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Pulsars in a nutshell

A mass-depending evolution

Eggenberg 2020
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Pulsars in a nutshell

A mass-depending evolution
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Pulsars in a nutshell

A neutron star is born

- Collapse is halted by degenerate neutrons 
(up to the limit of Oppenheimer-Volkoff)

-  ρ ~7x1014 g/cm3 

- RNS ~ 10 km 

- PNS reaches <1s  Fast→ Fast -spinning due to 
conservation of angular momentum

- BNS reaches 1012 G  Highly-magnetised → Fast
due to conservation of magnetic flux
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Pulsars in a nutshell

… and a pulsar is born

● Pulsars are neutron stars

● They produce two beams of emission mainly 
visible at radio wavelengths, radiating their 
rotational kinetic energy;

● The beams co-rotate with the star;

● They can be seen if the line-of-sight of an 
observer crosses one (or both) of the beams

● Due to the pulsar rotation, the signal appears 
periodic (“Lighthouse Effect”)

Shaifullah
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Pulsars in a nutshell
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Flux density spectra

Radio frequencies: how low can we go?

Jankowski+2018

A large number of pulsars have power-law 
flux density spectra with negative 
spectral indexes (-1.60 +/- 0.03)
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How low is low in pulsar astronomy?

S∝ fα

… as low as the atmosphere 
doesn’t bounce you back (~few 

tens of MHz)

α∼−1.6

Radio frequencies: how low can we go?
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How low is low in pulsar astronomy?

S∝ fα

α∼−1.6

Radio frequencies: how low can we go?

S∝ fβ

β∼−2.56
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background



12 of 67

High frequencies

Radio frequencies: how low can we go?

How low is low in pulsar astronomy?
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Radio frequencies: how low can we go?

How low is low in pulsar astronomy?

Low  frequencies
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How low is low in pulsar astronomy?

S∝ fα

α∼−1.6

Radio frequencies: how low can we go?

S∝ fβ

β∼−2.56
Galactic 

background

PROBLEM N. 1 IN 
LOW-FREQUENCY 

OBSERVATIONS
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Pulsar monitoring campaigns with LOFAR

Observing pulsars with LOFAR

● Pulsars are point-like sources, and they are typically studied in 
time-domain  “no” imaging, “no” interferometry→ Fast

● Beam-formed observations (tied-array or station beam)

● (Limited) HBA band only, 110-200 MHz

● NenuFAR covering <100 MHz

● Core and Single-stations campaigns

B aszkiewicz+2020łaszkiewicz+2020
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Pulsar monitoring campaigns with LOFAR

Observing pulsars with LOFAR

● Observations ongoing since 2013

● Core observations (P.I. Tiburzi):
● Bi-monthly cadence
● 52 pulsars

● International stations used as stand-alone 
telescopes (P.I. Griessmeier):

● Weekly cadence
● >100 pulsars
● 6 German, 1 French, 1 Swedish stations
● Part of data streamed to the Juelich Supercomputing 

Center (Germany)

● All data are then transferred to the University of Bielefeld, where they are 
preprocessed (i.e., RFI-cleaned and beam-calibrated) and made ready to use
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What do low frequencies unveil?

Propagation effects



19 of 67

What do low frequencies unveil?

Propagation effects



20 of 67

What do low frequencies unveil?

Propagation effects



21 of 67

What do low frequencies unveil?

Propagation effects



22 of 67

What do low frequencies unveil?

Propagation effects



23 of 67

Magnetoionic medium

What do low frequencies unveil?

Propagation effects
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Magnetoionic medium

∝ f−γ

γ∝−2
∝−4

PROBLEM N. 2 IN 
LOW-FREQUENCY 

OBSERVATIONS

What do low frequencies unveil?

Propagation effects
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Magnetoionic medium

∝ f−γ

γ∝−2
∝−4

… BUT ALSO UNIQUE 
OPPORTUNITY! 

We can turn the tables 
around and use these 

effects to study the media 
crossed by pulsar radiation

What do low frequencies unveil?

Propagation effects
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Dispersion

Time

Propagation effects
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Dispersion
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Dispersion
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Dispersion
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Dispersion

J1022+1001

1385 MHz 142 MHz

Propagation effects
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Faraday Rotation
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Faraday Rotation
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Propagation effects
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Faraday Rotation

PA

Ψ

Frequenc y

ΔΨ=2 π
c
μ f

μ=√1−(
f p
f )

2

∓f p
2 f B
f 3

Propagation effects



34 of 67

Faraday Rotation
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Faraday Rotation
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Propagation effects
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Faraday Rotation

Credits: Porayko et al., 2019

Propagation effects
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Scattering

Thin screen

Unperturbed 
path
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refractive index 
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Propagation effects
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Scattering
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Propagation effects
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Scattering

Thin screen
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Propagation effects
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Scattering

Credits: Kondratiev et al. 2016

    150 MHz

    Pulse phase

Propagation effects
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Scintillation

Thin screen

Unperturbed 
path

Perturbed/delayed 
path

Unperturbed 
wave

Perturbed wave

δɸ ~ 2π f τS

Propagation effects
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Scintillation

Thin screen

Unperturbed 
path

Perturbed/delayed 
path

Unperturbed 
wave

Perturbed wave

δɸ ~ 2π f τS

 IF    δɸ ~ 2π f τS < 1,  WAVES INTERFERE

Propagation effects



43 of 67

Scintillation
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Propagation effects
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Scintillation

Propagation effects

Wu+2022



45 of 67

Scintillation

Propagation effects

Wu+2022

Published flux at 150 MHz

Scintillation detected with LOFAR

Scintillation non detected with LOFAR

Scintillation detected but not resolved 
with LOFAR

Scintillation arcs detected in literature

Scintillation arcs detected with LOFAR
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DM and RM variations

Magnetic field
Electron density
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DM and RM variations
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DM and RM variations

Magnetic field
Electron density
∝1/frequency2

Dispersion Electron density
∝1/frequency2

Faraday 
Rotation

1) DM and RM values change in time

2) ANY magnetoionic medium can induce DM and RM
(ISM, Solar wind, ionosphere)

Applications
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DM variations

Applications
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DM variations

Rotational phase

Frequency
[MHz]

Applications
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DM variations

Rotational phase
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DM variations

Rotational phase
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DM variations

Rotational phase

Frequency
[MHz]

Δ t=const x

f 2
Pulsar timing technique

Measured

Predicted

Timing

Pulses

Pulses

Residual

Residuals

Credits: Shaifullah

Obs

Model

Applications
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DM variations

Applications

MJD
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DM ‘noise’ and the search for 
gravitational waves

Applications

Pulsar Timing Array experiments search for 
low-frequency gravitational waves by 
monitoring unmodelled fluctuations in the 
arrival times of pulsar emission on Earth.

DM variations also induce analogous 
fluctuations, and they become a source of 
‘noise’ for GW searches.

In the European PTA, we are 
using LOFAR data to provide 
an exceptionally precise DM 
monitoring and neutralise 
dispersion noise
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RM variations

Applications
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RM variations

Credits: Porayko

Applications
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RM variations

Q∝cos (2RMc2/ f 2+ψ0)

U∝sin (2RMc2 / f 2+ψ0)
P = Q + iU

Credits: Porayko

Applications
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RM variations

Q∝cos (2RMc2/ f 2+ψ0)

U∝sin (2RMc2 / f 2+ψ0)
P = Q + iU

FT(cos(2πk0x))  [∝ δ(k + k0) + δ(k – k0)] 2 solutions
FT(sin(2πk0x))  i[∝ δ(k + k0) - δ(k – k0)] 2 solutions

FT(cos(2πk0x) + i sin(2πk0x))  ∝ δ(k – k0) 1 solution!

Credits: Porayko

Applications
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RM variations

FT(P)

“RM spectrum”

Credits: Porayko

Applications
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RM variations

Credits: Porayko

Applications
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RM variations

Credits: Porayko

PROBLEM N. 3 IN 
LOW-FREQUENCY 

OBSERVATIONS

Applications
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Radius-to-frequency mapping

Emission Mechanisms

Credits: Hassall
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Emission Mechanisms

LOFAREffelsberg,
L-Band

PSR J0922+0638

“Swooshing pulsar” doesn’t swoosh for us

Shaifullah+2018
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The end
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θ

θ∝1/ ( fD)
D

Are low frequencies more optimal for 
pulsar astronomy?

Low-frequency radio telescopes
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θ

θ∝1/ ( fD)

For interferometers, D is the maximum baseline
D

Are low frequencies more optimal for 
pulsar astronomy?

Low-frequency radio telescopes
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