Circumterrestrial space processes as observed by the Super Dual Auroral Radar Network

Maria Federica Marcucci
INAF-IAPS
work from the SuperDARN community

ISSS – L’Aquila, 6 June 2016
HF radars signals are refracted in the ionosphere, become roughly perpendicular to the local magnetic field lines and are back-scattered by field aligned decameter scale (1/2 the radar wavelength ~20 m) irregularities of the electron density.

SuperDARN – principles

The Super Dual Auroral Radar Network continuously measures ionospheric convection in the southern and northern mid/high latitudes and polar caps (Chisham et al., 2007 and reference therein).

ISSS – L’Aquila, 6 June 2016

Maria Federica Marcucci
SuperDARN – principles

A phased array of antennae is used to steer the signal in 16 (or more) beam directions.

Multi-pulse sequences are used to produce the autocorrelation function (ACF) of the backscattered signal at each range gate and compute:

- The power of the backscattered signal (Signal to Noise Ratio)
- The width of the Doppler power spectrum
- The mean Doppler velocity: the line-of-sight component of the F-region plasma drift velocity.

75 range gates with 45 km resolution
Total Field of View: 1200 range – beam cells

Time resolution for a complete scan: 1-2 minutes.
SuperDARN – ground scatter

ISSS – L’Aquila, 6 June 2016
SuperDARN – Field of View and Range Time Plot

ISSS – L’Aquila, 6 June 2016

Maria Federica Marcucci
SuperDARN – ionospheric irregularities

Sources: plasma circulation, electron-density gradients, shear flows, temperature gradients.

Instability processes:
Gradient Drift instability (E and F region) – most relevant - strong electric field not aligned with a background plasma density gradient.
(Two-stream instability - E-region, Electrostatic Ion Cyclotron instability - E and F region, Temperature Gradient instability - F region, Kelvin-Helmholtz instability - F region, ... ?)
SuperDARN - observations of circumterrestrial space
Usually the radars form pairs:

- their beams intersect roughly at right angles
- the full two-dimensional horizontal velocity vector of the ionospheric plasma convection can be calculated from the Doppler speed measured along each beam.
SuperDARN – coverage

In the 1980s - first coherent-scatter radars to study ionospheric convection at polar latitudes with the Scandinavian Twin Auroral Radar Experiment (STARE)

Radio Science, Volume 13, Number 6, pages 1021–1039, November–December 1978

STARE: A new radar auroral backscatter experiment in northern Scandinavia

R. A. Greenwald, W. Weiss, and E. Nielsen

Max-Planck-Institute für Aeronomie, 3411 Kaltenburg-Lindau 3, Federal Republic of Germany

N. R. Thomson

Physics and Engineering Laboratory, DSIR, Lower Hutt, New Zealand
SuperDARN – coverage

Thanks to:

ISSS – L’Aquila, 6 June 2016
SuperDARN – coverage

ISSS – L’Aquila, 6 June 2016
Maria Federica Marcucci
SuperDARN – **global ionospheric convection**

Southward IMF – extended X line – steady reconnection

Balance between dayside magnetopause and tail reconnection
SuperDARN – *global ionospheric convection*

Southward IMF – extended X line – steady reconnection

Balance between dayside magnetopause and tail reconnection

ISSS – L’Aquila, 6 June 2016
SuperDARN – global ionospheric convection

Convection map based on SuperDARN velocity measurements. The measurements are used to determine a solution for the electrostatic potential expressed as a series expansion in spherical harmonics. A statistical model is used to constrain the solution in region with no data.

Ruohoniemi and Greenwald, 1996

SuperDARN filtered line of sight velocity vectors that have been fitted to an equi-area global grid.
SuperDARN – **global ionospheric convection**

Northward IMF - Reconnection poleward of the Northern cusp
No tail reconnection
A discrete set of climatological patterns of high-latitude ionospheric convection derived independently for the Northern Hemisphere and Southern Hemisphere and for different

- solar wind
- IMF
- and dipole tilt angle

based on velocity data from nine high-latitude radars in the Northern Hemisphere and the seven radars in the Southern Hemisphere from January 1998 through December 2005.

Cousins and Shephard, 2010
Following a southward turning the convection intensify rapidly (2 m) and the cross polar cap potential rises to its maximum value in 10 m.

Capability of observing the temporal evolution of the convection reconfiguration in response to variations in the IMF and within the magnetosphere.
SuperDARN – **enhanced flows associated with substorms**

Substorm occurred during steady northward IMF:

large-scale flow associated with the substorm expansion phase.
The flow pattern was of twin-vortex form.
The net closure of open flux represents 15–20% of the open flux present at onset corresponding to an overall contraction of the open-closed field line boundary by 1 degree in latitude.

Total transpolar voltage and the estimate of the latitude of the flow reversal boundary on the dusk meridian, related to the OCB obtained from the minimum in the electrostatic potential

Grocott, 2002
The Doppler spectral width is a measure of the spatial and temporal structure in the ionospheric electric field on scales comparable to, or less than, the radar measurements.

- A region of very high spectral width (350 m/s) is collocated with the ionospheric cusp/cleft region.
- An oval shaped region of high spectral width (250 m/s) near the poleward limit of the Holzworth and Meng auroral oval. This region could be linked to magnetic field lines originating in the outermost regions of the magnetosphere.
- A region of lower spectral width at lower latitude that could be related to closed field lines, associated with regions located deeper in the magnetosphere.
- A region of lower spectral width at very high-latitudes that could be related to magnetic field lines connected with the Interplanetary Magnetic Field (IMF).
The OCB (solid line) determined from the equatorward edge of high spectral width backscatter.

The reconnection electric field determined from the plasma drift perpendicular to the OCB. The integral of this along the boundary between 05 and 19 MLT.

Polar cap area variation deduced from the OCB estimates during substorm.

Milan et al. 2003
SuperDARN – Flux Transient Events

Patchy and transient reconnection

Size 1-2 RE

Southwood (1987) model

Mesoscale signature on ionospheric convection

Birkeland current
Ionospheric flow
Pedersen current

ISSS – L’Aquila, 6 June 2016
"Flow channels" on newly-opened cusp field lines

The equatorward border of the region of backscatter moves equatorward consistent with an overall expansion of the polar cap.

Neudegg et al., 1999

ISSS – L’Aquila, 6 June 2016
When a large velocity shear exists across the MP, the condition for onset of KHI are favorable and large scale vortices develop at the flank of the magnetopause.

During a long lasting period of northward interplanetary magnetic field and high solar wind speed (above 700 km/s), Cluster spacecraft constellation traversed the dusk magnetopause and went across a number of very large rolled-up Kelvin-Helmholtz (KH) vortices.

Bavassano Cattaneo, 2010
SuperDARN – **K-H at the magnetopause**

ISSS – L’Aquila, 6 June 2016

Maria Federica Marcucci
Large-amplitude nearly monochromatic pulsations were observed ubiquitously in the magnetosphere and ionosphere.

Since the SuperDARN HF radars appear to be poleward of the region of the excited FLR and map to L shells close to the magnetopause, the ionospheric flows must be related to the K-H mechanism rather than the excited field line resonance observed in the magnetometer stations.
SuperDARN – **ULF waves**

Different processes taking place in the magnetosphere results in two types of MHD waves:

The magnetosonic wave - propagating in any direction and generating compression and rarefaction both of the magnetic field and plasma;

Alfvén waves - propagating along the direction of the ambient magnetic field and producing magnetic perturbations transversal to the field lines.

Origin of ULF can be in the solar wind or internal
Periodic oscillations in the Doppler velocity arise due to the drift velocity generated in the ionosphere by the ULF wave electric field and background geomagnetic field.

In ionospheric backscatter, these oscillations arise mostly from the horizontal component of V and have amplitudes up to about 100 m/s.

Ponomarenko et al. (2002)
Radar echoes are caused scatter from field-aligned irregularities associated with polar patches.

Investigation of the instabilities producing the irregularities and dynamics of patches

Hosakawa et al. 2009

ISSS – L’Aquila, 6 June 2016
SuperDARN– mid latitude radars

Mid latitude radars - new areas of research. SuperDARN in this latitude region commonly make measurements within the region of the ionosphere that is conjugate to the inner magnetosphere

- Subauroral Polarization Streams during geomagnetic storms
- Penetration electric fields during storms and non-storm periods
- Structuring and transport of subauroral plasma (plasmaspheric plumes)
- Subauroral plasma irregularities (plasmasphere instabilities)
- ULF waves and pulsations

The mid latitude ionosphere is quite active as far as irregularities presence, the associated scatter has low Doppler velocities and spectral widths and is distinctly sub-auroral - on field lines that map into the plasmasphere.

Ribeiro et al. 2013

ISSS – L’Aquila, 6 June 2016
SuperDARN – summary of topics and conclusions

Structure and dynamics of global ionospheric convection.

Mesoscale signatures of magnetosphere-ionosphere coupling.

Ionospheric flow bursts associated with magnetopause reconnection (FTEs).

Convection associated with auroral substorms.

Ionospheric irregularities and highlatitude plasma structures (patches).

New radars coming and room for further exploitation of SuperDARN measurements

Visit SuperDARN site @ Virginia Tech [http://vt.superdarn.org]!