mathsf{U}} & \eta_{\mathsf{V}} \\ \eta_{\mathsf{Q}} & \eta_{\mathsf{I}} & \rho_{\mathsf{V}} & -\rho_{\mathsf{U}} \\ \eta_{\mathsf{U}} & -\rho_{\mathsf{V}} & \eta_{\mathsf{I}} & \rho_{\mathsf{Q}} \\ \eta_{\mathsf{V}} & \rho_{\mathsf{U}} & -\rho_{\mathsf{Q}} & \eta_{\mathsf{I}} \end{pmatrix} \begin{pmatrix} I - S \\ Q \\ U \\ V \end{pmatrix} \tag{Unno 1956; Rachkovsky 1962}$$

- $\eta_{I,Q,U,V}$ and $\rho_{Q,U,V}$ depend on $\mathbf{a} \equiv (B, \gamma, \chi, v_{LOS}, T, P_e, v_{mic})$
- This means that
 - Four Stokes parameters needed to understand just one of them
 - Proper interpretations of the Stokes vector require a good knowledge of the atmosphere (a)

Least-square inversions

- The complete line transfer problem has to be solved
- Self-consistent inferences → least-square inversions

Advantages

- No simplifying assumptions
- Full Stokes vector fitted
- Complex model atmospheres
- All atmospheric parameters inferred at the same time

How do they work?

• Inversion driven by χ^2 -minimization

$$\chi^2(\mathbf{a}) = \frac{1}{N_{\text{free}}} \sum_{j=1}^4 \sum_{i=1}^{N_{\lambda}} \frac{w_{ij}^2}{\sigma_j^2} \left[I_j^{\text{obs}}(\lambda_i) - I_j^{\text{syn}}(\lambda_i, \mathbf{a}) \right]^2$$

2nd order Levenberg-Marquardt algorithm

$$\nabla \chi^2(\mathbf{a}) + \mathbf{A}(\chi^2) \cdot \delta \mathbf{a} = 0$$

- Matrix **A** needs to be inverted to find δa . Two problems:
 - A has large dimension
 - A is quasi-singular
- Two solutions:
 - Use fewer free parameters or fewer nodes
 - Modified SVD method (Ruiz Cobo & del Toro Iniesta 1992)

Inversions based on ME atmospheres

- ME atmosphere
 - Source function is linear with optical depth
 - Absorption matrix does not vary with optical depth
- Nine free parameters (plus v_{mac} and stray light)
- Analytical Stokes profiles
- Very fast inversion
- Smooth maps of physical quantities
- Results are reasonably accurate and easy to interpret

ME inversions of high-spatial resolution profiles

- Profiles reasonably well fitted
- ME results are some kind of "average" of physical parameters along the LOS

ME inversions of high-spatial resolution profiles

- Atmospheric parameters from MHD simulation at $\log \tau = -1$
- Maps of inferred B, γ and v_{LOS} very similar to real ones!

Orozco Suárez et al. 2010, AA, 518, A2

ME inversions of high-spatial resolution profiles

Orozco Suárez et al. 2010, AA, 518, A2

Luis Bellot Rubio

Inversions based on ME atmospheres

- ME atmosphere:
 - Source function is linear with optical depth
 - Absorption matrix does not vary with optical depth
- Nine free parameters
- Analytical Stokes profiles
- Very fast inversion
- Smooth maps of physical quantities
- Results are easy to interpret
- Simplistic treatment of line formation
- No thermal information. No height variations
- Cannot account for asymmetric Stokes profiles

Available Stokes inversion codes

Array of ME, LTE and NLTE inversion codes

- Serve different purposes: fast analyses vs accurate NLTE calculations
- Most of them capable of multi-line inversions

ME codes

HELIX

(Lagg et al. 2004)

MILOS

(Orozco Suárez et al. 2007)

VFISV

(Borrero et al. 2011)

P-MILOS

(Cabrera & Bellot Rubio 2020)

LTE codes

SIR

(Ruiz Cobo & del Toro Iniesta 1992)

SPINOR

(Frutiger et al. 2000)

2D SPINOR

(van Noort 2012)

SIR-parallel

(Thonhofer, Bellot Rubio, et al 2014)

NLTE codes

NICOLE

(Socas-Navarro et al. 2015)

STIC

(de la Cruz Rodríguez et al 2018)

DESIRE

(Ruiz Cobo et al., 2022)

Tips and tricks

- First of all, look at the profiles
- Try a ME-like inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?

ME inversion of QS Hinode/SP data

ME inversion of sunspot Hinode/SP data

Tips and tricks

- First of all, look at the profiles
- Try a ME-like inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?
- Identify
 - Pixels with bad fits and/or large asymmetries
 - Regions where interesting physical processes occur!
- Run more complex inversions on these pixels
 - Which model are you going to use?1C model, 2C model, flux tube model, uncombed model?

Tips and tricks

- First of all, look at the profiles
- Try a ME-like inversion, it usually works
 - If the V profiles are very asymmetric, fit only I, Q, and U
- Examine the fits: are they reasonably good?
- Identify
 - Pixels with bad fits and/or large asymmetries
 - Regions where interesting physical processes occur
- Run more complex inversions on these pixels
 - Which model are you going to use?1C model, 2C model, flux tube model, uncombed model?
 - Use results from ME-like inversion as initialization
- Ask yourself if the retrieved model atmosphere makes sense!!
- Experts are always around: ask them for advice!

P-MILOS inversion code

P-MILOS is a parallel ME inversion code (Cabrera & Bellot Rubio 2021)

- Highly optimized for speed
- Written in C
- Parallelized using MPI
- I/O based on FITS data cubes
- Control and auxiliary files have SIR-like format
- Accepts any photospheric spectral line (but only one!)
- 1-component ME atmospheres + stray light factor
- Convolution with instrumental PSF and macroturbulence

Installing P-MILOS

Download code and manual from

https://github.com/IAA-InvCodes/P-MILOS

```
Compile with cd [path]/code make
```

Copy binaries pmilos.x and milos.x to /usr/local/bin or make soft links

```
cd /usr/local/bin
sudo ln –s [path]/code/pmilos.x
sudo ln –s [path]/code/milos.x
```

P-MILOS is controlled by a control file: [].mtrol

Number of cycles:

- 0: Synthesis mode
- >0: Maximum number of iterations
- -1: Use classical estimates (center of gravity method, LOS velocity by FFT method)

P-MILOS is controlled by a control file: [].mtrol

Stokes data cube: [].fits Stokes profile file: [].per

Line $\Delta\lambda$ index [mA] I/I_{qs} Q/I_{qs} U/I_{qs} V/I_{qs}

read_profile.pro write_profile.pro

P-MILOS is controlled by a control file: [].mtrol

Stray light file

Same format as Stokes profile file. Contains the stray light contamination, assumed to be unpolarized (so that Q=U=V=0)

Stray-light considerations

- Stray-light in 1C inversions:
 - $\mid_{obs} = (1-\alpha) \mid_{1} + \alpha \mid_{stray}$
 - Accounts for both stray light and/or magnetic filling factor
- Global vs local stray-light profile
 - Classical treatment: global stray-light profile (average over FOV)
 - Orozco Suárez et al. (2007): local stray-light profile accounts for telescope diffraction
- Deconvolution of instrumental PSF (only space-based obs!)

P-MILOS is controlled by a control file: [].mtrol

```
pmilos.mtrol
Number of cycles
                                                ! 0=synth,n=max iter,-1=classic
Observed profiles
                          (*):data/2014.09.28_09:18:00_xtalk_t
Stray light file
                                                ! (none=no stray light)
PSF file
                             :CRISP 6173 1mA.psf
                                                   !file or Gaussian FWHM in mA
Wavelength grid file
                          (*):wavelength.grid
Atomic parameters file
                          (*):LINES
Abundance file
                                                  not used with ME models
                          (*):guess.mod
Initial guess model 1
Initial guess model 2
                                                  not implemented
Weight for Stokes I
                                                ! (DEFAULT=1; 0=not inverted)
Weight for Stokes Q
                                                ! (DEFAULT=1: 0=not inverted)
                             :1
Weight for Stokes U
                             :1
                                                ! (DEFAULT=1: 0=not inverted)
Weight for Stokes V
                                                ! (DEFAULT=1; 0=not inverted)
AUTOMATIC SELECT. OF NODES?
                                                ! not implemented
Nodes for S 0 1
                                                ! (0 or blank=no, 1=yes)
Nodes for S 1 1
                                                ! (0 or blank=no, 1=yes)
                             :1
Nodes for eta0 1
                                                ! (0 or blank=no, 1=yes)
Nodes for magnetic field 1
                                                ! (0 or blank=no, 1=yes)
Nodes for LOS velocity 1
                                                ! (0 or blank=no, 1=yes)
                                                ! (0 or blank=no, 1=yes)
Nodes for gamma 1
                             :1
                                                ! (0 or blank=no. 1=ves)
Nodes for phi 1
Nodes for lambda_doppler 1
                                                ! (0 or blank=no, 1=yes)
Nodes for damping 1
                                                ! (0 or blank=no, 1=yes)
Invert macroturbulence 1
                                                ! (0 or blank=no, 1=yes)
Nodes for S 0 2
                                                ! not used
Nodes for S_1 2
                                                ! not used
Nodes for eta0 2
                                                ! not used
Nodes for magnetic field 2
                                                ! not used
Nodes for LOS velocity 2
                                                ! not used
Nodes for gamma 2
                                                ! not used
Nodes for phi 2
                                                ! not used
Nodes for lambda_doppler 2
                                                ! not used
Nodes for damping 2
                                                ! not used
Invert macroturbulence 2?
                                                ! not used
Invert filling factor?
                                                ! not used
Invert stray light factor?
                                                ! (0 or blank=no, 1=yes)
mu=cos (theta)
                                                ! (DEFAULT mu=1, mu<0 => West)
Estimated S/N for I
                             :1000
                                                ! Not used
Continuum contrast
Initial diagonal element
                             :0.1
                                                ! (DEFAULT value: 1.e-1)
                                                ! (0, blank=direct conv;1=FFT)
Use FFT for convolutions
Diagonal element acceleration:1
                                                ! (0 or blank=no, 1=ves)
-:--- pmilos.mtrol All L1 Git-master (Fundamental)
```

PSF file: [].psf

Contains two columns

- Wavelength in mA with respect to center of the line
- 2. Spectral PSF of the instrument

Can also specify FWHM of Gaussian PSF (in mA)

P-MILOS is controlled by a control file: [].mtrol

Wavelength grid file: [].grid

Necessary in synthesis and inversion mode

Can also be given as a FITS file

P-MILOS is controlled by a control file: [].mtrol

Atomic parameter file

Line index Ion λ E χ log gf transition collisional parameters

Same format as SIR atomic file, but only central wavelength and transition are used for calculating the Zeeman pattern

P-MILOS is controlled by a control file: [].mtrol

Model file: [].mod

Only a 1C model atmosphere can be used at the moment

P-MILOS is controlled by a control file: [].mtrol

P-MILOS is controlled by a control file: [].mtrol

Number of nodes

- Indicates which model parameters are kept fixed or inverted
- 0 means parameter is kept fixed
- 1 means parameter is inverted

 Only 1C model atmospheres can be handled for the moment

P-MILOS is controlled by a control file: [].mtrol

Other inversion settings

- Signal-to-noise ratio
- Initial diagonal element for SVD algorithm
- Use direct convolution of FFT convolution
- Acceleration of convergence scheme

The inversion of data cubes is controlled by an init file: [].minit

File used to

- · Specifies control file name
- Allows cropping of FOV
- Allows masking pixels
- Define first and last datacubes
- Similar to init file in SIR-parallel

Example

- Inversion of data cube taken by CRISP instrument at Swedish 1-m Solar Telescope
 - Fe I 6173 spectral scan with 30 wavelengths
 - Field of view 894 x 883 pixels (789 000 pixels)
 - Convolution with CRISP PSF
 - 9 free parameters to be determined (no stray light, no macro)
 - Maximum number of iterations: 50
- Code run on 128-core AMD EPYC 7742 2.25 GHz server

Executing the inversion

Run the inversion on 128 cores

mpiexec -n 128 ../P-MILOS/pmilos.x ./pmilos.minit

Executing the inversion

Run the inversion on 128 cores

mpiexec -n 128 ../P-MILOS/pmilos.x ./pmilos.minit

Total inversion time: 4.31 s

 $183\ 155\ px/s = 1430\ px/s/core$

S₀+S₁

Magnetic field strength (Gauss)

Line of sight velocity (km/s)

P-MILOS inversions

- Useful to analyze large amounts of data
 - High-cadence time series of 2D spectropolarimetric measurements
 - E.g. CRISP data at SST
- Give average vector magnetic field and LOS velocity. Can be used for statistical purposes
- Rather insensitive to noise
- Very fast and robust, can be applied without supervision
- Allows to study temporal evolution!
- Pixels with bad fits easily identified through large χ^2 values
- More detailed analyses can be performed on these pixels
- Useful as initialization for more complex inversions

