Frontend research at low radio frequency Radio astronomy: Science and technical challenges

Pulsars at low radio frequencies

C. Tiburzi, INAF-OAC

Osservatorio Astronomico di Cagliari

Contents

- Pulsars in a nutshell
- * Radio frequencies how low can we go?
- Pulsar monitoring campaigns with LOFAR
- Propagation effects and applications
- x Emission mechanisms

A mass-depending evolution

A mass-depending evolution

A mass-depending evolution

A neutron star is born

- Collapse is halted by degenerate neutrons (up to the limit of Oppenheimer-Volkoff)
- $\rho \sim 7x10^{14} g/cm^3$
- R_{NS} ~ 10 km
- P_{NS} reaches <1s \rightarrow Fast-spinning due to conservation of angular momentum
- B_{NS} reaches 10^{12} G \rightarrow Highly-magnetised due to conservation of magnetic flux

... and a pulsar is born

- Pulsars are neutron stars
- They produce two beams of emission mainly visible at radio wavelengths, radiating their rotational kinetic energy;
- The beams **co-rotate with the star**;
- They can be seen if the line-of-sight of an observer crosses one (or both) of the beams
- Due to the pulsar rotation, the signal appears periodic ("Lighthouse Effect")

Flux density spectra

Jankowski+2018

A large number of pulsars have **power-law** flux density spectra with negative spectral indexes (-1.60 +/- 0.03)

$$\mathbf{S} \propto \mathbf{f}^{\alpha}$$
 $\alpha \sim -1.6$

... as low as the atmosphere doesn't bounce you back (~few tens of MHz)

Galactic background

Observing pulsars with LOFAR

 Pulsars are point-like sources, and they are typically studied in time-domain → "no" imaging, "no" interferometry

Beam-formed observations (tied-array or station beam)

- (Limited) HBA band only, 110-200 MHz
- NenuFAR covering <100 MHz
- Core and Single-stations campaigns

Single station

Dipole beam

Observing pulsars with LOFAR

- Observations ongoing since 2013
- Core observations (P.I. Tiburzi):
 - Bi-monthly cadence
 - 52 pulsars

- Weekly cadence
- >100 pulsars
- 6 German, 1 French, 1 Swedish stations
- Part of data streamed to the Juelich Supercomputing Center (Germany)
- All data are then transferred to the University of Bielefeld, where they are preprocessed (i.e., RFI-cleaned and beam-calibrated) and made ready to use

J1022+1001

30 of 67

 $Q \propto \cos\left(2RMc^2/f^2 + \psi_0\right)$

 $U \propto \sin\left(2RMc^2/f^2 + \psi_0\right)$

Credits: Kondratiev et al. 2016

Wu+2022

- ★ Published flux at 150 MHz
- Scintillation detected with LOFAR
- Scintillation non detected with LOFAR
- Scintillation detected but not resolved with LOFAR
 - Scintillation arcs detected in literature
 - Scintillation arcs detected with LOFAR

Wu+2022

DM and RM variations

DM and RM variations

$$DM = \int_{0}^{d} n_{e} dl$$
 $\langle B || \rangle \propto RM/DM$ $RM \propto \int_{0}^{d} B || n_{e} dl$

DM and RM variations

- 1) DM and RM values change in time
- 2) ANY magnetoionic medium can induce DM and RM (ISM, Solar wind, ionosphere)

DM 'noise' and the search for gravitational waves

Pulsar Timing Array experiments search for low-frequency gravitational waves by monitoring unmodelled fluctuations in the arrival times of pulsar emission on Earth.

DM variations also induce analogous fluctuations, and they **become a source of** 'noise' for GW searches.

In the **European PTA**, we are using LOFAR data to provide an exceptionally precise DM monitoring and neutralise dispersion noise

$$Q \propto \cos(2RMc^{2}/f^{2} + \psi_{0})$$

$$U \propto \sin(2RMc^{2}/f^{2} + \psi_{0})$$

$$P = Q + iU$$

$$Q \propto \cos(2RMc^{2}/f^{2} + \psi_{0})$$

$$U \propto \sin(2RMc^{2}/f^{2} + \psi_{0})$$

$$P = Q + iU$$

FT(cos($2\pi k_o x$)) $\propto [\delta(k + k_o) + \delta(k - k_o)]$ 2 solutions FT(sin($2\pi k_o x$)) $\propto i[\delta(k + k_o) - \delta(k - k_o)]$ 2 solutions

 $FT(cos(2\pi k_o x) + i sin(2\pi k_o x)) \propto \delta(k - k_o) 1 solution!$

2016/05/13 -2016/05/30 HH:MM, UTC

Radius-to-frequency mapping

Credits: Hassall

"Swooshing pulsar" doesn't swoosh for us

PSR J0922+0638

Effelsberg, L-Band

LOFAR

The end

Are low frequencies more optimal for pulsar astronomy?

Are low frequencies more optimal for pulsar astronomy?

