## Lunar Dynamical Modeling with Improved IR Lunar Laser Ranging data

V. Viswanathan [1], A. Fienga [1], H. Manche [2], J.Laskar [2], C.Courde[1], J.M. Torre[1], P. Exertier [1]



- (1) Observatoire de la Côte d'Azur, CNRS-Géoaur, OCA
- (2) Observatoire de Paris, CNRS-IMCCE, PSL

# Data Reduction Model : GINS<sup>[6]</sup>

Géodésie par Intégrations Numériques Simultanées

- Developed and maintained by OCA-GRGS-CNES
- Time of flight (photon) to Residuals
- Planetary and lunar ephemeris (libration angles)
- Earth orientation (IERS C04 / JPL KEOF)
- Tides and loading
- Tropospheric delay
- Crustal deformation

   (Love & Shida numbers)
- Relativistic effects
- Under study : Hydrology loading



Residuals (m) vs time (year)

# Improved IR LLR data

- LASER : Infrared wavelength (1064nm)
- Advantages<sup>[7]</sup>:
  - ✓ Better atmospheric transmission
  - ✓ Observations round the clock (high SNR)
  - $\checkmark$  Diversification of observed reflectors
  - Observations during new and full moon  $\checkmark$

### Maximum sensitivity for tests of EP : cos(D)





# **OCA IR Residuals**



# Preliminary estimates with formal uncertainties from INPOP15b WLS fit

| Parameter                  | INPOP15b                          | DE430 <sup>[1][2]</sup> |
|----------------------------|-----------------------------------|-------------------------|
| Radius Moon<br>km          | 1.738E+03                         | 1.738E+03               |
| EMRAT                      | 81.3005718                        | 81.3005691±0.0000024    |
| GM_EMB                     | 8.99701159E-10                    | 8.99701139E-10          |
| k2 Moon                    | 2.295E-02 ± 2E-05                 | 2.4059E-02              |
| h2 Moon                    | 1.503E-02 ± 9.9E-05               | 4.76E-02 ± 6.4E-03      |
| l2 Moon                    | 1.070E-02                         | 1.070E-02               |
| CMR2 Moon                  | 3.928E-01 ± 1.331E-06             | 3.93142E-01             |
| Gravity field coefficients | GRAIL 660b<br>(BVLS 2 x sig)      | GRAIL 660b              |
| C(2,0)<br>Core             | -8.501E-08 ± 3.052E-10            | -6.78E-08 (computed)    |
| CMR2 Core                  | 6.006E-04 ± 2.771E-06             | 2.75E-04 (computed)     |
| K CMB                      | 5.560E-09 ± 1.167E-11             | 6.43E-09                |
| Angular<br>velocities      | 6.255E-03 ± 2.544E-06             | -2.4199E-03             |
|                            | -4.147E-04 ± 1.232E-06            | 4.110195E-01            |
|                            | -8.040E-04 ± 5.090E-06            | -4.630947E-01           |
| Cf/C ratio                 | 1.5E-03 ± 7.060E-06<br>(computed) | 7E-04                   |

\*bold : fixed parameters

### **Future work**

### **Current assumptions**

- Axial symmetry of liquid core
- Non-differential rotation
- Shape constrained by CMB
- Only viscous drag at CMB
- No topography at CMB

### Discussions

- Introduction of inner solid core<sup>[8]</sup>
- Electromagnetic coupling<sup>[8]</sup>
- Interaction at ICB<sup>[8]</sup>

#### References :

- [1] Folkner, W. M. et al (2014)
  [2] Williams, J. G. et al (2014)
  [3] Fienga, A. et al (2014)
- [4] Konopliv, A. et al (2001)
- [5] Konopliv, A. et al (2013)
  [6] Viswanathan, V. et al (2016)
  [7] Courde, C. et al (2016\*)
  [8] Wieczorek, M. et al (2016)