

ISSS, L' Aquila 11/04/2022

Outline

Part A

1. Sunspot (group) number/areas

Part B

- **1.** Filaments/Prominences
- 2. Plage areas
- 3. Solar irradiance

Sunspot number series

17 Febbraio 1866 Bettagli, Seller gran marching

natinta - 99 ans agost 21

Si cambia Seufitiling a outris, è indeprivimba

in a 1m

- Hale's Law: the polarity of the leading spot is the same as the one of the polar fields at the start of the solar cycle.
- Spoerer's Law: sunspots appear at progressively lower latitudes as the cycle evolves
- Joy's Law: the following-polarity spot is at higher latitude than the leading-polarity one.
- Tilt between following and leading polarity spots increases with latitude

Verum liver hoe veru fre nour die vie er unula; for fin verever reme marchan capue loter condempnati. Afferere iunazonel omi piurio notari. Di aut teru cul oculul nuda rapra fune omia ur bene fere y umulif diuf melus funte in miledia d'iniferazionite: ur opame nour andta diffonte. I Bolt modicin tempello ter Auglorum mare tranfit? nuo regni . 111. Leodegani 10 angloum bonnere . 22 yili Manouin mparouf Bogila Anno. It Indictione. White land: arv. geisterre A mane ulg: A duelpam Appanienne quali due more pile mfra folis oubizan . Vna infape-1101 parte ; 1 ctat 11 maid 2 HIN mine V Traq V COM A fruins or e p1 TA Alter 4 Vebanuf Lansergaunfel feu da terum quetelif qual anno unfif che qu be quaru prento macinciali concilio for Bernardum epm de la Dama fenterare ementa febrare pur fierao nif is dasse mare tranfig tomam sur Aplier Pmouetar il tufta enga le Agi pet pape caufam mmerti cerra à recharione insunn inmitaure. Cui ta aptie uori à caicht fame regis: anglose lo Wille dresepe / onits; angle epil lierra directe omils; aptica mand auf au desirare un fuite eradioni illi nemo obdarec faalique. V ir unnetand

Monastery at Worcester, 08/12/1128

79. 1151 Mar 21, Mar 31 and Apr 1 (visible on 3 separate days) [KOREA] King Uijong, 5th year, 3rd month, day kuei-yu (10) - Mar 21. "On the Sun there was a black spot as large as a hen's egg. On day kuei-wei (20) - Mar 31 - and day chia-shen (21) - Apr 1 - it was the same." (Koryo-sa, 47) (CS75, K74, CD89, CD90, WX)

7. 187 Mar/Apr? (scribal error in date)

[CHINA] Chung-p'ing reign-period, 4th year, 3rd month, day ping-shen (33), (no pingshen in 3rd month, cannot suggest a viable alternative). "A black vapour as large as a melon was within the Sun." (Hou-han-shu, 18) (CS3, K3, CD7, WX)

8. 188 Feb 15 - Mar 15 (only month given)

[CHINA] Chung-p'ing reign-period, 5th year, 1st month. "The Sun was orange (reddishyellow) in colour. Within it there was a black vapour like a flying magpie. After several months it dispersed." (*Hou-han-shu*, 18) (CS4, K4, CD8, WX)

9. ** 240 (only year given)

[CHINA] Ch'ih-wu reign-period, 3rd year. "Within the Sun, a three-legged crow was seen." (K'ai-yuan Chan-ching, Jih-chan, 2) (CD9, WX)

10. 299 Feb 17 - Mar 18 (only month given)

[CHINA] Yuan-k'ang reign-period, 9th year, 1st month. "Within the Sun there was the form of a flying swallow. After several days/months it dispersed." (*Chin-shu*, 12 and *Sung-shu*, 34) (CS6, K5, CD11, WX)

[N.B. Chin-shu, 12 records a duration of several days; Sung-shu, 34 states several months]

Since ~1609

February 21. No. 14: a train of large spots, with two large leader spots. No. 15: a very fine, large group, still having the nuclei connected by a narrow dark line.

February 23. No. 14: this group is a superb object; it is fully onetenth of the apparent diameter of the Sun in length, and consists of three fine large spots. Each of the first two spots contains double nuclei, and a "bridge" was noticed crossing a portion of the umbra of the second spot. No. 15 is also a very interesting and superb group; the large leader spot has triangular umbra in nearly round penumbra; this is followed by a larger, somewhat rectangular penumbra containing a series of small spots; many small spots and penumbral matter are also in vicinity. A group of four fine prominences was observed on west limb; one large banyan-tree-like form was quite interesting.

Hadden 1896

Data	N. J'.r Dine Della machia	Jel nucles mmi.gi	Area della perom bra = min? q ² .	Della mac chia mm? gi.	Somma) giornaliera delle aree mmi. gi		Rumero Dei punte		
			•	4.00	Sec	chi 1	.871		
annaio 5	301*	10,90		14,00				N.B. Le marchie	
	302*	0,30		2,85				ville quali it numero d'ordine	
	303*	0,55		3,60				i segnato con apterijeo evano	
	304*	0,48		3,10		-25-		gia agiparse pri ma incominciagle	
	305*	0,80		4,00				il nuevo anno 1871.	
	306*	2,90		18,00					
	1	4,20		21,10					
	. 2	0,18		1,20					
	3	-		1,10			2.		
				105.9	- 68,95		22		
8	305*	0,45		2,40					

A few days later (July 12/22), G. Schultz wrote to G. Kirch about his observation on July 5–7 using Gregorian dates (no. 277, Herbst 2006):

Da Ich sie denn noch gutt genug befunden habe, und zugleich, nach wuntsch eine Maculam in quadrante occidentali partis inferioris Disci Solaris, ohngefehr 3 zoll vom centro gefunden, welche Ich auch folgenden 6 und 7 Julij, so lange das Wetter gutt gewesen, mit fernerer annäherung zum margine occidentali, darinnen gesehen.

Since I approved them [lenses] I, as I wished, found a sunspot in the lower, western quadrant of the Sun's disc, around 3 inches from the centre. As long as the weather was good, I could see it also 6 and 7 July, approaching the western edge.

Kirch 1684 (from Neuhäuser et al. 2018)

Since ~1612 .3 D. 12. Jebr: 1612 2 occaga Tolig 1. et 2. Hecti areulaner, et ni-gre- 3. 25 ta nige neg, terminate

Since ~1980

Wolf (1840)

Hoyt & Schatten (1998)

- Extended dataset back to 1610
- Filled-in Os for many missing values

Vaquero et al. (2016)

- Corrected erroneous values
- Removed ambiguous values
- Added new observers

Individual observer series

- S(t): Number of individual spots
- G(t): Number of groups of spots
- a(t): fractional area of sunspots

Composite series

 $R_s(t) = k(10G(t) + S(t))$ k: scaling parameter

 $R_g(t) = G^*(t)$

 $R_{\alpha}(t) = a^*(t)$

- 1. Sunspots
 - 2. Instrumental
 - 2. Datasets of raw data
 - 2. Raw data in Vaquero et al. (2016)

Linear scaling/daisy chaining

- Hoyt and Schatten (1998) Lockwood et al. (2014)
- Cliver and Ling (2016)
- ••••• Wolf sunspot number/20 Clette and Lefèvre (2016)

Linear scaling/backbones

----- Svalgaard and Schatten (2016)

PDF matrices/backbones

--- Chatzistergos et al. (2017)

PDF matrices/Active-day fraction

--- Willamo et al. (2017) Usoskin et al. (2016, 2021) Daisy-chaining

Backbones

Chatzistergos 2017

Svalgaard 2013

Hoyt & Schatten 1998

Svalgaard & Schatten 2016

Linear scaling on annual values/non-overlapping backbones

Chatzistergos et al. 2017

Modern Maximum

1700/1749/1818 for annual/monthly/daily

Nandy 2021

	the second statement of the se			
A		· :	į.	
в		•	~ <>	• 45
c	Q2 .	œ,	a	Sec.
D	a g	@ · · · ?	B. Jo	®* (?*®
E	87. .	B	6? "Ø	@
-		Contraction of the second s	(and a start	@ P\$
3	æ	• •	۲	æ .
-	ک .		È	ંજી
L	@:		©	00

Separating groups due to evolution track

Sunspot weighting based on size

Waldmeier 1955

Not all observers adopted it Unknown starting period

Not clear correction GSN ~ 7% (Svalgaard 2016)

Not needed (Lockwood et al. 2016)

ISN

~20% (Svalgaard 2011)

~ 10% (Lockwood et al. 2016)

Clette & Lefevre 2018

Carrasco & Vaquero 2021

Waldmeier rule: cycle's magnitude anti-correlated to rise time (minimum to maximum)

Waldmeier rule		ISN-v1	ISN-v2	GSN-HS	GSN-ADF
Classical	r p	$-0.68^{+0.14}_{-0.11}$ < 0.001	$-0.73^{+0.13}_{-0.09}$ < 0.001	$-0.44^{+0.20}_{-0.16}$ 0.015	$-0.54^{+0.18}_{-0.14}$ 0.009
Simplified	r	$-0.35^{+0.22}_{-0.18}$	$-0.29^{+0.24}_{-0.20}$	$-0.32^{+0.22}_{-0.18}$	$-0.27^{+0.25}_{-0.20}$
(<i>n</i> +1)	р r p	$-0.66^{+0.16}_{-0.12}$ < 0.001	$-0.71^{+0.13}_{-0.09}$ < 0.001	$-0.42^{+0.21}_{-0.17}$ 0.015	$-0.59^{+0.18}_{-0.12}$ < 0.001

Gnevyshev–Ohl Rule: When solar cycles are arranged in pairs with an evennumbered cycle and the following odd-numbered cycle then the sum of the sunspot numbers in the odd cycle is higher than in the even cycle.

Usoskin et al. 2021

Gnevyshev gap

Ravindra et al. 2021

Norton & Gallagher 2009

~75% moderate activity levels ~15% grand minimum ~10% grand maximum

Grand minima

			-		
Center (-BC/AD)	Duration (years)	Comment	Center (-BC/AD)	Duration (years)	Comment
1680	80	Maunder ^a	-3620	50	1–3
1470	160	Spörer	-4220	30	1–3
1310	80	Wolf	-4315	50	1–3
1030	80	Oort	-5195	50	2, 3
690	80	1–3	-5300	50	1–3
-360	80	1–3	-5460	40	1–3
-750	120	1–3	-5610	40	1–3
-1385	70	1–3	-6385	130	1–3
-2450	40	2, 3	-7035	50	1
-2855	90	1–3	-7305	30	1
-3325	90	1–3	-7515	150	1
-3495	50	1–3	-8215	110	1
-3620	50	1–3	-9165	150	1

Usoskin 2017

~75% moderate activity levels ~15% grand minimum ~10% grand maximum

Grand maxima

Center (-BC/AD)	Duration (years)	Comment	Center (-BC/AD)	Duration (years)	Comment
1970	80	Modern	-6515	70	1
505	50	2, 3	-6710	40	1
305	30	2, 3	-6865	50	1
-245	70	2, 3	-7215	30	1
-435	50	1-3	-7660	80	1
-2065	50	1-3	-7780	20	1
-2955	30	2, 3	-7850	20	1
-3170	100	1-3	-8030	50	1
-3405	50	2, 3	-8350	70	1
-3860	50	1-3	-8915	190	1
-6120	40	1-3	-9375	130	1
-6280	40	2, 3		100	1

Usoskin 2017

Gleissberg cycle 60-120 yrs Suess/de Vries cycle 205-210 yrs Eddy cycle 600-700 or 1000-1200 yrs Hallstatt cycle 2000-2400 yrs

Comparing Sunspot series to cosmogenic isotope data

Asvestari et al., 2017

Cosmogenic radioisotopes favor sunspot number series closer to the one by Chatzistergos et al. 2017

20 Maggio Giregno Della 58 all'orlo.

Faculae/plage area series

Solar Maximum

Solar Minimum

Available plage area series

Most studies:

....

- Use of single archive
- No photometric calibration
- Different processing techniques
- Segmentation manually adapted
- No accuracy estimation of processing

Ca II K archives

Chatzistergos et al. 2018

Priyal et al., 2017

Ca II K observations

Bandwidths change among archives

Archives' inconsistencies

Chatzistergos et al., 2019a, A&A 629

Plage coverage over the 20th century

Chatzistergos et al., 2020, A&A 639

Plage coverage over the 20th century

Chatzistergos et al., 2020, A&A 639

http://SolarCycleScience.com 2022/03 Hathaway

Solar Irradiance

Solar Constant

- Claude Poullet (1837) 1227 W m⁻²
- John Hershel (1837)
- Sam Langley (1881) 2903 W m⁻²
- Charles Abbot (1958) 1465 W m⁻² (±0.1%)
- Labs and Neckel (1971) 1360 W m⁻² (±1%)

Energy source	Flux density	Uncertainty or range	Relative to total solar
	$[W m^{-2}]$	$[W m^{-2}]$	irradiance
Solar irradiance	340.2	±0.12	1.000
Earth's interior heat flux	0.09	± 0.006	2.6×10^{-4}
Infrared radiation from the full Moon	0.01	8.7×10^{-3} to 0.0113	2.9×10^{-5}
Combustion of coal, oil, and gas in the United States	0.0052	_	1.5×10^{-5}
Magnetic storm dissipation	0.00362	1.0×10^{-5} to 1.0×10^{-3}	1.1×10^{-5}
Reflected radiation from the full Moon	0.0018	1.57×10^{-3} to 2.03 × 10^{-3}	5.3×10^{-6}
Solar atmospheric tides	0.00168	_	4.9×10^{-6}
Lightning discharge energy	4.95×10^{-4}	9.0×10^{-5} to 9.0×10^{-4}	1.5×10^{-6}
Auroral emission	3.7×10^{-4}	1.0×10^{-5} to 1.0×10^{-3}	1.1×10^{-6}
Zodiacal irradiance	5.67×10^{-5}	5.65×10^{-5} to 5.68×10^{-5}	1.7×10^{-7}
Lunar tides	1.96×10^{-5}	_	$5.8 imes 10^{-8}$
Total radiation from stars	6.78×10^{-6}	5.62×10^{-6} to 7.94×10^{-6}	$2.0 imes 10^{-8}$
Cosmic microwave background radiation	3.13×10^{-6}	$\pm 2.62 \times 10^{-9}$	9.2×10^{-9}
Dissipation of energy from micrometeorites	1.1×10^{-6}	1.9×10^{-8} to 2.0 × 10 ⁻⁶	3.2×10^{-9}
Additional external sources			
Airglow emission	0.0036	-	1.1×10^{-5}
Galactic cosmic rays	8.5×10^{-6}	7.0×10^{-6} to 1.0×10^{-5}	2.5×10^{-8}
Earthshine	1.93×10^{-7}	-	5.7×10^{-10}

Kren et al. 2017

51

Zharkova 2021

Space-based measurements of TSI

Space-based measurements of TSI

Space-based measurements of TSI

Composites show different long-term trends

Empirical

Regressions between facular/sunspot and irradiance data

- Naval Research Laboratory Total Solar Irradiance (NRLTSI) (lean 2018),
- EMPirical Irradiance REconstruction (EMPIRE) (Yeo et al. 2017)
- Photometric Sums (Chapman et al. 2013, Chatzistergos et al. 2020)

Semi-empirical

Surface-coverage-weighted Intensity spectra (*I*) computed from corresponding model atmospheres and radiative transfer codes

- Spectral And Total Irradiance Reconstruction (SATIRE) (Krivova et al. 2003 A&A 399)
- Solar Radiation Physical Modelling (SRPM) (Ermolli et al. 2013)

$$S(t) = \int \left(\sum_{i,j} a_s(i,j,t) I_s(i,j,\lambda) + a_f(i,j,t) I_f(i,j,\lambda) + a_{QS}(i,j,t) I_{QS}(i,j,\lambda) \right) d\lambda$$

Shapiro et al. 2017

Magnetograms / MHD simulations

Ca II K observations

SATIRE-3D

Use 3D simulations of the solar atmosphere to produce TSI variations.

- Solar magnetic field maintained by global and local dynamo action.
- Sunspot records indicate global dynamo is weak during grand minima.
- Recent studies suggest local dynamo is not coupled to the global dynamo and invariant with time (Lites, 2011; Rempel, 2014).

Minimum TSI at grand minima emerges from the model by considering scenario where entire solar surface resembles simulation of local dynamo.

Minimum TSI at grand minima = 2.0 ± 0.7 Wm⁻² below 2019 level.

- ΔTSI since Maunder Minimum cannot be greater than 2.0±0.7 Wm⁻²
- Restricts role by solar forcing in driving global warming.

Cosmogenic radioisotopes: ¹⁰Be, ¹⁴C

Thank You!

Filaments/Prominences

Solar Minimum

015

Co

Xu et al. 2021
Active day fraction (ADF) = monthly ratio of days with spots to spotless days.

For each observer cumulative PDF of ADF

Calibration curve is determined by comparing ADF PDF to those from RGO synthetic data

Bias for observers that did not leave records for spotless days.

Usoskin et al. 2016

Synthetic data

P Notoralbieit yo d ela systy