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New Mexico Tech

2000 students
150 faculty
Technical University
EE department:
150 students

#1 public school in USA for: 10% of undergraduates earn PhD within 10
years of graduating.

Princeton review: best value education
USA Today: 8 on top 10 Engineering Schools in USA
Etc....
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New Mexico Tech — not just a small university
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New Mexico Tech — not just a small university
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New Mexico Tech — not just a small university
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Me (2)

e Associate Professor

* Teaching

* FElectrical Engineering courses
* FElectricity and Magnetism

* Electrodynamics

* RF and antennas

* Analog Electronics

* Instrumentation

* Optics

* Modeling and Simulation
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Data Versus Model

“All models are wrong, some are useful.” --George Box, 1976
Models are wrong.
Data are sparse, sporadic, and noisy.

What is one to do?

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Mathematical Descriptions

We begin with a model

v ={vo, ..., Vx}
i = f (Yi-1)

.. or if we want to call the drivers out explicitly

;= f (wi—la q,,;)

It's the same thing, but sometimes it is easier to think of the drivers as
external and sometimes as internal to the model.

... which evolves

International School of Space Science, L'Aquila, Italy, 30 September 2022
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What is ;7

* For weather modeling it is grids of temperature, pressure, wind
velocities, humidity, etc etc.

* Perhaps also an array of the drivers (which are inserted by the
function £()), although that is not strictly necessary.
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Bayesian Likelihood

(from Evensen, Ocean Dynamics, 53, 343-367, 2003)

The probability distribution of the model given the (uncertain)

ey — L@ S
/(...) di)

But where did the prior probability distribution of w come from?

It comes from the fact that we acknowledge that the model is not
exact and that some “adjustment” which is not described by the
numerical equations of the model is allowed.

We will return to this later.
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Sequential Likelihood Evaluation

e Remember that

=10, -, Yk}

* So we can re-write the previous equation as

f(w())"')?vbk)f(dla'“)dk‘wO)"')wk)

f (o, ..., Upldo, ... dy) =
f(...)mp

* ...0ras

f (o, ..., Uldo, ..., di) = f (o) | (1ltbo) - oo f(r]on—1) f(dilthr) ... f(di|tr)
/(...) i)

* ... when assuming independent measurements
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Sequential Likelihood Evaluation

* ... which can be decomposed sequentially like this

I (Yo, 1|dy) = f (o) f(11]v0) f(dq|3s)
/(...) dap
1 o) f(dq|1)1) fdalids
f (%o, 1, aldy, do) _ f(ho) f (4 wo)f/(@b 1) f(di|Yn) f(da|)e)
(...) dy

(o, 9ldy) F(Waln) £ (dal o)

/(...)dw
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Sequential Likelihood Evaluation

* ...and in general

f(wOa---awk):

f(@o, .y Ure—1) f(Wr|Ur—1) f(dr|¥r)

/(...)dw

* The conclusion is that Bayesian estimation can be decomposed
sequentially.

We do not need to fit the entire time-sequence simultaneously.

Instead we can run the model forward one step at a time and incorporate
observations multiplicatively.

The latter is much simpler.

Step-at-a-time assimilation is MUCH simpler than fitting (assimilating) to an
entire time sequence at once.

International School of Space Science, L'Aquila, Italy, 30 September 2022
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The State Transition Probabilities

We still need to understand the state transition probabilities

f (e |tk-1)

... because the model is supposed to be exact, so why are there
probabilities involved?

Because instead of the model evolution

dy = f(v)dt

we should imagine a stochastic evolution - because the model is not

ract- dy = f()dt + g(v)w dt

where w is arandom variable

Obviously the model probability will diverge in this case unless we
apply constraints — from observations.

International School of Space Science, L'Aquila, Italy, 30 September 2022
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A Simple Linear Model

System evolutlon Driver effect External driver

$k+]~\ Tr + GUup + Wi +— Model noise

System state

Measurement N |
\ Measurement noise

Zk:HZEk _I_Tk"/

Measurement operator

Example: a car accelerating linearly
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Example: A car accelerating linearly

/ State \ Acceleration

T Fl AG T [ [ A
2

v _0 1_X_v_k+_At_

/ f

Evolution

A

J k+1

Driver effect
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Expressed as a noisy process

Set or measured
2 :
X i A . T i 32?3 (a/_lflC;jle)ratlon
L g v At ,
X Noise/inaccuracy
0 [ 1 0 ] X +r L

A EELEA N

Measurement noise (error)

Position measurement with noise

We assume the model is correct, except for the real acceleration being
different from the set or measured acceleration by w,. We are able to

measure the position from time to time with an uncertain r,.

The challenge: estimate the position (and velocity) of the car as a function of time when
the equations of motion are nearly correct and we have noisy measurements of position.

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Noisy Observations

Position {m)
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First attempt: Extrapolate From Last Two
Data Points
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Second Attempt: Smooth over seven data
points
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Better Estimation

So far we have estimated based on observations only

We have not used prior known information about the system

* There is a set of equations which relate position, speed, acceleration

R L

How to incorporate the physical model into the estimation?

o

Model-based filtering
The Kalman Filter

e Linear quadratic/Gaussian filter/estimator

International School of Space Science, L'Aquila, Italy, 30 September 2022 24



The Kalman Filter Approach to Estimation

Correct the model
by adjusting x and v,
weighting the

Advance the

;nC%%?Iding o Time Update Measu:ement };deate relative uncertainty
the model (“Predict”) (“Correct”) of the model and the
equations. observat|ons
Imperfect
Imperfect knowledge
obser\_/a}tlons of the
of positions. acceleration

(Kalmanfilter.net)
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Kalman Filter Output

Uncertainty increases

Pre-update Post-update

Observation

| —+

]
T
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Kalman Filter Output

A/
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Kalman Filter (with the math)

To Po

A predicted value

An updated value

Predict

At = U Rt T

P, = F.P,_F, +Q,

Advance

Tht — ()
4

Update

" . —1
K, = P.H] (H.P,H] + R,)
T — ) s IA(;,J (Zk o ng\?k)
P.= (I - K.H,)P,
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The Accelerating Car in a Kalman Filter

75 L AV T At?
- 2
o I e R RS e L
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Python to the rescue

#!/usr/bin/python3

#

# Accelerating car and noisy observations
#

from filterpy.kalman import KalmanFilter
import numpy as np
import matplotlib.pyplot as plt

n=60
dt=0.25
a0=5
r=30.
w=.1
x0=0.
v0=0.

t=np.arange(n)*dt
x=0.5*a0*np.square(t)
np.random.seed(1)
z=np.random.normal(0,r,n)+x
a=np.random.normal(0,w,n)+a0

f=KalmanFilter(dim_x=2,dim_z=1)

f.x=np.array([[x0],[vO]])

f.F=np.array([[1,dt],[0,1]])

f.B=np.array([[dt*dt/2],[dt]])

f.H=np.array([[1.,0.]])

f.P=np.array([[500.,0],[0,500.]])

f.R=np.array([[r*r]])

f.Q=np.array([[dt*dt*dt*dt*w*w/4,dt*dt*dt*w*w/2],\
[dt*dt*dt*w*w/2,dt*dt*w*w]])

xp=np.empty(n,dtype=float);

for i in np.arange(n):
f.predict(a[i])
f.update(z[i])
xp[i]=f.x[0]

plt.plot(t,x,label="Truth")
plt.plot(t,z,'0",label='"Observations')
plt.plot(t,xp,label="KF output’)
plt.xlabel('Time (s)")
plt.ylabel('Position (m)")
plt.legend()

plt.show()
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Kalman Filter Result

Position (m)
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Smaller Steps with Intermittent Data

Position (m)
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— KF output
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Smaller Steps with Intermittent Data

Position (m)
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What About Non-Linear Models?

International School of Space Science, L'Aquila, Italy, 30 September 2022
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What About Non-Linear Models?

Anytime we encounter non-linear models:
Attempt to linearize them
The Extended Kalman Filter (EKF) is used for non-linear models

Modify some of the equations of the linear Kalman Filter:

Ty = f(Tr_1, Ug) H), = % ]
8f — Jacobians/ o
Fk = — - A 2 . -
O z_1,ux L = Tk Kﬁﬁ [zk = (x:"f)]
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Ensemble Methods

Ll L] (R g

/

Instead of a
/ covariance matrix to
lf},lﬂ \ represent uncertainty,
_ use an ensemble of

models which has the
same covariance

Ur =

S

Ensemble methods are useful for large models:

E.g.: a weather model with 106 state variables:

A co-variance matrix will have (106)2=1012 elements

In an ensemble with 102 models the ensemble matrix will have 106x102=108 elements

Saving a factor 104 in memory and possibly computation

International School of Space Science, L'Aquila, Italy, 30 September 2022



Ensemble Methods

M rows (number of models)

N columns (number of state variables) Evolve each row as before

!

- >
- | Vkj = f(@/lk—ljj)
| \ Each row evolves differently
Each royy is a complete because of model noise. Here is
model sta “red noise”

- L eEEEEET) 1
Qrj = OQr—1; + V1 — @*Wyj o = =
-

Compute

4

mean, variance

and covariance Noise can be applied to all elements of

across the the state or just to some driver
ensemble variables, forming an “enhanced” state
matrix
columns

Ui = (@, Vkjoy - - - s VriN)
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Ensemble Methods

* Particle filters for very non-linear models

* Ensemble Kalman Filter (EnKF) for very large models which are “not

too non-linear”.......... . :
Particle filter analysis:

The new ensemble members are
sampled members of the old ensemble.

Ensemble Kalman Filter analysis:
The new ensemble members are linear
combinations of the old ensemble
members.

Distribution:
In both cases done such that the

variance represents the data variance
where there are data

Data analysis

Vetra-Carvalho)
International School of Space Science, L'Aquila, Italy, 30 September 2022 (Vetra-Carva 038



The Ensemble Kalman Filter

* The Ensemble is conveniently represented as a matrix in which each

column is a model Ensemble member.

P

Vai

|
- M <

i Analyzed Predicted

L ji r‘pfg |

The complications of
computing the matrix X
are left out here, but make use of the differences between Ensemble
members and observations.

Multiplication by X, the analysis, make the new Ensemble have the
variance of the observations at the observation points.

International School of Space Science, L'Aquila, Italy, 30 September 2022

39



Hindcasting (Opposite of Forecasting)

* Save past model states and perform the analysis on those past states.

e Produce more accurate time-histories of the model

Tip: Hindcasting is normally called Kalman Smoothing

International School of Space Science, L'Aquila, Italy, 30 September 2022



Hind-casting (Opposite of Forecasting)

Useful in some circumstances, not useful in other circumstances

Is hind-casting useful when...

* Tracking an incoming nuclear missile which needs to be destroyed?

* In preparing the daily weather forecast?

* In re-running weather models for a research archive?

International School of Space Science, L'Aquila, Italy, 30 September 2022 41
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The Plasmasphere

* Filling on the dayside —
ionospheric source

* Loss on the nightside —
ionospheric sink

e (Co-rotation electric field due to
Earth rotation

chorus

relativistic
electron
drift orbits

e Dawn-to-dusk Electric field

-/

Plasmasheet Sources

(This version from Reiner Friedel)

International School of Space Science, L'Aquila, Italy, 30 September 2022
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The Plasmasphere Model

* The Dynamic Global Core Plasma Model (DGCPM) (Ober et al.
1997)

* 2D Single species model which incorporates the three process of
filling, loss, and transport

Magnetic field Sunlit ionosphere
Convection + two hemispheres
-~ /= Ngat — M
B (T) Fd — Fmax
Ngat D_LN_FN_l_FS
Electric field Dt B;
. Shadowed ionosphere
E (7
(7) NB,
Flux tube content F, = —
— T
N (1)

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Model Run Example

Start of high convection
erosion and plume
formation

Quiet time extended
plasmasphere to
L=5

Outer plasmasphere
drained -

I n__ril
-15 -10 -5 5 10 15 =15 -10

; ; Low convection resumes,
remainder of plume co-
: : rotates
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Model Data Comparisons

Sojka et al. (1986)

December 2006
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The Plasmasphere Model in an Ensemble
Kalman Filter

Magnetic field

B ()

\ Electric field

Flux tube content

N (7)

nsa

Adjustable parts in the Ensemble Kalman Filter

lSunIit lonosphere

Nsat — N
Nsat
!

Shadowed |onosphere

(N
y

. = 10A—|—BL —3

CIn

Convection + two hemispheres

D, N Fn+Fs
Dt B,
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Ensemble Kalman Smoother

Rationale for using a smoother:

Start ensemble Once the electric field or the refilling
v v Save ensemble rate changes it can take many hours
) before the effect is seen in the
SoechimocemuIeat observations. The observations do not
‘ Transform saved ensemble constrain th_e current model inputs,
only model inputs some hours ago. If
the smoother runs for too long we will
Start ensemble W V' save ensembie be mixing in irrelevant observ%tions.
Collect model simulated data After enough time has elapsed we
cannot say anything about the past
‘ Transform saved ensemble  from current observations.
Start ensemblev v Save ensemble All of the code parallelized
Collect model simulated data with _MPI, incl_uding parallel
maitrix operations.
> <«
.
1-3 hr 12-24 hrs t
Tstep Tassim
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Comparison with Numerical Weather Prediction

Operational forecasting
The UK Met Office runs its global NWP models on a 6-hourly basis. Forecasts for the first 6 hours of the last run are combined with all the observational

data #+ received over that period to produce the starting point for the next forecast.

In order to meet deadlines, there has to be a data cut-off time. Data arriving after that time are used later to re-compute the first 6 hours’ forecast so getting
the best start possible for the following run.

Limited area or meso-scale models #+ are run in the same way. All this is on a “best endeavours” basis and users should always bear in mind the
limitations to forecast accuracy + .

Calculating it

Physicists call weather forecasting an initial value problem. At the initial time, T=0, the rates of change of each weather element can be calculated. That
allows estimates to be made a short time, a few minutes, ahead, of winds, temperatures, pressures, water vapour and liquid water. These new values then
provide a starting point to calculate for the next few minutes.

The UK Met Office global grid (2017) has a spacing of about 11 km, 0.1 degree lat/lon in the horizontal. There are 4,916,200 grid point with, 70 levels at
each from about 20 m to 80 km above the surface of the earth.

Chaos and Forecast Ensembles

Chaos is always a problem — it has been suggested that a single butterfly flapping its wings could lead to major weather systems. In fact, it cannot but small
disturbances can and often do grow into large ones.

There are always uncertainties in detail of weather analyses. These lead to uncertainties in the deterministic forecast.

Model ensembles & are a way of tackling this problem. After running the forecast model, small variations can be put into the analysis that are compatible
with the original data. The forecast can be run many times and a spread of results obtained. The spread of these indicates the degree of uncertainty in the

deterministic forecast.

(https://weather.mailasail.com/Franks-Weather/Numerical-Weather-Prediction)

International School of Space Science, L'Aquila, Italy, 30 September 2022 49



Parallelization

* A typical run may involve an ensemble of hundreds of models

* To make efficient use of computing resources the code is parallelized
with MPI. Each individual model resides on one thread. Analysis
operations, involving matrix multiplications, decompositions, and
inversions, are parallelized across all treads.

Thread O | | & |

Thread 1 [T ~_ | !

Thread 2 o \ o
| || N
|1

Thread X ~
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Observations — part 1 - the dream

AWDANet — VLF whistlers
electron density multiple L-shells
at each station. Nightside.

EMMA — FLR mass density.
Dayside. L=1.6-6.7 ¢

McMac and Canopus — FLR
mass density. Dayside.
L=1.6-12

SAMBA — FLR mass density
Dayside. L.=1.0-3 (5-6)

DMSP
LANL-GEO
EUV

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Observations — part 2 - the dream continues
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Observations — part 3

Summary of possible data types:

In-situ density measurements from satellites
Ground-based ULF measurements of mass density
Ground-base VLF measurements of electron density
LEO satellites detections of the plasmapause
Upward-looking GPS on LEO satellites

Other types of data:

Detections of the plasmapause from satellite data

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Observations — current reality
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Model Data Comparisons (1)
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Model Data Comparisons (2)
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A Data Assimilation Run
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Comparison with Van Allen Probes

_ Limited data coverage outside the plasmapause
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Another Data Assimilation Run:
Data Coverage

Using a neural net model which includes observations from outside the plasmapause
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Another Data Assimilation Run:
Data Coverage

Using a neural net model which includes observations from outside the plasmapause
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Discussion

We are using a simple plasmasphere model:
Centered dipole magnetic field, no tilt, no stretching, no dynamics
Simple electric field model

Simple description of refilling and loss, no seasonal effects, no
dependence on UV flux/F10.7

It is amazing this works at all

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Future

Incorporate a dynamic magnetic field (e.g. Tsyganenko model)
* This will probably significantly increase computation time

Incorporate better electric field mode: Weimer model plus SAPS
Incorporate seasonal effects

Incorporate a better model for refilling and loss (TBD)

International School of Space Science, L'Aquila, Italy, 30 September 2022
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Summary and Conclusions

We introduced the theory of data assimilation

We discussed the linear Kalman Filter with an example

We developed the Ensemble Kalman Filter

We introduced a very simple model of the plasmasphere

We incorporated the model into a data assimilation framework

We demonstrated that believable results can be produced despite the
simplicity of the model and the sparseness of the data

International School of Space Science, L'Aquila, Italy, 30 September 2022
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