

Coupling of the solar atmosphere by small-scale fields - Part II

Salvo Guglielmino - INAF Catania

International School of Space Science "The different spatio-temporal scales of the solar magnetism" 13 April 2022

Outline

Magnetic coupling

- 1. from large scale ... to small-scale features
- 2. current view of the solar atmospheric structure

Interactions

magnetic reconnection

Scientific cases

- 1. Case study: *Hinode* observations near pores
- 2. Coronal heating

Interactions in the IRIS era

- 1. UV bursts (UBs)
- 2. Case study: IRIS observations in a plage
- 3. Case study: penumbral brightenings

Conclusions

perspectives

Interactions in the IRIS era

UV bursts / IRIS bombs

Peter et al. (2014) Science, 346, 1255726

- ► A new phenomenon whose nature is debated
- e.g. Vissers et al. (2015); Rouppe van der Voort et al. (2017); ...; review Young et al. (2018)

UV bursts / IRIS bombs

Peter et al. (2014) Science, 346, 1255726

- Magnetic energy is converted into internal and kinetic energy by magnetic reconnection
 - heating and mass loading of coronal loops
 - small brightening events are visible in Si IV line
 - "pockets" of hot plasma transiently heated up to 10⁵ K

Kim et al. (2015) ApJ, 810, 38

Small-scale emergence and chromospheric/TR response

NST - IRIS - SDO

- Simultaneous observations of "hot explosions" in the cool atmosphere
- Emergence of positive flux triggers the explosion
- The Si IV emission profile shows a double-peaked shape with components at -40 km s⁻¹ and 80 km s⁻¹
- Only the low atmosphere appears to be involved

Emergence of magnetic bubbles up to the TR

Ortiz et al. (2016) ApJ, 825, 93

- Delay of ≈10 minutes between the emergence of the horizontal fields and the loop-like connection in the transition region
- Evidence of significant amounts of cool material above both EFRs
- The new magnetic field pushes the outer magnetic atmosphere upward, interacting – and eventually reconnecting – with previously emerged flux

13 April 2022

Toriumi et al. (2017) ApJ, 836, 63

IRIS - Hinode - SDO

Toriumi et al. (2017) ApJ, 836, 63

- EFR observed in AR NOAA 12401: bright points (BPs) identified in SOT Ca II images, some in an SOT/SP scan
- 7 BPs in the EFR center possess mixed-polarity magnetic backgrounds in the photosphere
 - IRIS UV spectra are strongly enhanced and red- or blueshifted, with tails reaching ±150 km s⁻¹: bi-directional jets?
 - Each brightening lasts for 10-15 minutes, leaving flare-like light curves
 - They show bald patches, i.e. U-shaped magnetic loops
- 10 BPs are found in unipolar regions at the EFR edges.
 - They are generally weaker in UV intensities and exhibit systematic redshifts with Doppler speeds up to 40 km s⁻¹
- Both types of BPs show signs of strong temperature increase in the low chromosphere: heating events due to reconnection

Salvo Guglielmino - INAF Catania

13 April 2022

Tian et al. (2018) ApJ, 854, 174

- SDO/HMI observed continuous emergence of small-scale magnetic bipoles with a rate of $\sim 10^{16}$ Mx s⁻¹
- Flux patches with the same polarity merge and form **pores**
- Interactions between different emerging magnetic fluxes and polarities lead to frequent occurrence of UV bursts at 1400 Å

Tian et al. (2018) ApJ, 854, 174

 The spectra of these UV bursts suggest heating of the local materials up to T ≈ 10⁴ K in the lower atmosphere by magnetic reconnection in magnetic dips

Relationship between EBs and UBs

- About 20% of the observed EBs identified in Hα reveal UV bursts (UBs) in IRIS
- UBs associated with the upper part of flame-like EBs
- Some UBs and EBs form at different heights during a common small-scale reconnection event
 - UBs represent the chromospheric and TR counterpart of EBs
 - UBs are accompanied by ejection of surges
- Vertical current sheet

Salvo Guglielmino - INAF Catania

Chen et al. (2019) ApJL, 875, L30 Ortiz et al. (2020) A&A, 633, A58

Relationship between EBs and UBs

Chen et al. (2019) ApJL, 875, L30 Ortiz et al. (2020) A&A, 633, A58

Magnetic topology in UV bursts ang jets

- A UV burst observed in the moat surrounding a sunspot
- UV spectra are extremely broadened, indicating ±200 km s⁻¹, with distinct zones of up- and downflows
- Magnetic field extrapolations show a fan-spine topology
 - A parasitic magnetic field polarity is underlying the UB
 - A 3D null point exists at about 500 km, evolving co-spatially with the UB
- The advection of the magnetic feature shears the field lines, triggering reconnection in the low chromosphere

Salvo Guglielmino - INAF Catania

Chitta et al. (2017) A&A, 605, A49

Magnetic topology in UV bursts and jets

- Analysis of the multi-temperature structure of a series of jets at limb
- Initiation of the jets at the top of a canopy-like double-chambered structure with cool and hot emission
- Agreement with 2D and 3D reconnection models

Salvo Guglielmino - INAF Catania

Joshi et al. (2020) A&A, 639, A22

IRIS observations: an EFR within a plage

ACTIVE REGION NOAA 12529 - APRIL 2016

Guglielmino et al. (2018), ApJ, 856, 127 Guglielmino et al. (2019), ApJ, 871, 82 Nóbrega-Siverio, Guglielmino & Sainz Dalda (2021), A&A, 655, A28

Dataset and context

- Giant AR NOAA 12529 crossed the central meridian on 13-14 April 2016
- An EFR emerged in the f positive polarity of the AR (solid box)
- *IRIS* acquired three data sets during the EFR evolution.
 - The one relevant to our study 0 consists of a sequence acquired between 23:34 UT on April 13 and 01:55 UT on April 14, with 6 large dense 64-step rasters and with simultaneous slit-jaw images (SJIs) in the 1400 and 2796 Å passbands
 - The scan sequence has a 0".33 step 0 size, a 31.5 s step cadence, and a 30 s exposure time
 - The raster cadence is about 33 min, with a FOV of 22" x 128" (dashed box)

Photosphere: SDO/HMI sequence

- The EFR emerged in a unipolar plage
- P⁺ became smaller and disappeared
 - The positive polarity pore, initially located at the center of the EFR subFOV, shrank and finally disappeared as flux from the negative polarity of the EFR approached it
 - Dark aligned features in the continuum were observed in the emergence zone and traced the B_h fields of the EFR
- New flux formed P⁻
 - The flux concentration formed by the accumulation of the negative polarity flux of the EFR forms a new pore

Response to flux emergence of the upper atmospheric layers

IRIS sequence shows UV brightenings and plasma ejections in the EFR site

Response to flux emergence of the upper atmospheric layers

Response to flux emergence in coronal layers

0 5 10 15 20 25 30

Response to flux emergence in coronal layers

- ALL SDO/AIA channels exhibit a counterpart of the event
- Contrasting trend between 1600/1700 Å and higher temperature filters, showing a bursty behavior
- Brightness enhancements were observed throughout the whole sequence
- The UV burst consists of repeated episodes lasting for hours

IRIS spectral features

IRIS spectral features

UV burst core

- blueshifts
- components with different velocity
- spectral features
 - "absence" of O IV line
 - Mg II triplet emission
 - inverted C I / O I ratio
 - detection of Fe XII line

Contact region

- plasma at rest
- strong Mg II triplet

Salvo Guglielmino - INAF Catania

Orange, blue, pink profiles: random positions over the UV burst Black profile: average over 6 quiet-Sun pixels

Detection of the coronal Fe XII 1349.4 Å line

- Spectrum around the Fe XII coronal line, obtained by summing the signal in the 3x5 pixels region around the UV burst core
- The black line represents the background

Salvo Guglielmino - INAF Catania

13 April 2022

Characterization of surges

- Considering the representative Mg II h&k line profiles of surges, we have examined their low- and midchromosphere:
 - using the k-means algorithm
 - performing inversions with the STiC code

Chromosphere

- T = 6 kKat $-6.0 \le \log_{10}(\tau) \le -3.2$
- $n_{\rm e} \sim 1.6 \times 10^{11} \, {\rm cm^{-3}}$ up to $10^{12} \, {\rm cm^{-3}}$
- v_{LOS} of a few km s⁻¹ at -6.0 $\leq \log 10(\tau) \leq -4.8$

Characterization of surges

Characterization of surges

- The transition region properties have been investigated by analyzing the far-UV spectra:
 - emission in weak lines
 - density diagnostics based on O IV 1399.8 / 1401.2 Å lines

Transition region

• $n_{\rm e} \sim 2.5 \times 10^{10} {\rm ~cm^{-3}}$ up to $10^{12} {\rm ~cm^{-3}}$

Eruption at late stages

- Just after the end of IRIS observations, a sudden intensity peak occurred
- SDO/AIA filtergrams show the formation of a circular ribbon, typically found in fan-spine configurations with parasitic polarities
- Eruptions were observed, being followed by catastrophic cooling

- Observations of a small-scale magnetic flux emergence event show a fundamental impact in the upper atmospheric layers
 - Cancellation of pre-existing flux with an EFR: P⁺ -> P⁻
 - Recurrent UV bursts, with counterparts in the corona
 - Surge/jet activity at chromospheric and coronal levels
 - Eruption and flaring during the late emergence phase

Penumbral brightenings linked to EFRs

ACTIVE REGION NOAA 12546 - MAY 2016

Murabito et al. (2020), ApJ, 890, 96

Previous observations

Bai et al. (2016) ApJ, 823, 60

Sub-arcsecond nanoflare events (10²² - 10²⁵ erg) with signatures from the chromosphere to corona

Magnetic topology

- An MMF appeared close to the penumbral boundary at the same location of one footpoint
- It seems to be associated with magnetic reconnection between EFR and pre-existing magnetic field

Salvo Guglielmino - INAF Catania

300 310 320 330 340 Solar X (arcsec)

Solar Y (arcsec)

Previous observations

- IRIS spectra: Si IV, C II and Mg II lines are enhanced and broadened up
 - no evidence for chromospheric evaporation
 - redshift in the
 Si IV 1402.77 Å line:
 downflow in the TR
- DEM analysis:
 6.6 ≤ log T [K] ≤ 7.2

Bai et al. (2016) ApJ, 823, 60

Our multiwavelength observations

- Homologous brightening events
- Two of these events correspond to B-class flares
- One footpoint is always embedded in the penumbra

SDO/HMI observations

- Interplay between EFRs and moving magnetic features (MMFs)
 - Two EFRs (3x10²⁰ Mx and 5x10¹⁹ Mx) emerged close to the penumbral fields, modifying their configuration
 - The interaction with some MMFs lead to partial cancellation events

IRIS observations

- C II and Si IV profiles enhanced by a factor of ≈10
- C II and Mg II h&k double-peaked profiles exhibited blue lobes stronger than the red lobes at the peak
- Emission in the Mg II 2798.8 triplet

XRT observations

- Same plasma behavior as in AIA 131
- Possible connection between opposite polarity patches of the diffuse field and MMF in E2
- The strongest coronal brightening is observed during E3

Reconnection scenario

- Two of the brightening events result from reconnection at different heights, activated by interaction of pre-existing fields and either EFR or MMFs
- Our observations could be explained with the model for microflares proposed by Kano et al. (2010)

Clear signatures of the chromospheric evaporation (profile asymmetries), missed in the observations by Bai et al. (2016), are revealed

Perspectives

Campfires on the Sun

- Revealed by SolO/EUI at 174 Å
- Tiny brightenings with a size of 400 km
- Connected to coronal heating ???

First observations from Solar Orbiter

Campfires on the Sun

Berghmans et al. (2021) A&A, 656, L4

- Small-scale brightening events visible in SolO/EUI
 HRI_{EUV} (17.4 nm) but not in HRI_{Lyα} (121.6 nm)
- Weaker and fuzzier in AIA 17.1 19.3 21.1 30.4 nm
- Emission measure: log T [K] ≈ 6.1

Relationship between campfires and Hi-C brightenings

- The 2nd flight of the Hi-C rocket revealed similar small-scale coronal events
 - seated at neutral lines
 - flux cancellation
 - chromospheric/TR origin
 - no cooling sequence
- Morphological differences: three types of brightenings
 - ı. dot-like
 - II. loop-like
 - III. surge/jet-like

Tiwari et al. (2019) ApJ, 887, 56

Campfires on the Sun: first analyses

- Investigation of the magnetic origin of campfires in the quiet solar corona
 - campfires are rooted at the edges of photospheric magnetic network lanes
 - most of them reside above the neutral line between majority-polarity magnetic flux patch and a merging minority-polarity flux patch, as a result of flux cancelation

Panesar et al. (2021) ApJL, 921, L20 Chen et al. (2021) A&A, 656, L7

- 3D MHD models support the reconnection scenario
 - loop-like features
 - height: 2 5 Mm
 - temperature > 1 MK
 - untwisting of a flux rope

Campfires on the Sun: magnetic driver

Kahil et al. (2022) A&A, in press

- First SolO/PHI observations cospatial to SolO/EUI
 - ≈70% campfires are confined between bipolar magnetic features, exhibiting signatures of flux cancelation
 - magnetic reconnection triggered at the footpoints
 - HOWEVER, about 25% campfires are not associated to such magnetic activity in the photosphere, which implies that other heating mechanisms power these energy release events in EUV

Conclusions

- Flux emergence continuously reshapes the solar atmosphere and has a fundamental impact in the upper layers
- The interplay between emerging fields and other flux systems appears as the trigger for energy release phenomena through small-scale reconnection episodes
- The timing of the phenomena suggests a bottom-top process, often beginning in the lower atmosphere and later, but not always, involving the overlying layers
- MEMENTO: solar resistivity values are far from those required in simulations to trigger magnetic reconnection !!!
- A synergetic approach, available in the upcoming era of Solar Orbiter and DKIST/EST observations, is expected to give new insights for a complete picture of flux emergence from the photosphere to the corona