Radio Transients

ISSS: "Frontend research at low radio frequency Radio astronomy: Science and technical challenges"

Antonia Rowlinson 5th April 2023

NIVERSITEIT VAN AMSTERDAM

What are we looking for?

Two Categories of Emission

Incoherent

- Synchrotron or thermal sources
 - Slow and faint
- E.g. GRBs

Coherent

- Electrons in emitting region emit in phase, e.g. MASER
- Fast variability and bright
- E.g. Pulsars

Radio Transient Populations

Image plane searches for transient and variable sources

Transient surveys <1 GHz prior to 2014

New telescopes facilitating transient hunts

MWA

LOFAR

Imaging strategies

- Snapshot imaging in time and frequency
- Standard options for WSClean (imager often used for LOFAR & MWA)

Imaging strategies

- Bad images in \rightarrow many false positives
- Simple rms noise clipping is effective, throw away any images that are particularly noisy

Imaging strategies

- Optimising the detection threshold
- Want to minimise false positives but maximise detections
- Fit all pixels in all images with a Gaussian distribution
- Require <1 false positive detections due to noise fluctuations in all of your images

e.g. Rowlinson et al. (2022)

Transients Pipeline (TraP)

- Simple in concept, challenge is in data volume and processing speed
- Datasets can have more than
 - 1,000 unique sources
 - 10,000 images
 - 100,000 individual source extractions

Transients Pipeline (TraP)

- Publicly available: <u>https://github.com/tra</u> <u>nsientskp/tkp</u>
- Well documented: <u>https://docs.transients</u> <u>kp.org</u>
- Example tools for interacting with database: <u>https://github.com/tra</u> <u>nsientskp/TraP_tools</u>

Swinbank et al. (2015)

Variability Parameters

Reduced weighted χ^2 :

$$\eta = \frac{N}{N-1} \left(\frac{\overline{w \, I^2}}{\overline{w \, I}} - \frac{\overline{w \, I}^2}{\overline{w}} \right)$$

Coefficient of Variation:

$$V = \frac{s}{\overline{I}}$$

Where:

- N = number of images
- ω = flux density uncertainty
- I = flux density

s = standard deviation of flux densities

Swinbank et al. (2015)

TraP examples: MWA

- 10,122 epochs at 150 MHz
- 28 second cadence
- 2*σ* threshold on variability parameters
- No transient or variables found

Rowlinson et al. (2016)

TraP examples: MWA

5th April 2023

 LOFAR transient survey

- 12 epochs at 150 MHz
- Monthly cadence

Rowlinson et al. (2019)

- Classification using a logistic regression algorithm
- Other strategies also considered
- Code available here:
 - https://github.co m/AntoniaR/TraP ML_tools

Rowlinson et al. (2019)

Machine Learning with TraP

Interpreting variability parameters

Credit: Ruggero Valdata

Using a moving average method:

Using a moving average method:

Moving Average Equation

Deviation from the Moving Average

Using a moving average method:

NVSS J035705+650615

NVSS J040904+642033

Credit: Sander

Heimans

- Candidates from LOFAR dataset of 10 second snapshot images
- Pulsar giant flares?

Using a Moving Average method:

Redback pulsar J2215+5135

The first low frequency transient

Frequency 57 MHz Duration ~4 minutes

Stewart et al. (2016)

5th April 2023

MWA periodic source – magnetar?

MWA periodic source – magnetar?

LOFAR survey of the Northern sky

- 6" resolution
- 83 µJy/beam rms noise
- 144 MHz
 - DR1 (Shimwell et al. 2019)
 - DR2 (Shimwell et al. 2022)
- 8 hour pointings

Subtraction imaging

- Timesliced imaging of just one field (8sec, 2min and 1hr timescales) takes at least 500 hours
- DR1 has 58 fields → takes entire duration of NL PhD contract!
- Reduce imaging time by subtraction imaging:
 - Create deep image of field and associated sky model
 - Subtract sky model from visibilities
 - Image snapshots with no cleaning and no primary beam correction
- Subtraction imaging \rightarrow 15 hours per field

The AARTFAAC sky

- AARTFAAC uses the central 6-12 stations of LOFAR
- Sees whole visible sky
- 1 image per second!

AARTFAAC-6 in operation

Credit: Mark Kuiack

The Variable AARTFAAC Sky

Long timescale lightcurve of Hercules A showing scintillation

Multi-wavelength detection of a Perseid meteor fireball

Credit: Mark Kuiack

AARTFAAC detection of Giant Pulses from PSR B0950+08

AARTFAAC-6 transient survey

- 545 hours of data
- 60 MHz
- 7.7 second, 80 Jy flare
- Consistent with being dispersed with a DM of 73 pc cm[^]-3

Live Pulse Finder (LPF)

- Method to find dispersed transients in real time in AARTFAAC-6 observations
- Publicly available: https://github.com/transientskp/lpf

LPF transients:

Transients Surveys < 1GHz Now

Targeted follow-up of transient sources

X-ray Binaries

RS Ophiuchi: A recurrent nova in outburst

RS Ophiuchi:

Declination (J2000)

Gravitational Wave events

- Gravitational Waves first detected by ALIGO and AVirgo on 14th September 2015
- Two black holes merging
- Entered era of multimessenger astronomy

Abbott et al. (2016)

Gravitational Wave events

- 17th August 2017: first detection of a binary neutron star merger
- An associated gamma-ray burst
- Massive co-ordinated multi-messenger response

Abbott et al. (2017)

GW 170817 follow-up with LOFAR

southerly declinations with LOFAR

Broderick et al. (2020)

LIGO-Virgo follow-up with LOFAR

- 'EM bright' BH-NS candidate, 2017 Aug 25
- 'Retracted' in 2019 LIGO offline analysis
- 90% localization area = 2040 deg²
- 48 LOFAR beams at 144 MHz, BW=15.82 MHz, FWHM=3.8°, spaced by 2.8°, 225 minutes per beam
 → 290 deg² of unique sky coverage
- 3 epochs: 1 week (reference), 1 month,
 3 months

Gourdji et al. (2022)

GW follow-up: O2, O3 & Beyond

Median sensitivity (across all 48 beams): 12 mJy (7o) Median sensitivity: 1.2 mJy (5o) 21 deg^2 86:00:00.0 Circ beam: r=3" Pixel res= 1.5''Declination :00:00: Ex. image of one beam Usable area = 3.5° radius i.e. ~40 deg² 5" pixel resolution 03 beam: bmaj 26.5" x bmin 18.2 1:00:00.0 0:00:00.0 23:00:00.0 Right ascension

Better localisations \rightarrow fewer beams \rightarrow more time on sky Use direction dependent calibration and imaging

Gourdji et al. (2023)

Rowlinson & Anderson 2019. See also Gourdji et al. 2020 for overview of these models and comparison to some localised FRBs

Rapid response with LOFAR

- Responds to GRBs within 4.5 minutes – speed improvements expected with new scheduler and LOFAR 2.0
- Deepest limits on coherent radio emission from gamma-ray bursts at early times to date

Rowlinson et al. (2019)

GRB jet composition: magnetically- or matter-dominated?

Starling et al. (2020)

Testing the flare model with Long GRB 210112A

Hennessy et al. in prep

LOFAR Rapid response to short GRBs

Rowlinson et al. (2021, submitted) See also Anderson et al. (2021), Tian et al. (2022 a,b) 10^{6} 144 MHz Flux Density (mJy) 10^{4} Fluence (Jy ms) 10² 10⁰ 10^{-2}

0.05

 10^{-4}

0.00

0.15

0.10

Redshift

Fast Radio Bursts

Detection/history

- Discovered by Parkes in archival data
- Origin unknown
- Positions poorly known
- Thought to be extragalactic due to very high dispersion

Lorimer et al. (2007)

ISM IGM + Host?

Delay too large to come from just the Galaxy

Detection/history

First burst not detected by Parkes. It was found by Arecibo

Spitler et al. (2014)

Detection/history

The first Arecibo FRB turned out to be a repeating FRB!

Spitler et al. (2016)

Repeaters cannot come from cataclysmic events

One time only explosion

Pulsar on steroids

VS

FRB 121102 Localisation

VLA

EVN

Chatterjee et al. (2017)

Marcote, Paragi, Hessels et al. (2017)

Gemini

Tendulkar et al. (2017)

HST

Bassa et al. (2017)

Repeaters and Non-repeaters

Repeating FRB

Dwarf Galaxy High star formation Enigmatic persistent source

Non-Repeating FRBs

Massive Galaxies No (or little) star formation No persistent radio source

Bannister et al. 2019

Ravi et al. 2019

Prochaska et al. 2019

CHIME

- World's best FRB finder
- Operating at 400-800 MHz \rightarrow maybe LOFAR can find FRBs too?

- Strong periodicity of 217 ms!
- Duration interesting given the AARTFAAC dispersed transients...

CHIME/FRB Collaboration (2022)

LOFAR observations of FRBs

Any Questions?