NUMERICAL MODELING OF RADIATION BELT DYNAMICS

Alexander Drozdov

University of California, Los Angeles, CA, USA

Acknowledgments

RBSP ECT Team, NASA Omniweb, NCAR Yellowstone, NASA CCMC, GFZ

D. Konrashov, Y. Shprits, Y. Zheng, L. Rastaetter, M. Usanova, G. Reeves, and many others

Outline

- 1. Introduction
- 2. Fokker-Planck equation
- 3. From 1D simulation to 3D
- 4. How can you run diffusion code? (NASA CCMC)
- 5. 3D simulation on a single grid
- 6. Practical results
- 7.4D simulations

INTRODUCTION

Radiation Belts

Image Credit: APL, NASA

Adiabatic invariants of the particle motion

- The gyration around field lines
- The magnetic momentum invariant

- The bounce motion between magnetic mirror points
- The longitudinal invariant

- The periodic azimuthal drift in the non-uniform geomagnetic field
- The flux invariant

Radiation belts dynamics

Baker et al, 2013, Science

Waves in magnetosphere

Phase Space Density

Flux vs PSD (Idealized geomagnetic storm)

Flux. Fixed Energy (E) and pitch angle (α)

Shprits et al., 2009

FOKKER-PLANCK EQUATION

	Diffusion codes that solve Fokker-Planck equation
•	Salammbo, [Beutier and Boscher, 1995]
	 Ine first radiation belt code capable of solving the 3D Fokker-Planck equation Varotsou et al. [2005] and Horne et al. [2006] added pitch-angle and energy scattering by equatorial chorus waves
•	Pitch Angle and Energy Diffusion of lons and Electrons (PADIE) [Glauert and Horne, 2005] and developed to BAS-RBM Radiation Belts Code [Glauert et al., 2014].
•	- Includes Inixed termis. Immenued atmoschenen internations (DANA) modal [landamon and Minochi 2005]
•	improved atmosphere interactions (KAIVI) model, [Jordanova and Miyosni, 2005] — Convective model with radial diffusion due to the magnetic component of the ULF waves and parameterized losses
•	Multidimensional quasi-linear diffusion code, [Albert, 2004], [Albert and Young, 2005]
•	Radiation Belt Environment (RBE) model [Fok et al. 2008]
	 Magnetospheric differential convection associated with changes in the electric field, electron loss, and acceleration due to wave-particle resonant interaction with equatorial chorus waves in the Tsyganenko and Sitnov [2005] magnetic field model and Weimer [2001] electric field model
•	Versatile Electron Radiation Belt (VERB) code [Shprits et al, 2008, Subbotin and Shprits, 2009]
	 VERB code is a useful tool for space weather forecasting and nowcasting of the relativistic electron environment. The computational efficiency of the code makes it also appropriate for future use with data assimilation tools to specify the state of the radiation environment and correct imperfect models
•	Dynamic Radiation Environment Assimilation Model: DREAM [Reeves et al, 2012]
	 DREAM3D code [Tu et al., 2013]
	 includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus
•	Storm-time evolution of electron radiation belt (STEERB) [Su et al., 2010]
	 Includes coulomb collisions, radial diffusion due to magnetic and electric field perturbations, and local pitch angle, energy, and cross-pitch angle-energy diffusion due to various wave-particle interactions.
•	Salammbo 3-D, [Varotsou et al, 2008]
	 3D diffusion using VERB approach
•	VERB-4D, Shprits et al. [2014]
•	 Convection, loss to the asymmetric magnetopause, adiabatic effects, and can use a non-dipole magnetic field. Commissariat à l'Energie Atomique CEVA code, [Ripoll et al., 2020]

Fokker-Planck Equation

 au_{param} is an imitation of local loss processed due to wave-particle interaction with hiss, chorus, etc.

Boundary Conditions

- The absence of electrons at the atmospheric level at L = 1 *
 - PSD = const*b(t), for L* upper boundary due to observed variation
- PSD = const, for low-energy electrons to represent a balance between a convective source and losses.
 - Energy The absence of very high-energy electrons
- Zero gradient at 90° accounts for the flat pitch angle distribution observed at 90°.

2

 PSD = 0 at 0° simulates the loss at the atmospheric level and surface.

$$\begin{aligned} \frac{\partial f}{\partial t} &= L^{*2} \left. \frac{\partial}{\partial L^*} \right|_{\mu,J} \frac{1}{L^{*2}} \mathsf{D}_{L^*L^*} \left. \frac{\partial f}{\partial L^*} \right|_{\mu,J} + \frac{1}{p^2} \frac{\partial}{\partial p} \left|_{\alpha_{0,L^*}} p^2 \left(D_{pp} \left. \frac{\partial}{\partial p} \right|_{\alpha_{0,L^*}} f + D_{p\alpha_0} \left. \frac{\partial}{\partial \alpha_0} \right|_{p,L^*} f \right) \\ &+ \frac{1}{T(\alpha_0) \sin(2\alpha_0)} \left. \frac{\partial}{\partial \alpha_0} \right|_{p,L^*} T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0\alpha_0} \left. \frac{\partial}{\partial \alpha_0} \right|_{p,L^*} f + D_{\alpha_0p} \left. \frac{\partial}{\partial p} \right|_{\alpha_{0,L^*}} f \right) - \frac{f}{\tau} \end{aligned}$$

⁶⁰ ⁶⁰ deg ⁷ 20 to deg

Energy, Mey

Diffusion Coefficients in Fokker-Plank Equation

- Radial diffusion
- Local pitch-angle scattering
- Local energy diffusion
- Mixed diffusion
- Losses

- Radial diffusion coefficients
- Brautigam and Albert, 2000
- Ozeke et al. 2014
- etc
- Local diffusion coefficients
- Chorus (day-side, night-side)
- Hiss,
- EMIC, etc.
- Loss
- Loss cone (atmosphere)
- Magnetopause

$\partial f = \int_{I^{*2}} \partial$	1	9J		$1 \partial $	5 2	e	- J		$\frac{1}{\rho}$	£
$\overline{\partial t} = \frac{L}{\partial L^*}$	$ _{\mu,J} \overline{L^{*2}}^{L}$	$L^{*L^{*}}\partial L$	$\left {}^{*}_{\mu,J} \right $	$p^2 \partial p$	$\alpha_{0,L^*} p$	$d \ell d d \sigma$	$ _{\alpha_{0,L^*}}$ \uparrow \mp	$ \mu_{p\alpha_0}$	$ \alpha_0 _{p_i}$	L^*
1	9	E				9		9	£ \	f
$^{+}$ $T(\alpha_{0})$ sin(2	$2\alpha_0) \overline{\partial \alpha_0}$	$ _{p,L^*}$	α_0) sill	(0n7)	$D^{\alpha_0\alpha_0}$	$\left \frac{\partial \alpha_{0}}{\partial t^{a}}\right _{p,L^{*}}$	$\Gamma \nu_{\alpha_0 p}$	$\overline{\partial p} \mid_{lpha_{0,l}}$	$L^* \int [$	$\frac{-}{\tau}$

Radial diffusion coeffects (D_{LL})

Drozdov et al., 2021

Local diffusion coefficients

Linear

1D SIMULATIONS

Time-dependent

code

Adopted from Shprits and Thorne, 2004

Leading mechanisms for acceleration to relativistic energies include radial diffusion driven by ULF waves.

Radial diffusion of

1 MeV electrons

Under steady-state conditions the equilibrium structure of the radiation belts is governed by the balance between local acceleration, inward diffusion, and losses due to pitch-angle scattering. The steady-state solution can be used to set up the initial conditions for the modeling. **The equilibrium is never attained during the storm, thus the dynamics of electron fluxes during storms must be studied using a time-dependent code.**

1000

6

ഹ

4

٦

800 600 400

200

1D radial diffusion and empirical lifetime

- 500 CRRES orbits starting from 30 July 1990
- Radial diffusion coefficient (D $_{
 m LL}$) from Brautigam and Albert, 2000
 - Simulations with empirical lifetimes parameterized as a function of Kp.
- The radial diffusion model with simplified data-derived lifetimes is capable of predicting the radial extent of high energy fluxes and locations of peak fluxes during storms and predicts MeV fluxes within one order of magnitude accuracy for most of the time of the simulation and most L values.

Time-dependent lifetime

Shprits at al, 2005

1D radial diffusion and boundary conditions (loss to magnetopause)

- 19 July 6 November 1990
- Simulations with both variable and constant outer boundary conditions.
 - The results of the simulations indicate that radial diffusion can effectively redistribute outer radiation belt fluxes and smooth PSD gradients, which are produced by losses to magnetopause or by local acceleration and loss.

Time-dependent boundary conditions

310

300

290

280

270

260

250

240

230

220

C

Shprits at al, 2006

Day of the Year, 1990

 $f(L^*=6)=f_0\cdot bf(t)$ $f(L^*=6)=f_0$

1D pitch-angle diffusion and controlling effect of scattering rates

$$\frac{\partial f}{\partial t} = \frac{1}{T(y)y} \frac{\partial}{\partial y} \Big|_{p,L} T(y)y D_{yy} \frac{\partial}{\partial y} \Big|_{p,L} f - \frac{f}{\tau_{lc}},$$

$$y = \sin(\alpha_0)$$

If the pitch angle distribution reaches an equilibrium shape the decay of the PSD can be described by a single lifetime parameter, independent of the pitch angle of particles and **lifetimes are primarily controlled by the diffusion rates near the edge of the loss cone**.

1D pitch-angle diffusion and local waves at different MLT

$$\frac{\partial f}{\partial t} = \frac{1}{T(y)y} \frac{\partial}{\partial y} \Big|_{p,L} T(y)y D_{yy} \frac{\partial}{\partial y} \Big|_{p,L} f - \frac{f}{\tau_{lc}},$$

$$y = \sin(\alpha_0)$$

- Electrons drift around the Earth and interact with different waves along their drift
 - Hiss and chorus waves assist EMIC waves in scattering the core population

1D pitch-angle diffusion and local waves at different MLT

$$\frac{\partial f}{\partial t} = \frac{1}{T(y)y} \frac{\partial}{\partial y} \Big|_{p,L} T(y)y D_{yy} \frac{\partial}{\partial y} \Big|_{p,L} f - \frac{f}{\tau_{lc}},$$

$$y = \sin(\alpha_0)$$

- Electrons drift around the Earth and interact with different waves along their drift
- Hiss and chorus waves assist EMIC waves in scattering the core population

2D SIMULATIONS

2D simulation of local acceleration

 The wave-particle interactions with whistler mode chorus waves result in a net acceleration

2D simulation with mixed terms

$$\begin{aligned} \frac{\partial f}{\partial t} &= \frac{1}{p^2} \frac{\partial}{\partial p} \Big|_{\alpha_0, L} p^2 \left(D_{pp} \frac{\partial}{\partial p} \Big|_{\alpha_0, L} f + D_{p\alpha_0} \frac{\partial}{\partial \alpha_0} \Big|_{p, L} f \Big) + \\ &+ \frac{1}{T(\alpha_0) \sin(2\alpha_0)} \frac{\partial}{\partial \alpha_0} \Big|_{p, L} T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0\alpha_0} \frac{\partial}{\partial \alpha_0} \Big|_{p, L} f + D_{\alpha_0 p} \frac{\partial}{\partial p} \Big|_{\alpha_0, L} f \right) - \frac{f}{\tau_{lc}} \end{aligned}$$

- The mixed diffusion terms act to decrease the enhancement of relativistic electron flux by chorus waves
- The effect of the mixed diffusion terms is most significant at small pitch angles

Albert and Young, 2005

2D simulation with mixed terms

$$\begin{split} \frac{\partial f}{\partial t} &= \frac{1}{p^2} \frac{\partial}{\partial p} \left| a_{0,L} p^2 \left(D_{pp} \frac{\partial}{\partial p} \left| a_{0,L} f + D_{p\alpha_0} \frac{\partial}{\partial \alpha_0} \right|_{p,L} f \right) \right| \\ &+ \frac{1}{T(\alpha_0) \sin(2\alpha_0)} \frac{\partial}{\partial \alpha_0} \left| \sum_{p,L} T(\alpha_0) \sin(2\alpha_0) \left(D_{\alpha_0 \alpha_0} \frac{\partial}{\partial \alpha_0} \right|_{p,L} f + D_{\alpha_0 p} \frac{\partial}{\partial p} \right|_{\alpha_{0,L}} f \right) - \frac{f}{\tau_{lc}} \end{split}$$

3D SIMULATIONS

3D simulations of an Idealized Storm

Shprits et al., 2014, Nature Physics

The VERB code simulation with EMIC waves reproduces the third belt structure during September 2012.

Community Coordinated Modeling Center

NASA CCMC

ode at CCMC		 Creating a simulation request: Credentials 	 Name of the simulation Simulation period 	**You must agree to the CCMC DATA Collection Consent Agreement in order to submit a run**	Cover of low our consent? Circe Nome: First (Circe) Nome: First (Circe) Nome: First (Circe) Nome: Fact (Circe) Nome: Fact (Circe) Nome: Fact (Circe) Nome: Fact (Circe)
VERB c	els/VERB-3D~2.5 FRQ Contact Search Q	any issues with the new website, please	Last Updated: 06/02/2022 Sections in this page	Inputs Outputs	Figures Domains Space Weather Impacts Publications Code Relevant Links Contacts
	https://ccmc.gsfc.nasa.gov/mode	Welcome to the new CCMC website! Please note that some pages may have moved during the migration. If you experience reach out to gsfc-comc-support/alists.hg.nasa.gov.	Home > ModelCatalog	Version: 2.5	The Versatile Electron Radiation Belt code (VERB) was developed by the Space Environment Modeling Group SEMG (http://thm.epss.ucla.edu/ c) at the University of California, Los Anglees. The model has been described in Shprits et al., 2009, and Subbotin et al., 2010, it solves the Fokker-Planck equation for electron PSJ (Schulz and Lanrzenti, 1374, Shprits et al., 2008). Subbotin and Shprits, 2009). The equation is solved using a finite differences approach and an implicit numerical scheme. The stability of such scheme is independent of the used time step. Following the approach used in the solution network mixed diffusion terms, described by Subbotin and Shprits/2009), the equation (1) is split into radial diffusion and local (energy, pitch angle, mixed) diffusion. The further separation of energy and pitch angle diffusion is impossible due to the existence of the mixed diffusion terms. Therefore, the implicit solution requires inversion of a model matrix of the 2-0 operator on each time step. Inversion of such a big matrix is a quite time consuming computational operation, which is not required for the solution of the 2-0 operator on each time step. Inversion of such a big matrix is a quite time consuming computational operator, which is not required for the solution of the 2-0 operator on each time step. Inversion of such a big matrix of the 2-0 operator on each time step. Inversion of such a big matrix is a quite time consuming computational operator. With the logger model time step, while the time step in explicit scheme is limited by the Courant-Friedrichs-Lewy stability condition (Courant et al., 1928; Prase et al., 1992), and the overall computational wall clock time with implicit scheme is lower.

nulation parameters	 Setup Kp-index: Default Kp from the World Data Center for Geomagnetism, Kyoto. Fixed Kp value, e.g., Kp = 1 Kp form the data file Exert Lupper boundary or boundary flux (bf) scaling: Default Fixed Dirichlet boundary condition (e.g., =1) Bf scaling from data files Bf scaling from observations (experimental feature) GOES 13 GOES 13 GOES 13 GOES 13 GOES 13 GOES 14 Setup grid size ligh resolution (no mixed terms) High resolution (with mixed terms) Radial diffusion, chorus and hiss waves are scaled by Kp. 	
Setup sin	<section-header><text><text><section-header><section-header><text></text></section-header></section-header></text></text></section-header>	Next (3 of 4: Process inputs) Reset form

ilation parameters	 Setup Kp-index: Default Kp from the World Data Center for Geomagnetism, Kyoto. Fixed Kp value, e.g., Kp = 1 Kp form the data file Setup L upper boundary or boundary flux (bf) scaling: Default Fixed Dirichlet boundary condition (e.g., =1) Bf scaling from observations (experimental feature) GOES 13 GOES 13 GOES 13 Betup grid size Low resolution (no mixed terms) High resolution (with mixed terms) Radial diffusion, chorus and hiss waves are scaled by Kp.
Setup simu	Notice controlList of the control

lation parameters	 Setup Kp-index: Default Kp from the World Data Center for Geomagnetism, Kyoto. Eixed Kp value, e.g., Kp = 1 Kp form the data file Eixed Kp value, e.g., Kp = 1 Kp form the data file Default Fixed Dirichlet boundary flux (bf) scaling: Default Fixed Dirichlet boundary condition (e.g., =1) Bf scaling from observations (experimental feature) GOES 13 GOES 13 GOES 13 GOES 13 GOES 13 GOES 14 Setup grid size Iow resolution (no mixed terms) High resolution (with mixed terms) Radial diffusion, chorus and hiss waves are scaled by Kp.
Setup simul	

Review input and submit

Confirmation page

Curator: Tyler Schiewe NASA Official: Dr. Masha Kuznetsova

8

0

22

Contact

0

0

Data Consent Agreement

Privacy Policy@

Return to top

Flux 1 MeV eq. pitch angle 75°

- Default Kp from the World Data Center from Geomagnetism, Kyoto.
- Bf scaling from observations (GOES 13 and 15)

Flux 1 MeV eq. pitch angle 75°

- Default Kp from the World Data Center from Geomagnetism, Kyoto.
- Bf scaling from uploaded file
- Bf reconstructed by neural network
- Landis, D. A., Saikin, A. A., Zhelavskaya, I., Drozdov, A. Y., Aseev, N., Shprits, Y. Y., et al. (2022). Title: NARX neural network derivations of the outer boundary radiation belt electron flux. Space Weather. https://doi.org/10.1029/2021sw002774

Find VERB code results at CCMC

https://ccmc.gsfc.nasa.gov/results

FAQ Contact
About \lor Models \lor Simulation Services \lor Validation \lor Community Support \lor Space Weather \lor Tools
INNER MAGNETOSPHERE SIMULATION RESULTS
Perform advanced search or simple search (options below) of our full archive.
View ALL Inner Magnetosphere Runs on Request
View Runs for the following Model:
O CIMI
O RCM Tryganenko Magnetic Field
VERB Distantionere
VIEW RUNS
Check Run Status:
Enter Run Registration Number:
CHECK STATUS

 Find results of any VERB code simulations -Bf reconstructed by neural network

VERB	code at CCM	C (Unfair competition)
https://ccmc.gsfc.nasa.gov/mod	dels/VERB-3D~2.5	
O Community Coordinated Modeling Center	FAQI Contact Search	1. Find results of any VERB code simulations
About V Models V Simulation Services V Validation V Community Support V	 Space Weather < Tools 	2. Reproduce results from Shprits et al., 2009
Welcome to the new CCMC website! Diassentie that come name may have moved during the mitration of four evocies	anviscues with the new website inlease	JOURNAL OF GEOPHYSICAL RESEARCH
r teast note out some pages may note invest outing the migration. If you expense reach out to <u>gsfc.ccmc.support@lists.hq.nasa.gov</u> .	אוניו אוני וונג וובא אברזאני אונססכ	Space Physics An Agu JOURNAL
Home > Model Catalog	Last Updated: 06/02/2022	Magnetospheric Physics 🔒 Free Access
VERB-3D	Sections in this page	Training of almontant flores in the artes we had a failed and the second second second second second second sec
Version: 2.5	Inputs	Evolution of electron fluxes in the outer radiation beit computed
+ Runs-on-Request	Outputs	with the VERB code
The Versatile Electron Radiation Belt code (VERB) was developed by the Space	Figures	Yuri Y. Shprits 🐼 Dmitri Subbotin. Binbin Ni
Environment Modeling Group SEMG (<u>http://rbm.epss.ucla.edu/</u> æ) at the University of California. Los Angeles. The model has been described in Shorits	Domains	
et al., 2009, and Subbotin et al., 2010. It solves the Fokker-Planck equation for	Space Weather Impacts	First published: 21 November 2009 https://doi.org/10.1029/2008JA013784 Citations: 166
electron PSD [Schulz and Lanzerotti, 1974, Shprits et al., 2008b, Subbotin and Shprits. 2009l. The equation is solved using a finite differences approach and an	Publications	
implicit numerical scheme. The stability of such scheme is independent of the	Code	Flux 1 MeV eq. pitch angle 75°
used time step. Following the approach used for the solution without mixed diffusion terms, described by Subbotin and Shprits[2009], the equation (1) is	Relevant Links	
split into radial diffusion and local (energy, pitch angle, mixed) diffusion. The	Contacts	
		هُ ۱
		m Particular
		L ⁴
adrozdov@ucla.edu		- ζ /#)6οι
<i>V</i>		2 Flux, 1.5

Energy = 1 MeV, Pitch angle = 75^o

LVK GRID

Subbotin et al, 2009

- Radial diffusion
- Local diffusion (hiss, chorus, EMIC)
 - Loss term
- The (L*,V,K) grid can be used for the computation of radial and local energy and pitch angle diffusion.
 - Since the lines of constant $V_{0.5}$ are almost parallel to the lines of constant energy, while K grid lines are parallel to the lines of constant pitch angle, the same boundary conditions can be imposed on the (V, K, L*) grid as on the (p, $lpha_0$, L*) grid

Simulations on different grids

MORE PRACTICAL RESULTS

The VERB code

Waves inside the magnetosphere

Meredith at al, 2003

Comparison between observations and model

Comparison between observations and model

We reproduce the dynamics of relativistic electrons (~1 MeV)

Drozdov et al., 2015

Drozdov et al., 2015

4D SIMULATIONS

4D simulations

The IRBEM library can be used to calculate to calculate E × B and gradient-curvature **drift velocities** (with electric field model, e.g. Weimer (2005).

$$\langle V_{0} \rangle = \langle V_{F} \rangle + \langle V_{GC} \rangle$$
$$V_{F} = \frac{E \times B_{0}}{B_{0}^{2}}$$
$$V_{GC} = \frac{\sqrt{8m_{0}\mu}}{q\tau_{B}B_{0}^{2}} \nabla_{0}K \times B_{0}$$
$$IRBEM Ibrary$$

Equation of the 4D simulation in the VERB code

PSD, (c / cm / MeV)³

Ņ

PSD, (c / cm / MeV)³

7

PSD, (c / cm / MeV)³

ŝ

ü ö ü

THANK YOU