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New Mexico Tech

● 2000 students
● 150 faculty
● Technical University
● EE department: 

                150 students
● #1 public school in USA for: 10% of undergraduates earn PhD within 10 

years of graduating.
● Princeton review: best value education
● USA Today: 8 on top 10 Engineering Schools in USA
● Etc.... 

m



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 4

New Mexico Tech – not just a small university



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 5

New Mexico Tech – not just a small university



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 6

New Mexico Tech – not just a small university



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 7

Me

B.S. Physics and Chemistry

PhD Astronomy

Postdoc
Scientist

Associate Professor

Ring current
Energetic Neutral Atoms

Wireless networking

Astronomical Interferometry
(Imaging stars)

Plasmasphere

Cubesats

Instrumentation/controls

Software defined radios

Space Elevators

Cave meteorology
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Me (2)

● Associate Professor

● Teaching
● Electrical Engineering courses

● Electricity and Magnetism

● Electrodynamics

● RF and antennas

● Analog Electronics

● Instrumentation

● Optics

● Modeling and Simulation



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 9

Outline

● Part 1 - Introduction
● New Mexico Tech
● My research

● Part 2 - Lecture
● Introduction to data assimilation
● Kalman filter
● Ensemble Kalman Filter

● Part 3 - Science
● Plasmasphere model
● Observations
● Data assimilation approach
● Results

● Summary and Conclusions



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 10

Data Versus Model

● “All models are wrong, some are useful.” --George Box, 1976

● Models are wrong.

● Data are sparse, sporadic, and noisy.

● What is one to do?
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Mathematical Descriptions

● We begin with a model

● ... which evolves

● .. or if we want to call the drivers out explicitly

● It's the same thing, but sometimes it is easier to think of the drivers as 
external and sometimes as internal to the model.
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What is      ?

● For weather modeling it is grids of temperature, pressure, wind 
velocities, humidity, etc etc.

● Perhaps also an array of the drivers (which are inserted by the 
function f()), although that is not strictly necessary.
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Bayesian Likelihood
(from Evensen, Ocean Dynamics, 53, 343-367, 2003)

● The probability distribution of the model given the (uncertain) 
observations

● But where did the prior probability distribution of       come from?

● It comes from the fact that we acknowledge that the model is not 
exact and that some “adjustment” which is not described by the 
numerical equations of the model is allowed.

● We will return to this later.
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Sequential Likelihood Evaluation

● Remember that

● So we can re-write the previous equation as 

● ... or as 

● ... when assuming independent measurements
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Sequential Likelihood Evaluation

● ... which can be decomposed sequentially like this
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Sequential Likelihood Evaluation

● ... and in general

● The conclusion is that Bayesian estimation can be decomposed 
sequentially. 

● We do not need to fit the entire time-sequence simultaneously.

● Instead we can run the model forward one step at a time and incorporate 
observations multiplicatively.

● The latter is much simpler. 

● Step-at-a-time assimilation is MUCH simpler than fitting (assimilating) to an 
entire time sequence at once.
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The State Transition Probabilities

● We still need to understand the state transition probabilities

● ... because the model is supposed to be exact, so why are there 
probabilities involved?

● Because instead of the model evolution

we should imagine a stochastic evolution - because the model is not 
exact -

where     w    is a random variable

● Obviously the model probability will diverge in this case unless we 
apply constraints – from observations.
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A Simple Linear Model

External driver

Model noise

System state

System evolution

Measurement noise

Measurement operator

Measurement

Driver effect

Example: a car accelerating linearly
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Example: A car accelerating linearly

State

Evolution

Acceleration

Driver effect
Catch me
If you can
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Expressed as a noisy process

Measurement noise (error)

The challenge: estimate the position (and velocity) of the car as a function of time when 
the equations of motion are nearly correct and we have noisy measurements of position.

Set or measured 
acceleration

Noise/inaccuracy

Position measurement with noise

We assume the model is correct, except for the real acceleration being 
different from the set or measured acceleration by wk. We are able to 
measure the position from time to time with an uncertain rk.
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Noisy Observations

30 m RMS
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First attempt: Extrapolate From Last Two 
Data Points
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Second Attempt: Smooth over seven data 
points
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Better Estimation

● So far we have estimated based on observations only

● We have not used prior known information about the system 
● There is a set of equations which relate position, speed, acceleration

● How to incorporate the physical model into the estimation?

● Model-based filtering

● The Kalman Filter
● Linear quadratic/Gaussian filter/estimator
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The Kalman Filter Approach to Estimation

Advance the 
model 
according to 
the model 
equations.

Correct the model 
by adjusting x and v, 
weighting the 
relative uncertainty 
of the model and the 
observations. 

(Kalmanfilter.net)

Imperfect 
knowledge 
of the 
acceleration

Imperfect 
observations 
of positions.



 

International School of Space Science, L'Aquila, Italy, 30 September 2022 26

Kalman Filter Output

Uncertainty increases

Pre-update Post-update

Observation
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Kalman Filter Output
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Kalman Filter (with the math)

Predict

Advance

Update

A predicted value

An updated value
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The Accelerating Car in a Kalman Filter
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Python to the rescue

#!/usr/bin/python3

#
# Accelerating car and noisy observations
#

from filterpy.kalman import KalmanFilter
import numpy as np
import matplotlib.pyplot as plt

n=60
dt=0.25
a0=5
r=30.
w=.1
x0=0.
v0=0.

t=np.arange(n)*dt
x=0.5*a0*np.square(t)
np.random.seed(1)
z=np.random.normal(0,r,n)+x
a=np.random.normal(0,w,n)+a0

f=KalmanFilter(dim_x=2,dim_z=1)
f.x=np.array([[x0],[v0]])
f.F=np.array([[1,dt],[0,1]])
f.B=np.array([[dt*dt/2],[dt]])
f.H=np.array([[1.,0.]])
f.P=np.array([[500.,0],[0,500.]])
f.R=np.array([[r*r]])
f.Q=np.array([[dt*dt*dt*dt*w*w/4,dt*dt*dt*w*w/2],\
              [dt*dt*dt*w*w/2,dt*dt*w*w]])
xp=np.empty(n,dtype=float);

for i in np.arange(n):
    f.predict(a[i])
    f.update(z[i])
    xp[i]=f.x[0]

plt.plot(t,x,label='Truth')
plt.plot(t,z,'o',label='Observations')
plt.plot(t,xp,label='KF output')
plt.xlabel('Time (s)')
plt.ylabel('Position (m)')
plt.legend()

plt.show()
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Kalman Filter Result

7 m uncertainty 
after 10 s
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Smaller Steps with Intermittent Data

7 m uncertainty 
after 10 s
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Smaller Steps with Intermittent Data
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What About Non-Linear Models?
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What About Non-Linear Models?

● Anytime we encounter non-linear models:

● Attempt to linearize them

● The Extended Kalman Filter (EKF) is used for non-linear models

● Modify some of the equations of the linear Kalman Filter:

Jacobians
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Ensemble Methods

Instead of a 
covariance matrix to 
represent uncertainty, 
use an ensemble of 
models which has the 
same covariance

Ensemble methods are useful for large models:
E.g.: a weather model with 106 state variables:
A co-variance matrix will have (106)2=1012 elements
In an ensemble with 102 models the ensemble matrix will have 106x102=108 elements
Saving a factor 104 in memory and possibly computation
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Ensemble Methods

N columns (number of state variables)

M
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Each row is a complete 
model state

Compute 
mean, variance 
and covariance 

across the 
ensemble 

matrix 
columns

Evolve each row as before

Each row evolves differently 
because of model noise. Here is 
“red noise”

Noise can be applied to all elements of 
the state or just to some driver 
variables, forming an “enhanced” state
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Ensemble Methods

● Particle filters for very non-linear models

● Ensemble Kalman Filter (EnKF) for very large models which are “not 
too non-linear”..........

Data analysis

Ensemble

Particle filter analysis:
The new ensemble members are 
sampled members of the old ensemble.

Ensemble Kalman Filter analysis:
The new ensemble members are linear 
combinations of the old ensemble 
members.

Distribution:
In both cases done such that the 
variance represents the data variance 
where there are data

(Vetra-Carvalho)
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The Ensemble Kalman Filter

● The Ensemble is conveniently represented as a matrix in which each 
column is a model Ensemble member. 

● The complications of                                                                  
computing the matrix X                                                                       
are left out here, but make use of the differences between Ensemble 
members and observations.

● Multiplication by X, the analysis, make the new Ensemble have the 
variance of the observations at the observation points. 

Analyzed Predicted
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Hindcasting (Opposite of Forecasting)

● Save past model states and perform the analysis on those past states.

● Produce more accurate time-histories of the model

Tip: Hindcasting is normally called Kalman Smoothing
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Hind-casting (Opposite of Forecasting)

● Useful in some circumstances, not useful in other circumstances

● Is hind-casting useful when...
● Tracking an incoming nuclear missile which needs to be destroyed?

● In preparing the daily weather forecast?

● In re-running weather models for a research archive?
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The Plasmasphere

● Filling on the dayside – 
ionospheric source

● Loss on the nightside – 
ionospheric sink

● Co-rotation electric field due to 
Earth rotation

● Dawn-to-dusk Electric field

(This version from Reiner Friedel)
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The Plasmasphere Model

● The Dynamic Global Core Plasma Model (DGCPM) (Ober et al. 
1997)

● 2D Single species model which incorporates the three process of 
filling, loss, and transport

Convection + two hemispheres
Sunlit ionosphere

Shadowed ionosphere

Magnetic field

Electric field

Flux tube content
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Model Run Example

Quiet time extended 
plasmasphere to 
L=5

Start of high convection 
erosion and plume 
formation

Outer plasmasphere 
drained

Low convection resumes, 
remainder of plume co-
rotates
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Model Data Comparisons

Gallagher et al.  (1995) Sojka et al. (1986)
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The Plasmasphere Model in an Ensemble 
Kalman Filter

Convection + two hemispheres
Sunlit ionosphere

Shadowed ionosphere

Magnetic field

Electric field

Adjustable parts in the Ensemble Kalman Filter

Flux tube content
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Ensemble Kalman Smoother

1-3 hr 12-24 hrs

Tassim
Tstep

Rationale for using a smoother:
Once the electric field or the refilling 
rate changes it can take many hours 
before the effect is seen in the 
observations. The observations do not 
constrain the current model inputs, 
only model inputs some hours ago. If 
the smoother runs for too long we will 
be mixing in irrelevant observations. 
After enough time has elapsed we 
cannot say anything about the past 
from current observations. 

t

All of the code parallelized 
with MPI, including parallel 
matrix operations.
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Comparison with Numerical Weather Prediction

(https://weather.mailasail.com/Franks-Weather/Numerical-Weather-Prediction)
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Parallelization

● A typical run may involve an ensemble of hundreds of models

● To make efficient use of computing resources the code is parallelized 
with MPI. Each individual model resides on one thread. Analysis 
operations, involving matrix multiplications, decompositions, and 
inversions, are parallelized across all treads. 

Thread 0

Thread 1
Thread 2

Thread X
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Observations – part 1 - the dream

● AWDANet – VLF whistlers                                                        
electron density multiple L-shells                                                         
at each station. Nightside.

● EMMA – FLR mass density.                                                           
Dayside. L=1.6-6.7

● McMac and Canopus – FLR                                                            
mass density. Dayside.                                                                     
L=1.6-12

● SAMBA – FLR mass density                                                          
Dayside. L=1.0-3 (5-6)

● Asia-pacific magnetometers (210)
● DMSP
● LANL-GEO
● EUV
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Observations – part 2 - the dream continues
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Observations – part 3

● Summary of possible data types:

● In-situ density measurements from satellites

● Ground-based ULF measurements of mass density 

● Ground-base VLF measurements of electron density

● LEO satellites detections of the plasmapause

● Upward-looking GPS on LEO satellites

● Other types of data:

● Detections of the plasmapause from satellite data
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Observations – current reality
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Model Data Comparisons (1)

Gallagher et al.  (1995) Sojka et al. (1986)Gallagher et al.  (1995) Sojka et al. (1986)
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Model Data Comparisons (2)

Black symbols:
FLR mass density 
measurements

Black curves:
Original DGCPM

Blue curves:
Revised DGCPM 
to match 
observations
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A Data Assimilation Run

Kp increase causes erosion 
in model not seen in data?

Need McMac to fill this gap
More flexible variation of 
density with radius might help?

Increased A to 
reduce erosion?

Increased A. Unrealistic 
combination of E and A?
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Comparison with Van Allen Probes

Hit
Miss

Limited data coverage outside the plasmapause
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Another Data Assimilation Run: 
Data Coverage

Using a neural net model which includes observations from outside the plasmapause

Using
Samples 
from 
L=2-6
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Another Data Assimilation Run: 
Data Coverage

Using a neural net model which includes observations from outside the plasmapause

Using
Samples 
from 
L=5-8
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Discussion

● We are using a simple plasmasphere model:

● Centered dipole magnetic field, no tilt, no stretching, no dynamics

● Simple electric field model

● Simple description of refilling and loss, no seasonal effects, no 
dependence on UV flux/F10.7

● It is amazing this works at all
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Future

● Incorporate a dynamic magnetic field (e.g. Tsyganenko model)
● This will probably significantly increase computation time

● Incorporate better electric field mode: Weimer model plus SAPS

● Incorporate seasonal effects

● Incorporate a better model for refilling and loss (TBD)
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Summary and Conclusions

● We introduced the theory of data assimilation

● We discussed the linear Kalman Filter with an example

● We developed the Ensemble Kalman Filter

● We introduced a very simple model of the plasmasphere

● We incorporated the model into a data assimilation framework

● We demonstrated that believable results can be produced despite the 
simplicity of the model and the sparseness of the data


