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   Question 2: why whistlers?   Question 2: why whistlers?

Whistlers are radio waves generated by terrestrial lightningsWhistlers are radio waves generated by terrestrial lightnings

1.  Nose frequency

2.  Dispersion 

From 1. + 2. => where & what

Where did it travel in plasmasphere

What was the plasma density there
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to propagate along the local magnetic field line
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Automatic Whistler Detector and Analyzer Network (AWDANet)
a worldwide network of automated whistler receivers
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Virtual (whistler) Trace Transformation
[Lichtenberger, JGR, 2009]



  

 Multiple path whistler group model:
● A  new,  simplified   equatorial electron density profile is introduced 

in a meridional section of the plasmasphere:  

● A and B are constants for a MP group, but may vary to time and 
place.

● This approximation is valid between ~ 2 < L < min (8, Lpp ), where Lpp 
is the location of plasmapause.

● Taking a pair of (A,B),  the electron density in magnetic equator 
decreases monotonically.  In principle, a whistler can propagate 
along each field line described by an  L in this range with 
corresponding neq forming a virtual whistler continuum. Of course, 
in reality only a few whistlers of that continuum may be real.

log10 n
eq
=AB⋅L



  

VTT – applied to model MP group



  



  

VTT – unmatched parameters



  

VTT – matched parameters
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[Harid+, GRL, 2021:  
Mask Scoring R-CNN 

[Pataki+, JGR, under preparation:  
Mask R-CNN + Pointrend
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The uncertainty can not only be high, 
but  its value is not known!
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 If fmax>fn, σ <10% → problem solved?
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Statistical studies binning the occurrences
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(Kamchatka, Russia) 
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Large scale structure of the plasmasphere during space weather eventsLarge scale structure of the plasmasphere during space weather events
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Rothera, MLON= 7.92 deg

Karymshina, MLON= 227.37 deg

Grahamstown, MLON= 90.61 deg
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N
eq

= ~250/cm3



  

  8-9 September 2017 –  large scale structure of plasmasphere  – plasmasphere or plasmatrough?  8-9 September 2017 –  large scale structure of plasmasphere  – plasmasphere or plasmatrough?

Whistler and choruses were recorded simultaneously at 
Karymshina (Kamchatka)

at 22:40UT on 8 September 2017
L=2.13; Lpp=4.3
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Summary - What are the whistlers good for?Summary - What are the whistlers good for?

Forecast in Space Weather modeling mostly ignore the fact everything is driven by the sun, 
that is basically unpredictable. Propagating observed solar dynamics to Earth is questionable, 
it depends on models whose boundary conditions we are incapable of constraining. We are 
limited to data at L1, giving a one hour lead time and neural net type forecasts of controlling 
parameters ( e.g. Kp) that govern the physics of our best models.

Nowcasts are better: advanced data assimilation techniques with physics based models show 
great fidelity in reproducing the real radiation belt (RB) environment. Operational use of such 
Nowcasts is limited by lack of high quality real-time data beyond GEOS.

The FARBES project is different: it limits its ambition to simple, achievable prediction goals 
that are of utility to satellite operators, while avoiding the pitfalls of past projects. We hold that 
while it may be impossible to accurately predict the break of a space weather event, once an 
event has started we have the tools to predict subsequent behavior and to update our 
predictions during the event. While we may not be able to globally predict in detail the 
subsequent dynamic behavior, we can provide actionable forecasts for satellite operators on a 
few key event characteristics:
a. Time to most severe environment
b. Most severe Flux reached
c. Time to the end of event
These characteristics were deemed most useful by spacecraft operator

We overcome the data-assimilation nowcast limitations by using physics based models driven 
by simple, affordable and reliable ground-based real-time inputs only, we overcome our 
inability to accurately forecast magnetospheric drivers by using a scenario-driven forecast 
approach for RB dynamics starting with nowcast and is constantly refined during an event by 
the ongoing availability of real-time model inputs 
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